
Chapter 8 
Frequentist Statistics in Causal Inquiry 

 
In this lengthy chapter, you are joining me on an ambitious, triple task that I took on: to 
explain the principles of what is called "frequentist statistics" as simply as possible; to 
explain why the prevailing practice of testing "null hypotheses" and constructing 
"confidence intervals" should be abandoned; and to propose a far more modest and non-
pretentious role of one statistical idea: a "standard error". 
 
Replication 
 
In chapter 4, I mentioned in passing that replication is the cornerstone of all of science.  
Most scientists, statisticians, and philosophers would probably agree with that assertion 
and would even accept the following definition of replication: exactly repeating the 
process that generated the point estimate. 

Disagreement will come into play only on the practical implications—for example, on 
what constitutes a replication of a study.  Many may argue that some processes cannot be 
replicated exactly, that others can be replicated only theoretically, and that others yet do 
not lend themselves to replication at all, not even in the imaginative mind.  These are all 
interesting issues, which quickly turn into heated debates about the philosophy of science, 
but I will not wander in that direction right now.  For the moment, we will only explore 
implications of the idea of replication, not its foundations. 

Suppose that one particular study, call it study #1, has yielded a point estimate of some 
parameter, Point Estimate1.  The parameter of interest may be causal (for example, the 
rate ratio for death in the streptokinase trial) or descriptive (for example, the proportion 
of smokers in America).  Let's assume, next, that it were possible to replicate the study 
many times and compute a point estimate from each replication.  If so, we would have 
likely obtained a sequence of many point estimates as shown below. 
 

#1   Study Data Point Estimate1  
#2 (replication) Study Data Point Estimate2    
#3 (replication) Study Data Point Estimate3

#4 (replication) Study Data Point Estimate4

. 

. 

. 
#n (replication) Study Data Point Estimaten

 
Continuing this mental exercise, we may define a theoretical quantity—the average of 

all these point estimates—and call it the expected value.  In symbolic language:  
   
    Point Estimate1 + Point Estimate2 +…+Point Estimaten

Expected value   =      limit  
         n ∞            n  

   
Although the expected value is an unknown abstract quantity, it will help us to define two 
central ideas—bias and randomness—which will be explored in the following sections. 
But the essence is this.  Bias alludes to any discrepancy between the expected value and 
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the parameter of interest whereas randomness alludes to any discrepancy between the 
study’s point estimate (Point Estimate1) and the expected value (Figure 8−1). 

Study…….. …………………..Point Estimate1

Theoretical replication…. ….Point Estimate2

Theoretical replication……...Point Estimate3
.
.
.
Theoretical replication…… ..Point Estimaten

Expected Value Parameter

BIASRANDOMNESS

= =

 
 
Figure 8−1.  Graphical illustration of bias and randomness. 
 
Figure 8−1 also clarifies the strict order of scientific inquiry in general and of causal 
inquiry in particular: first, prevent or remove bias as well as you can and then, turn your 
attention to the effect of randomness.  If you pay attention to randomness while bias is 
still lurking in the background, you might find yourself praising a point estimate that is 
close to the expected value yet is far from the Truth (because large bias separates the 
expected value from the parameter.)   
 
 
Bias 
 
Recall, again, the trial of streptokinase for ischemic stroke and the rate ratio for death for 
the causal contrast between streptokinase and placebo, which was 1.44.  Is that number a 
biased estimate of the causal parameter?  Is 1.44 an invalid number? 

The answer to these questions might surprise you.  Even if some kind of bias 
undermines the validity of the rate ratio from that trial, it is not the number that is invalid 
but the questions I have just asked.  It is inappropriate to ask whether a number is biased 
because the term applies to the process that generated the number, not to the number 
that was generated by the process, a subtle but important distinction.  At one time or 
another every mind confuses the two ideas because we all crave the answer to the question 
about the point estimate itself: “Is this number the right number?”  Unfortunately, 
however, the scientific method offers no direct answer to this question and the questions 
it does offer to answer may seem irrelevant on the surface. 

We label the process that generated a point estimate biased when the expected value 
of that process differs from the parameter of interest.  Bias implies that if we were able to 
replicate the study precisely infinite times and compute the average of infinite point 
estimates that average will not hit on the Truth.  Conversely, the process that generated a 
point estimate is called unbiased if the expected value will equal to the parameter we are 
trying to estimate.  In the interest of brevity, statisticians have invented a one-word 
substitute for the phrase “the process that generated the point estimate”—it is called 
estimator—but be sure to not confuse an estimator with a (point) estimate.  A rate ratio of 
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1.44 from the streptokinase trial is an estimate, whereas the process that generated this 
number is an estimator.  Since the whole exercise is mental, we can also envision an 
estimator that is biased a lot and one that is biased a little, depending on the distance 
between the expected value and the value of the parameter.  Notice again that I am 
alluding here to the difference between two unknown values, not between the number 
1.47 and the unknown value of the causal parameter. 

With these definitions in mind, it is easy to understand why confounders, for instance, 
cause bias in a non-randomized study.  If we perpetually replicate the process that 
generated a confounded measure of effect, the average of all confounded estimates will 
still be confounded; it will not be equal to the causal parameter.  Selection bias carries its 
title for a similar reason.  The expected value of a process in which we repeatedly 
condition on a sampling collider will differ from the causal parameter (unless we find a 
way to block the path we have opened). 

  
Why do we have to insist on not attaching the term biased to any numerical result? 
 

When the layperson says that a number is biased, she indeed delivers two messages, 
one of which says that the number is wrong and the other explains why it is wrong 
(“because the process was biased”).  Unlike the layperson, however, a scientist knows that 
every point estimate is likely to be wrong regardless of whether the estimator was biased, 
so the layperson’s dual assertion is vague.  If she implies that an unbiased process would 
have yielded the right number (the parameter), then she is wrong: no estimate is likely to 
hit on the Truth, and an estimate from an unbiased process could be far from the Truth.  
If she does not imply that an unbiased process would have yielded the right number, why 
does she blame a biased process for yielding a wrong number?  If all estimates are wrong, 
does it matter why they are wrong? 

It matters.  Not to the layperson, though—to the scientist. 
 
You are witnessing again the disparity between the scientific method and its outcome, 

between our power to choose what to do and our lack of power to guarantee the right 
answer.  Although nothing can guarantee that a point estimate will reside close to the 
causal parameter, we are still committed to coherent reasoning of our actions.  We still 
have to rationalize the method by which we derive the point estimate—the estimator, that 
is. 

Several arguments explain our intuitive preference for unbiased estimators.  First, if 
replication is empirically possible, or so we conjecture, an unbiased estimator might get us 
closer to the truth than a biased one by accumulating point estimates and computing 
their average (Figure 8−1.)  Second, when the estimator is unbiased, we may comment on 
its quality from the perspective of randomness.  But when the estimator is biased, we 
should not (a rule that is often ignored by those who mechanically transcribe statistical 
output.)  Third, if two estimators of the same parameter are unbiased, we can rationalize 
our intuitive preference for the estimate that came from the larger study.  In contrast, if 
two estimators are biased, no general reasoning dictates a preference for the estimate 
from the larger study.  Finally, if you had to choose between the following arguments, 
which would you choose? “In the interest of truth seeking, we should prefer an unbiased 
estimator” or “In the interest of truth seeking, we should not care whether the estimator is 
biased”? 

The next question is probably inevitable.  How do we know that an estimator is 
unbiased (and it is therefore legitimate to worry about the role that randomness has 
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played)?  Well, we never know.  We try honestly and meticulously to prevent and remove 
bias and then conjecture that we have obtained an estimate from an unbiased estimator.  
For example, we display our scientific assumptions in a causal diagram, consider empirical 
associations in the sample, and try to de-confound a measure of association by 
conditioning.  On the assumption that our actions make up an unbiased estimator of the 
causal parameter, we turn our attention to sources of randomness behind the de-
confounded estimate.  That’s all that science has to offer to causal inquiry and that’s a lot 
more than is offered by methods such as coin tossing, guessing, and witchcraft.  Not 
because the right answer is waiting at the end of the road but because the road itself is 
constructed of superior reasoning. 

It is time, perhaps, to bring to light common criticism of the scientific method and 
then bury it for good.  It is called “the moment reflection argument”, popping up 
whenever we rationalize a method by saying “assuming that”.  Three examples are listed 
below but there are many more: 
 
--A moment reflection would suggest it is absurd to assume that any causal diagram 
corresponds to the Truth. 
 
--A moment reflection would suggest it is absurd to assume that an estimator from a non-
randomized study is unbiased. 
 
--A moment reflection would suggest that all statistical models are wrong. 
 
I am willing to accept the moment reflection argument on epistemological level, if the 
intention is to remind us that scientific knowledge remains conjectural forever.  On 
methodological level, however, the argument is no more than arrogant truism.  The best 
rebuttal is perhaps a question: How come we have accumulated so much conjectural 
knowledge about causal reality despite this discouraging truism? 
 
 
Choosing between two unbiased estimators 
 
Assuming that randomization was properly executed in the streptokinase trial, both the 
estimator and the replication are easy to define.  The estimator is the process of 
randomization and replication means re-randomizing the participants, a procedure that 
should lead to many alternative allocations of 270 patients into two groups.  For example, 
both Smith and Jones might be assigned to streptokinase treatment in one randomization 
and to placebo treatment in another. 

We cannot, of course, replicate the process of randomization.  The study was executed 
once; each patient was allocated to one treatment group; and we computed one estimate 
of the causal parameter, say, a rate ratio of 1.44 (chapter 4).  Nonetheless, it is still 
possible to imagine repeated randomization and many point estimates, each of which will 
be derived from one particular allocation of the 270 patients into two groups.  If we 
accept this theoretical replication, statistical theory assures us that the average of the point 
estimates—the expected value—will be equal to the causal parameter, regardless of 
whether we define the parameter deterministically or indeterministically.  In other words 
the rate ratio of 1.44 was derived from an unbiased estimator. 

The estimator I have just described is not, however, the only possible one from the 
streptokinase trial.  Suppose, again, that the size of the stroke was associated with the 
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treatment group despite randomization and that we therefore decided to condition 
(stratify) on the stroke size.  After collapsing the stratum-specific rate ratios, we would 
have likely computed a different point estimate of the causal parameter, say a rate ratio of 
1.33.  Just like the number 1.44, the new rate ratio was also derived from an unbiased 
estimator (randomization followed by conditioning.)  Which estimate should we choose 
and how would we rationalize our choice? 

Most subject matter scientists and statisticians will agree that the rate ratio of 1.33 is 
“better”, but they will not uniformly agree on why it is better.  The scientist will likely say 
that it’s better because the number 1.44 is biased due to confounding and the statistician 
will likely reply that numbers are not biased and that the estimator behind 1.44 is 
unbiased too.  And if the scientist asks why, then, 1.33 is preferred to 1.44 the statistician 
might reply that one estimator is statistically more efficient than the other, alluding again 
to the process behind each estimate and not to the estimates themselves.  What you are 
witnessing in this dialogue is a difficult struggle between two approaches to causal inquiry: 
one that sees nothing but methodological adherence to desired properties of estimators 
and another that is unwilling to ignore the properties of single estimates—the reality of 
this particular study.  While many statisticians may be content with well-behaving 
estimators, scientists might have hard time turning their backs to the actual estimate they 
were able to compute after hard work and much sweat.  Even if derived from an unbiased 
estimator, the number 1.44 doesn’t look right through biomedical glasses and a scientist 
who subscribes to indeterministic causation can easily speculate why: regardless of 
treatment, the propensity to die was higher among streptokinase recipients than among 
placebo recipients because a larger proportion of the former group had suffered a large 
stroke.  I don’t know, however, why a deterministic scientist would find any fault with the 
number 1.44.  According to deterministic causation, deaths are caused by sufficient causes 
of death, not by propensities to die (chapters 1 and 4). 
 
 
Randomness and its sources 
 
I admit to disliking the word randomness because it rings like chaotic behavior, as in “a 
random act of violence”.  In scientific inquiry, however, randomness often alludes to 
reality that evolved from probabilistic rules rather than from chaos.  A so-called random 
act of violence, for example, is realization of a propensity to act violently, and a random 
sample of U.S. residents is realization of a procedure called random sampling.  That we 
cannot know what reality a process will yield does not imply underlying chaos. 

Much of classical statistics is built on the idea of probabilistic realization.  Once you 
assume that probabilistic rules have governed the point estimate from a study, you can use 
the data to calculate things such as standard error, p-value, and confidence interval, which 
will be discussed later.  The interesting question, however, is not how the math works but 
what source of randomness explains why a point estimate from an unbiased estimator 
rarely, if ever, hits on the parameter.  At a deeper level the key questions are these: 
 

1) Why should endless theoretical replication produce a distribution of point 
estimates rather than repeatedly produce the same estimate? 

2) What replication do we have in mind? 
 
Sometimes, we can answer these questions mechanistically, pointing to a probabilistic 
process that we have initiated—a process that generated one point estimate and could 

 5



have generated others.  The classical example is random sampling.  If we estimate the 
proportion of smokers in some town from one random sample of 100 residents, we may 
equate replication with theoretical re-sampling of 100 residents that will likely yield a 
different sample and a different point estimate.  Endless replication will therefore 
generate a sampling distribution—a probability distribution of many point estimates that 
are scattered around the true proportion of smokers in that town.  In that distribution, 
some estimates and some ranges of estimates will show up more often than others.  It is 
more probable to get estimates in the immediate range of the true proportion than 
estimates at the far tails of the distribution. 

Many courses in elementary statistics present similar examples as the foundation of 
“frequentist statistics”, the school of statistics that speaks the language of p-values and 
confidence intervals.  Now, if you don’t see the relevance of the previous paragraph to 
causal inquiry, let me reassure you that you haven’t missed any subtle point.  The story as 
told is irrelevant indeed.  Indeterminism does not prescribe random sampling from any 
list; determinism may rationalize random sampling from a target population (chapter 4) 
but nobody follows; and both models are concerned with a causal parameter (like the rate 
ratio for death), not a descriptive parameter (like the proportion of smokers in some 
town). 

How, then, do we answer the two questions in the context of causal inquiry?  Why 
should endless theoretical replication generate a distribution of point estimates around a 
causal parameter rather than repeatedly generate the same estimate?  And what 
replication do we have in mind, anyway? 

There are several possible answers, most of which are linked again to your choice 
between the two models of causation. 
 
 
Deterministic causation: sources of randomness 
 
When the study is a randomized trial, we may “blame” randomization for producing the 
randomness.  As I mentioned earlier, re-randomizing to two causal assignments would 
likely partition the study population differently, create a different distribution of the four 
deterministic classes in the two groups, and therefore produce a different estimate of the 
causal parameter.  Repeating this mental exercise endlessly, we may imagine a probability 
distribution of point estimates around the causal parameter, just like that sampling 
distribution of point estimates around the proportion of smokers in one town.  Since the 
same math applies to both examples, no new statistical term was coined for a probability 
distribution that is formed by theoretical re-randomization: it is called a sampling 
distribution as well.  In fact, the word “sampling” resonates well even in the context of re-
randomization once we recall the first version of the deterministic rationale for this 
procedure (chapter 4): random sampling of what would have happened to all the 
participants under each causal assignment. 

It is possible, however, for a deterministic scientist to propose a second source of 
randomness behind the data from a randomized trial.  If he prefers to estimate the causal 
parameter of some finite target population instead of the causal parameter of the trial 
population, he may also assume that the trial population was randomly drawn from the 
target.  I have no logical problem with this reasoning but I can’t see a reason for such a 
preference.  Do we learn more about causal reality from estimating the causal parameter 
of a larger population that is just as finite as the trial population?  After all, sooner or later 
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both populations will expire, their causal parameters will be shredded, and a new study 
will have to estimate the causal parameter of a new population. 

When the study was a randomized trial, nothing forces the determinist to specify any 
sampling as a second source of randomness; randomization alone provides sufficient 
rationale.  But when the causal assignments were not randomized, theoretical sampling 
from some target becomes a deterministic necessity for anyone who wants to claim that a 
source of randomness has pushed the point estimate away from some truth.  Since nobody 
dares to assume that Nature has flipped a coin to determine the causal assignments in a 
non-randomized study, a deterministic scientist must choose between two options:  Either 
he is willing to specify a finite target population for the causal parameter and assume that 
the sample was drawn at random from that target, or he has to admit that no random 
process has generated the estimate and never compute any randomness-related statistic 
(such as a p-value and a confidence interval).  In practice, however, we often find 
incoherent behavior: deterministic scientists don’t link the point estimate from a non-
randomized study to the causal parameter of any finite population, yet continue to behave 
as if unspecified theoretical replication would have generated a sampling distribution of 
point estimates.  (Around what?)  They happily compute p-values and confidence 
intervals, providing no reasoning for their ritual.  To my mind, and I hope to your mind 
too, unexplained practice has no place in science.   
 
 
Indeterministic causation: sources of randomness 
 
For the indeterminist the first source of randomness is indeterminism itself.  That’s what 
the model is all about—probabilistic realization of causal propensities.  Like the car crash 
story in chapter 1, the unfortunate deaths in the streptokinase trial make up just one end 
of the story, and another exact replay of that trial might show the deaths of other 
participants and a different number of deaths.  For example, Smith who had received 
streptokinase and survived might die in 35% of the replays and Jones who had received 
placebo and died might die in only 25% of the replays.   

If you are still thinking that replaying a videotape of the patients’ lives is a crazy idea, 
allow me to respond that re-randomizing the patients is just as crazy idea.  Technically 
speaking, neither can be executed and both have originated in theoretical reasoning.  If 
you hold a deterministic view of causation, you should reject my images of Smith dying in 
35% of the replays, but you can’t substantiate your rejection by arguments from the 
plausibility department.  I, for example, think that sufficient causes of death are an 
implausible idea, but my attempts to convince you to reject determinism appeal to 
problematic consequences of the model, not to my finding it implausible. 
 
How does randomization come into play under this model? 
 
If the study was a randomized trial we may claim a second source of randomness behind 
the point estimate.  Invoking again the idea of re-randomization, we can imagine many 
different allocations of the patients into two groups as well as probabilistic realization of 
deaths under each allocation.  In this situation we may therefore claim two sources of 
randomness behind the point estimate: one manufactured by human beings 
(randomization into the causal assignments) and another manufactured by 
indeterministic nature (probabilistic realization of death under the study's causal 
assignments).  
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To sum up, an indeterministic nature allows only one look at the outcome of each 
study—whether randomized or not—but she does not prohibit our mind from imagining 
many identical replications with other possible outcomes.  (In fact, she prescribes it!)  If 
the estimator is unbiased, each of these replications may produce a different estimate of 
the causal parameter and the collection of these estimates should form a sampling 
distribution. 
 
 
Standard error 
 
Assuming you took a basic course in statistics, you have probably learned about the 
variance (abbreviated VAR) and about the standard deviation (SD), both of which 
describe the spread of the values of a variable around its arithmetic mean.  To compute 
the variance, we subtract the mean from each observed value, square the result (the 
difference), and take the average of all those squared differences.  The variance is 
therefore the average squared difference from the mean whereas the standard deviation is 
simply the square root of the variance: SD = √ VAR.  (If the word standard doesn’t sound 
intuitive, think about standardized instead: By computing the deviation from the mean we 
standardize each value to the mean.) 

Now, instead of thinking about the observed values of a variable, think by analogy 
about the point estimates from an estimator, which we could have obtained from many 
theoretical replications.  And instead of thinking about the mean of a variable, think 
about the mean of these point estimates, which is the expected value.   Next, think about 
the spread of these point estimates around their expected value (the sampling 
distribution) and about the variance and the standard deviation as measures of that 
spread.  The analogy I have just described is shown below. 
 
Variable    Estimator 
 
Mean value    Expected value 
Observed values   Point estimates 
Distribution    Sampling distribution 
Variance    Variance 
Standard deviation   Standard error (standard deviation of the estimator) 
 
It is not too difficult to grasp the ideas of “distribution” and “spread” of a variable because 
we can display the values in a graph and see the spread.  But when we come to the 
sampling distribution of point estimates around the expected value, things get a little 
abstract.  The distribution is formed in our mind by some kind of theoretical replication, 
the expected value remains unknown, and of all possible point estimates only one is 
known: the estimate from the study.  So, whenever I lose the thread of reasoning, I look 
back at the analogy above. 

Two other sources of confusion make matters worse: the word “sampling” in 
“sampling distribution” and the term standard error for a standard deviation.  As I 
mentioned before, sampling distribution is a statistical term for any probability 
distribution that can be formed by replication.  (Perhaps “replication distribution” would 
have been a better jargon.)  But why call the standard deviation of a replication 
distribution “standard error”?  What’s the error?  Well, if the estimator is unbiased, its 
expected value is also the value of the parameter and, therefore, any estimate that does 
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not hit on the expected value is an error; it misses the truth.  On the other hand, if the 
estimator is biased (a lot), the whole exercise turns out futile: who cares about a 
replication distribution around an expected value that is far from the truth?  (Of course, 
if the bias is small, hitting the expected value is not such a bad idea.) 

Keep in mind that your computer calculates the standard error without asking you to 
state that the estimator is unbiased.  Nor does it ask you to explain what theoretical 
replication you have in mind.  It is your scientific responsibility to conjecture that bias is 
absent or small and to define the replication.  And if you can’t do both, you should deny 
the standard error and its two derivations: a p-value and a confidence interval.  In my 
experience, many scientists don’t follow through—deterministic ones in particular. 

As you surely have heard in statistics, the standard error measures some aspects of 
randomness.  Now you understand why, I hope.  Probabilistic rules cause the points 
estimates—one known and others theoretical—to form a sampling distribution around 
the expected value, and the standard error is the standard deviation of that distribution.  
When the sampling distribution is wide, the standard error is large; when it’s tight, the 
standard error is small.  We prefer the latter, of course: we want a hit on the expected 
value. 
 
 
The power of numbers (sample size) 
 
Our preference for a small standard error rests, again, on reasoning for choosing a 
method, not on knowing what the outcome might be.  Facing a choice between a biased 
estimator and an unbiased one, we readily opt for the latter (even though we are not 
guaranteed a better return.)  Facing a choice between an estimator that produces a wide 
sampling distribution and an estimator that produces a tight one (both unbiased), we go 
for the latter again.  Nothing, of course, guarantees that an estimate from a tight 
distribution will reside close to the parameter; we might obtain a tail value—by chance.  
But again, which of the following statements would you prefer to make?  “In the interest 
of truth seeking I don’t care how wide the replication distribution is spread around the 
parameter” or “In the interest of truth seeking I prefer an estimate from a tight 
distribution”? 

In the battle for truth we have two enemies to fight: bias and randomness.  Once bias 
was conquered (or so we conjecture) we may use a powerful weapon against 
randomness—a large sample.  The larger the sample, the tighter is the sampling 
distribution and the smaller is the standard error.  Which brings up a mysterious behavior 
of Nature.  For some reason, she demands that we pay to gain insight into her secrets, 
never sending a free lunch our way.  If you want to estimate a parameter, you have to 
invest some effort by conducting a study.  And the more you invest (the larger the 
sample), the more you might get in return—if bias is absent or small.  There is power in 
numbers. 

By now you have probably realized the two principles that guide causal inquiry: strive 
for an unbiased estimator of the causal parameter and strive for an estimator that 
produces a tight sampling distribution—for a small standard error, that is.  Unfortunately, 
however, the two goals tend to conflict, creating what has been wisely called “the bias-
variance tension” (or the “bias-standard error tension”.)  We have already seen an 
example in the context of confounding.  To eliminate confounding bias by conditioning, 
we have to stratify the sample on confounders, compute stratum-specific estimates, and 
collapse these estimates into one average.  In this process, we often sacrifice the size of the 
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standard error because each stratum contains only a fraction of the sample and re-
assembling the pieces into one average might not remedy the damage of splitting.  Had 
we wanted, on the other hand, to minimize the standard error, we should have kept the 
sample intact.  But to keep the sample intact means to allow the bias of confounding.  
What remedy is offered by Nature?  You guessed it.  You can always pay more; get a larger 
sample.  

It is natural to ask next “How large of a sample is large enough?” and I am tempted to 
reply with a question: “How rich of a person is rich enough?”  Neither material richness 
nor richness of scientific knowledge comes with a price cap.  There is no price cap for 
knowledge because certain knowledge is unattainable—Nature has not put it for sale. 
 
 
Probability density functions 
 
We are a few sections away from a critical discussion of the p-value, a randomness-related 
machinery that has transformed much of causal inquiry into an automated procedure.  
Data go in, a p-value comes out, and a verdict is issued: “not statistically significant”, 
“almost statistically significant”, “statistically significant”, or “highly statistically significant”.  
But before we dive into the p-value swamp—and try to get out—let’s find out how we get 
to that magical number.  The explanation, unfortunately, is a little long.  Hang on. 

The road starts with a sampling distribution (or a replication distribution, if you 
prefer) of point estimates around the expected value of an unbiased estimator.  To keep 
things simple, let’s consider again an example of random sampling, rather than 
randomization or indeterministic randomness, and make three assumptions: 
 

1) The parameter of interest is descriptive, the percentage of smokers in some town, 
and its value is 50%  

2) We estimate that (unknown) number from a random sample of 100 residents  
3) We are allowed 100 replications, which means 100 samples of 100 residents and, 

therefore, 100 estimates of the percentage of smokers.  (Note that after each 
replication, we return the sample back to the pool before sampling again.) 

 
One way to find a pattern in the data is to order the list of estimates from the lowest value 
(possibly 0% of smokers in some samples) to the highest value (possibly 100%) and 
calculate the frequency of estimates that fall in various ranges.  For example, we might 
find out that one tenth of the samples shows a percentage of smokers in the interval   
[0%, 25%] and that one-half shows a percentage in the interval [25%, 50%].  Evidently, 
each of these frequencies should somehow reflect a probability: the probability of getting 
a sample in which the percentage of smokers resides in some interval.   

Figure 8−2 shows an example of hypothetical, but possible, results.  Ranges of 
estimates that are close to the parameter show up more often than remote ones, as we 
expect, and the sum of the four bars is equal to 1, as it should.  No matter which sample 
we get, the percentage of smokers must belong to the interval [0%, 100%]—the “sum” of 
the four intervals. 
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Figure 8−2.  Hypothetical frequency (proportion) of samples showing a percentage of 
smokers in four successive ranges.  Each range is 25 percentage points wide. 
 
Let’s shrink next the intervals from a width of 25 percentage points to a width of 10-
percentage points, and thereby create a sequence of ten successive intervals between 0% 
and 100% (Figure 8−3). 
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Figure 8−3.  Hypothetical frequency (proportion) of samples showing a percentage of 
smokers in ten successive ranges.  Each range is 10 percentage points wide. 
 
As before the height of each bar estimates the probability of getting a proportion that 
belongs to that 10-percentage point range.  The total bar area is, again, equal to 1. 

Imagine now that you continue this exercise in the following way: 1) Instead of 
sampling 100 residents just 100 times, you sample 100 residents infinite times; 2) As you 
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proceed with re-sampling, you continually shrink the width of the intervals until the tops 
of adjacent bars blend and it’s hard to tell where one bar ends and another begins.  At the 
end of this mental exercise all you can see is a silhouette—a curve that separates the area 
below (which still covers a probability of 1) from the area above (Figure 8−4.)  The curve 
and the area below are called probability density function. 
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Figure 8−4.  A probability distribution of point estimates from 100-people samples around 
a hypothetical percentage of smokers in some town (50%).  The curve and the area below 
are called “probability density function”. 
 

If you were not born with excessive passion for mathematical ideas, the name might 
sound intimidating.  But it might turn out less intimidating after I clarify the word 
“function” and explain how to read the graph of Figure 8−3 (if you don’t know already.)   

“Function” is an algebraic idea.  We say that Y is a function of X, or Y = f (x) in 
notation, if we can compute the value of Y from the value of X, display the points (X, Y) in 
a graph, and connect them by a line.  A kernel of these ideas applies here as well, but not 
more than a kernel.   

If probability density function were a classical function (like Y=2X), you could have 
used the graph to find the value of Y from the value of X as follows: You would choose a 
percentage on the X-axis of Figure 8−4 (say, 40%), draw a vertical line until you meet the 
curve, and turn left to the Y-axis to find the Y-value of that point.  This does not work 
here, however.  The Y-axis does not contain the information of interest because we drew a 
curve to approximate the top border of a sequence of tiny bars, not to connect a sequence 
of data points.  Unlike a classical function, our “Y as a function of X” is depicted as an area 
under the curve, but that area is zero for X=40% or for any other percentage!  In 
geometry, a vertical line does not occupy any area. 

To read the graph of a probability density function, we must specify an interval for X 
and “read” (calculate somehow) the area under the curve for that interval.  In Figure 8−4 
the simplest example is the interval [0%, 100%] for which the area under the curve 
depicts a probability of 1.  For any other interval, the area under the curve occupies a 
fraction of the total area and that fraction makes up a probability value.  For instance, 
about 95 percent of the total area is contained between 40% and 60%, which means that 
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the probability of getting a percentage of smokers in that interval is about 0.95.  Of one 
million samples, about 0.95 million will contain 40% to 60% of smokers. 

The analogy between a probability density function and a “classical” function is 
summarized in Table 8−1: 
 
Table 8−1.  Analogy between a probability density function and a classical function 
 

Classical function 
(for example, Y=2X) 

Probability density function 
(for example, a sampling distribution) 

X is a number on the X-axis X is the interval [a, b] on the X-axis 
Y is a number Y is the probability of “falling” in the 

interval [a, b].  0<Y≤1   
Y is read on the Y-axis by finding the 
point (X,Y) on the line that depicts 
the function 

Y is the area under the line between “a” 
and “b”, expressed as a fraction of the 
total area under the line 

 
 
Where does “density” come from? 
 

Figure 8−4 shows, again, a hypothetical sampling distribution of random samples of 
100 residents (left panel) and another hypothetical distribution of samples of 50 residents 
(right panel).  These two distributions differ but in either case the total area under the 
curve still displays a probability of 1.  Now, think for a moment about probability of 1 as a 
mass-like quantity, perhaps gel, and about the total area under the curve as a “smear” of 1 
unit of gel.  When the distribution is tighter, as in the left panel, the smear must be 
denser at the center and lighter at the tails.  For example, the area under the curve for 
the interval [40%, 60%] contains “more probability” in the left function than in the right 
one; the left function is denser at the center.  In subject matter language, the meaning is 
this: The probability of getting an estimate in the range of 40% to 60% is larger for a 
sampling distribution of 100 residents than for a sampling distribution of 50 residents. 
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Figure 8−5.  Two probability density functions of point estimates around a hypothetical 
percentage of smokers in some town (50%): left panel, 100-resident samples; right panel, 
50-resident samples. 
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Converting a point estimate to a Z-value 
 
Our discussion so far has been purely theoretical, setting all practical matters aside.  You 
cannot, however, take the collection of estimates from some estimator and display its 
sampling distribution, because you got only one number: the estimate from the study.  
And even if it were possible to replicate some process several times, it is still impossible to 
replicate any process infinite times and display a probability density function of the 
estimator.  Fortunately however, statistical theory has found a two-step solution to this 
problem:  First, statisticians invented (discovered?) several well-characterized probability 
density functions.  Second, they showed us how to convert the unknown sampling 
distribution of various estimators to one of those well-described functions.  My abstract 
words call for an example. 

You might have learned about the standard normal distribution, an example of a 
probability density function for what is called the Z statistic (Figure 8−6.)  Details aside, 
the curve of this function is symmetrical and bell-shaped and we know the area below for 
any interval of interest.  For example, about 95% of the area under the curve (probability 
of 0.95) is located in the interval [Z= –2, Z=2] and about 2.5% of the area (probability of 
0.025) is located in the interval [2, ∞), a tail area.  Now, it turned out that you can 
transform the sampling distribution of the mean difference to the Z distribution by 
following three steps: 
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Figure 8−6.  The standard normal distribution: a well-characterized probability density 
function 
 

First, draw in your mind a sampling distribution of many estimates of the mean 
difference, from an unbiased estimator, around the unknown causal parameter—the true 
mean difference.  What shape does it have?  If you pictured a bell-shaped distribution, 
similar to the Z-distribution, you were right.   

Second, make up a number for the causal parameter.  That number resides at the 
center of your sampling distribution.   
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Third, subtract the value of the causal parameter from each estimate and divide the 
result by the standard error of the sampling distribution. (We'll assume below that the 
causal parameter is zero, though it may be any number.) 
 
Assuming the causal parameter happened to be zero and your sample was “large enough”, 
you have just computed (in your mind) a list of Z-values.  In notation: 
 

  Estimated mean difference ─ 0 
                   ≈ Z-value                 Equation 8─1   
           SE (mean difference) 
 
But this doesn’t get us too far.  We have only one estimate from that hypothetical 
sampling distribution (the mean difference from the study), and we don’t know the 
standard error.  Fortunately, again, statistical theory has found a way around one of these 
problems: we can estimate the standard error of the sampling distribution of the mean 
difference from one sample’s data.   

We are almost there.  Take the point estimate of the mean difference (from a large 
study), divide it by the (estimated) standard error and you get a Z-value.  Then, look at 
the Z-distribution, find the location of your Z-value on the horizontal axis of that 
probability density function, and tell yourself quietly: “Assuming the true mean difference 
is zero and my estimator is unbiased, this is the location of my estimate on a sampling 
distribution of the mean difference.”  What use might you make of that whispering we’ll 
see later. 
 
What about the sampling distribution of ratio measures of effect, such as the odds ratio or 
the rate ratio? 
 
Unlike the mean difference, ratio measures of effect do not display a nice bell-shaped 
curve, but we can easily handle the problem by switching to a logarithmic scale.  For 
example, if the sample is “large enough” the sampling distribution of the log(OR) looks 
bell-shaped, just like that of the mean difference, so we can convert the log of the 
estimated OR to a Z-value as before: 
 
Assuming that log (ORcausal) happened to be zero (implying ORcausal=1: no effect), then, 
 

 Estimated log(OR) ─ 0 
     ≈ Z-value      Equation 8─2 

                      SE [log(OR)]  
 
The last formula is a bit scary but all that I have done is to substitute “log (OR)” for “mean 
difference”.  Again, there are ways to estimate the “standard error of the sampling 
distribution of the log of the odds ratio” (a breathtaking phrase). 
 
 
Converting a point estimate to a χ2 value 
 
When we wish to convert the sampling distribution of ratio measures of effect, another 
probability density function, the chi-squared distribution, often becomes handy.  The chi-
squared statistic is, however, a trickier concept than the Z-statistic because it is a family of 
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distributions, each linked to something called “degrees of freedom”.  And “degrees of 
freedom” is one of those statistical ideas that are difficult to touch, or even to begin to 
grasp.  But there is no need to worry: I will mention only the first member of the family—
a chi-squared statistic on one degree of freedom (written χ2

1 d.f.).  Its probability density 
function is shown in Figure 8−7.  Keep in mind that the area outlined by the curve, the X-
axis, and the Y-axis contains a probability of 1. 
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Figure 8−7.  The chi-squared distribution (1 degree of freedom) 
 
It turned out that we can convert ratio measures of effect, such as the odds ratio, into a 
chi-squared value (1 d.f.) in the following way: 
 
Assuming that log (ORcausal) happened to be zero (implying ORcausal=1: no effect), then, 
 
       [Estimated log(OR)]2  
          ≈  χ2

1 d.f.   Equation 8─3 
           Var [log(OR)]  
 
Take a moment to compare equations 8─3 and 8─2.  The left hand side of equation 8─3 
is the square of the left hand side of equation 8─2 and, therefore, the same relation must 
hold for the right hand sides—that is, χ2

1d.f. = Z2.   So, we have just learned that the Z-
statistic and the chi-squared statistic on 1 degree of freedom are related.  (But don’t think 
about taking the square root of χ2 and getting χ.  There is no such thing as the χ-
statistic…) 

One last technical point, which we’ll need later, has to do with the relation between 
the areas under the chi-squared curve and the Z-curve.  If χ2

1d.f.=4, for example, the tail 
area in the interval [4, ∞) contains a probability of 0.05.   But if you switch to a Z-
distribution by taking the square root of 4, you will find that the right tail interval [2, ∞), 
or the left tail interval (–∞,–2], contain only half that probability—only 0.025.  Therefore, 
a right tail on the chi-squared distribution (which is not symmetrical) corresponds to two 
tails on the bell-shaped Z-distribution.  In simplified statistical notation, my words say the 
following. 
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Pr (χ2
1d.f.

 > 4) =  Pr (Z > 2)    +  Pr (Z < –2) 
 
And in general   Pr (χ2

1d.f.
 > C) = Pr (Z > √C) + Pr (Z < –√C) = 2 Pr (Z > √C) 

 
Now we are ready to march into the p-value world. 
 
 
Computing a p-value 
 
Recall again the streptokinase trial (Chapter 4) and two point estimates from that trial: an 
odds ratio for death of 1.47 which we computed ourselves, and a hazard ratio of 1.44 
which was reported in the article.  Table 8─1 shows the conversion of these estimates to a 
chi-squared value.  (Not having all of the necessary data, I used an approximation sign in 
front of numbers that I estimated from the article.) 
 
 
 
Table 8─1.  Computing two P-values using data from the streptokinase trial 
 Odds Ratio (OR) Hazard Ratio (HR) 
point estimate 1.47 1.44 
log (point estimate)* 0.385 0.365 
SE [log(…ratio)] 0.25 ~0.19 
Var [log(…ratio)] 0.0625 ~0.036 
χ2

1d.f.  2.37 ~3.70 
p-value 0.12 0.05 
*Natural logarithm (base e) 
 

The p-values in the last row are simply the area under the curve of the chi-squared 
distribution to the right of each chi-squared value.  Specifically, the probability of the 
interval [2.37, ∞) is 0.12 whereas the probability of the interval [3.70, ∞) is 0.05.   To see 
what these numbers might mean in the context of the streptokinase trial, let’s focus on 
the hazard ratio column (p=0.05). 

Picture the bell-shaped sampling distribution of the loge(HR) and assume that zero 
resides at its center (which means HRcausal=1).  Then, transform that distribution in your 
mind to a Z distribution and ask yourself which value on the horizontal axis of the Z-
distribution corresponds to the hazard ratio of 1.44 from the streptokinase trial.  The 
answer of 1.9 can be computed from the data in Table 8─1.  Since the point estimate of 
1.44 corresponds to a chi-squared value of 3.7, it must also correspond to Z=1.9 (or –1.9) 
which is the square root of 3.7.  You can also, of course, calculate the Z-value directly 
according to equation 8─2:  
 

Estimated log(OR) ─ 0         log (1.44)         0.365 
     =                  =              = 1.9 

                     SE [log(OR)]                0.19             0.19 
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If you look up a table of the Z-distribution, you will find that the area under the curve 
to the right of 1.9 (or to the left of –1.9) contains a probability of about 0.025.  So where 
does that p-value of 0.05 (Table 8─1) come from?   

The answer has to do with the relation I mentioned earlier between the area under 
the curve of the chi-squared distribution and the area under the curve of the Z 
distribution.  A p-value of 0.05 for a chi-square value of 3.7 indeed quantifies the area to 
right of 3.7, but that area matches two tails on the symmetrical Z-distribution: Z>1.9 and 
Z<–1.9. 
 
Now we need to retrace our steps to the hazard ratio: 
Z=  1.9              corresponds to log (HR)=   0.365   which corresponds to   HR=1.44  
Z=–1.96 should correspond to log (HR)= –0.365   which corresponds to   HR=0.69  
(Note that 0.69 is just the inverse of 1.44: 1/1.44=0.69). 
 
Therefore,  Pr (Z>1.9 or Z<–1.9) = 0.05 on the Z-distribution 
 

implies 
 

Pr [log (HR) > 0.365 or log (HR) < –0.365] on the bell-shaped distribution of log (HR) 
 

which implies 
 

Pr (HR>1.44 or HR<0.69) = 0.05 on the sampling distribution of the hazard ratio. 
 

The last derivation captures the meaning of the p-value.  In words: If HRcausal=1, if the 
estimator is unbiased, and if we have some replication in mind, the following may be said 
about that sampling (replication) distribution: The probability of getting a point estimate 
in the interval [1.44, ∞) or in the interval [0, 0.69] is 0.05. 

A parallel statement may be made about the sampling distribution of the odds ratio 
from that trial: The probability of getting a point estimate in the interval [1.47, ∞) or in 
the interval [0, 0.68] is 0.12. 
 
What use can we make of these probability statements? 
 

Rather than answering this question, I will tell you first what you cannot use them for.  
You are not allowed to make any of the following statements—they are all false: 
 
--The probability of getting a hazard ratio of 1.44 by chance is 0.05. 
--The probability that HRcausal=1 is 0.05. 
--If we claim that HRcausal does not equal 1, the probability of our making an erroneous  
   claim is 0.05. 
--Since the p-value in the hazard ratio column is relatively small (0.05), the point  
   estimate (1.44) is credible; it should be taken seriously. 
--Since the p-value in the odds ratio column is relatively large (0.12), the point estimate 
   (1.47) is not credible; it should be discarded. 
 

I think I have listed above all or most of the statements we would like to make with the 
help of the p-value, but unfortunately none is technically permissible.  What is left is two 
options: we may use the p-value as a measure of evidence against the so-called “null 
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hypothesis" (for example, against the hypothesis that HRcausal=1), or we may use the p-
value as a rule for deciding between two mutually exclusive hypotheses: HRcausal=1 and 
HRcausal≠1.  The first idea was proposed by Fisher; the second, by Neyman with help from 
Egon Pearson.  All three statisticians are counted among the founders of “frequentist” 
statistics (during the first half of the twentieth century), but they did not speak in one 
voice.  In fact, Fisher and Neyman were academic enemies, a point long forgotten by 
those who put one foot in Fisher’s world and another in Neyman’s (to be explained 
shortly.) 
 
 
Fisher’s proposal: p-value as evidence 
 
If HRcausal=1 and the estimator is unbiased, the probability of getting a point estimate in 
the interval [1.44, ∞) or in the interval [0, 0.69] is 0.05.  Because this probability is small, 
explained Fisher, only two explanations may hold: either HRcausal=1 and something rare 
has happened in the study or our estimate does not belong to a sampling distribution 
around 1 (that is, HRcausal is not 1.)  And since the p-value is relatively small, only 0.05, the 
latter explanation should be better: HRcausal≠1.  The smaller the p-value, the stronger is 
the evidence against HRcausal=1, argued Fisher.  "How small is small enough?", you might 
ask.  No arbitrary number is sacred, of course, but for some reason of all unsacred 
numbers 0.05 seems to have magical properties.  For millions around the world, a p-value 
of 0.05 makes the difference between gathering enough evidence and not gathering 
enough evidence. 
 
What if the p-value from the streptokinase trial were “large”—say, 0.8? 
 

The Fisherian answer is clear: We have learned nothing from the study and have 
wasted our time.  The study provides no basis for any statement about HRcausal because the 
lack of evidence against HRcausal=1 does not imply positive evidence for HRcausal=1.  (Just 
as the lack of evidence to incriminate a defendant does not imply positive evidence for his 
innocence.)  Unfortunately, however, this part of Fisher’s thought is often forgotten by 
those who rely on the p-value when they claim that “A does not cause B”, or that “A is not 
associated with B”.  Maybe A does not cause B, indeed, but a large p-value cannot form 
the basis of that claim—according to Fisher's approach. 

Fisher’s proposal to consider the p-value as a measure of evidence against the causal 
null sounds simple and intuitive, and surely appeals to human psychology.  But it contains 
three kinds of shortcomings: technical, logical, and scientific. 

On a technical level, our p-value of 0.05 is a statement about the probability of data 
given that the causal null is true, or in notation: Pr (data | HRcausal =1) = 0.05.  Read: 
probability of data is 0.05, given that HRcausal=1.  To speak about evidence against the null, 
however, we have to reverse the order and talk about the probability of the causal null 
being true given the data.  (Again, as in court: The probability that the defendant is 
innocent, given evidence gathered at the crime scene.)  But you cannot simply turn a 
probability on its head and write something like Pr (HRcausal=1 | data) = 0.05.  If you wish 
to talk about the probability of a hypothesis, rather than about the probability of data, you 
have to switch to another school of statistical thought, and that school doesn’t speak the 
language of p-values.  Furthermore, and contrary to prevailing thinking, simulation work 
has shown that a p-value around the magical threshold of 0.05 provides only weak 
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evidence against the null hypothesis.  If p-values are to be used as evidence at all, 0.05 is 
bad cutoff for “enough evidence”; 0.01 would be better. 

On a logical level, two problems are hidden in Fisher’s logic.  First, it is problematic to 
argue from low probability of data under some hypothesis to falsehood of that hypothesis.  
A point estimate of 1.44 may indeed be rare if HRcausal=1 but it is a valid member of the 
sampling distribution and it does not logically contradict the truth of HRcausal=1.  No solid 
bridge connects the idea of implausibility of data, which is a fuzzy psychological state, and 
falsehood of a hypothesis, which is a piece of reality.  Most of us, for example, feel that 
relativity of time is an implausible idea for the human mind, but we have come to accept 
the conjectural truth of that theory.  We don’t keep arguing that the theory is false just 
because it contradicts human intuition. 

Second and even more important, our p-value of 0.05 does not quantify the 
probability of observing a hazard ratio of 1.44, as so many erroneously think.  That 
probability remains unknown (and is technically zero on a density function.)  The 
number 0.05 is the probability of getting point estimates at the two tails of the sampling 
distribution—estimates that are larger than 1.44 or smaller than 0.69.  But none of these 
estimates was computed, of course!  Fisher’s logic rests on low probability of imaginary 
results and his argument should be summarized as follows: We conclude that "HRcausal=1" 
is false not because we know how improbable the estimate 1.44 is (if HRcausal=1), but 
because that estimate tells us how improbable it is to get unobserved estimates in the 
intervals [1.44, ∞) and [0, 0.69].  I can’t say that the argument is unequivocally wrong, but 
its logic is far from certain in many minds.  For example: is it logical to use the p-value 
(the tail area of the distribution) as the basis for our claim that we have observed one rare 
point estimate (if HRcausal=1)?  Or: if HRcausal≠1, as we try so hard to claim, how can we 
logically talk about the probability distribution of estimates around HRcausal=1?  If 
HRcausal≠1, the distribution from which our p-value was computed does not exist. 

Besides technical and logical shortcomings, Fisher’s proposal contains a scientific flaw, 
which in my view is fatal.  Fisher (and Neyman too) mistakenly assumed that empirical 
science should issue a verdict on the causal null, trying to show (or decide) that it’s false.  
Yet that verdict adds little to conjectural knowledge of causal reality.  But before 
discussing the scientific angle, let’s see what Neyman has proposed to science. 
 
 
Neyman’s proposal: rules for decision-making 
 
Neyman did not consider studies to be evidence-generating machines, nor was he focused 
on methods to falsify the causal null.  For Neyman, the inference from any study is a 
matter of decision: do we decide that HRcausal=1 or do we decide that HRcausal≠1?  

Whichever decision we make, we are taking the risk of making a mistake.  If we decide 
that HRcausal≠1 we might commit one kind of a mistake, called type I error: erroneously 
claiming that the causal parameter is not 1 when in fact it is.  On the other hand, if we 
decide that HRcausal=1 we might commit another kind of a mistake, called type II error: 
erroneously claiming that the causal parameter is 1 when in fact it is not.  Of course, 
regardless of which decision we make, we cannot know whether we have made a mistake. 

Realizing that ignorance cannot be conquered, Neyman proposed what he considered 
to be a sound approach to decision-making: a method to control the frequency of 
mistakes “in the long-run”.  His method deals with both kinds of errors, but I will 
highlight the first. 
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In the context of the streptokinase trial, Neyman prescribes the following actions: 
1. Before the trial is initiated, state the type I error frequency you are willing to 

tolerate in science.  Call it α (expressed as a proportion).  Likewise, state the type 
II error, β. 

2. After the trial is completed, compare the p-value to α and use the following two 
rules of decision:   

a. If p≤α, reject HRcausal=1, accept HRcausal≠1, and report your type I error 
frequency, α. 

b. If p>α, reject HRcausal≠1, accept HRcausal=1, and report your type II error 
frequency, β. 

(I should note that Neyman rejected any reference to p-values, and would have stated the 
inequalities above in the language of the Z-statistic or the chi-squared statistic, using 
something called a “critical value of the statistic” instead of α.  Although the two 
approaches are miles apart philosophically, they are practically exchangeable in many 
examples.) 

If you consistently follow these rules and use the same value of α, your type I error 
frequency will not exceed that α.  Of all true null hypotheses that happen to be tested, 
only 100xα percents will be rejected (erroneously, of course, since they are true.)  But be 
careful to not confuse the correct denominator “all true null hypotheses that happen to 
be tested” with a false one: “all null hypotheses that end up rejected”.  Unfortunately, we 
are able to count only the latter—decisions to reject—because we can't tell which tested 
null hypotheses are true ones (Figure 8−8.) 
 

Tested null hypotheses

True null hypotheses False null hypotheses
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Figure 8−8.  Graphical illustration of the type I error frequency (α=0.05).  Notice the 
unknown frequency of an erroneous decision to reject the null among all such decisions.  
The ratio of true null hypotheses to false ones is also unknown (illustrated here as equal 
size squares.) 
 
 
Question: Suppose you followed Neyman’s rules in the streptokinase trial and ended up 
rejecting HRcausal=1 and accepting HRcausal≠1.  What is the probability that you committed 
the error called type I—mistakenly rejecting the causal null? 
 

Well, that question embeds two faults:  First, it does not have an answer because the α 
value refers to true null hypotheses, not merely to rejected ones.  Second, in the world of 
frequentist statistics, where probability thrives on empirical or theoretical replication, this 
question must be declared meaningless.  There is no repeated decision in one trial, and 
therefore, there is no frequency of wrong decisions and no type I error frequency.  We 
decided once and either have made a mistake or have not.  So keep in mind two wrong 
answers to the question above, which many would give: 1) the p-value; 2) the α value.  To 
reiterate: neither the p-value nor the value of α quantifies the type I error in the 
streptokinase trial. 

The last exchange says it all about Neyman’s proposal.  Unlike most of his colleagues 
in science, Neyman was not interested in the inference from any particular study.  He was 
interested in worldwide statistical behavior that could control the overall frequency of 
erroneous inference from data.  But no scientist who respects her profession would 
subscribe to Neyman’s proposal had she been bluntly told what she is committed to do: 
follow a rule of decision to serve science as a whole, but learn nothing from your own 
study!  Neyman’s proposal is not a statistical tool at the service of scientists; it is a 
prescription for how science should be conducted.  And a bad one—to many minds. 

The point I have just made may be sharpened with two extreme examples:  If we state 
that α=0.05 before the trial is initiated, both a p-value of 0.049 and a p-value of 0.0001 
would lead to the same decision.  Both should be reported as “The null was rejected; 
α=0.05” (and neither p-value should be reported at all!)  In contrast, a p-value of 0.049 
and a p-value of 0.051 would lead to opposite decisions: one should be reported again as 
“The null was rejected; α=0.05” but the other should be reported as “The null was 
accepted” (or not rejected.)  Again, according to Neyman neither p-value should be 
reported. 

If these examples make you move uncomfortably in your seat, you are not alone.  
Neyman’s proposal for science might occasionally sound appealing: forget about evidence 
and just follow a prescribed behavior to limit the frequency of type I error “in the long 
run of science”.  But when reality comes into play, we often find ourselves saying just the 
opposite: forget about that rigid, mechanical rule and just look at the evidence.  And the 
evidence in the last two examples—the p-values—is hard to ignore: the numbers 0.049 
and 0.051 are not that different, yet they lead to opposite decisions, whereas the numbers 
0.049 and 0.0001 are very different, yet that difference makes no difference.  As a result of 
this cognitive dissonance, statistical practice has turned into an exercise in changing hats:  
When we wish to play by the evidence, we put on Fisher’s hat (the shortcomings of his 
proposal notwithstanding) and when we wish to play by a rule of decision, we put on 
Neyman’s hat (his indifference to evidence notwithstanding).  And sometimes, 
fortunately, we can pretend to wear both hats at the same time.  Now, I am moving 
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uncomfortably in my seat: is this dancing in two incompatible worlds of thought called the 
method of causal inquiry?  Are we allowed to look at the p-value, decide which world 
better fits our psychological wellbeing, and shamelessly call it the method of science? 

If you eventually decide to join one of these worlds, keep Table 8─2 in mind.  And 
never allow your mind to switch to the enemy’s column. 
 
Table 8─2.  A contrast of Neyman’s proposal with Fisher’s  
 

Results and questions Fisherian reply Neymanian reply 
What is your pre-study 
statement about error 
frequencies? 

 
Silence 

 
α, say 0.05 
β, say 0.10 

p=0.051  
What is your inference? 

Some evidence against 
HRcausal=1 

HRcausal=1 
Type II error frequency: 10% 

p=0.049 
What is your inference? 

Some evidence against 
HRcausal=1 

HRcausal≠1 
Type I error frequency: 5% 

p=0.001 
What is your inference? 

Strong evidence against 
HRcausal=1 

HRcausal≠1 
Type I error frequency: 5% 

p=0.8 
What is your inference? 

 
Silence 

HRcausal=1 
Type II error frequency: 10% 

 
 
 
The scientific flaw 
 
Suppose we rejected the null theory, HRcausal=1, in the streptokinase trial by following 
Neyman’s rule of behavior or Fisher’s approach to evidence.  What have we learned about 
the value of the causal parameter besides that it’s different from 1?  The answer is, 
nothing. 

Most researchers and many statisticians misinterpret rejection of the null theory as 
evidence for the validity of the estimated effect size.  Indeed, it is tempting to think that  
we have somehow advanced the status of the point estimate, HR=1.44, from untrustworthy 
to trustworthy, having certified or legitimized its truth.  But there is no greater falsehood 
than this.  Even if the point estimate could help us to draw inference about the truth of 
HRcausal=1, no reasoning allows us to turn back and draw inference from HRcausal≠1 to the 
truth of HRcausal=1.44.  It’s a matter of elementary logic, or plain common sense.  If you 
say that argument A (“HR=1.44”) implies argument B (“HRcausal≠1”), you cannot recruit 
argument B in support of argument A.  To do so is to argue that A implies A, which is 
either trivial or nonsense.  In short, HR=1.44 cannot imply or certify or endorse itself by 
implying HRcausal≠1.    

That faulty chain of inference—from HRestimated=1.44 to a test statistic to a small p-
value to HRcausal≠1 to HRcausal=1.44—is imprinted in millions of minds thanks to awkward 
terminology called “statistical significance”.  When the p-value is small enough, we are 
told to say that "the point estimate is statistically significant", which sounds like certifying 
the number as real or truthful.  That is neither a correct interpretation nor the original 
meaning of the statistical term, coined many years ago.  At that time "significant" was 
derived from "signified", and the statement implied that the point estimate (via a test 
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statistic) signified evidence against the null—not that it had any intrinsic significance!  
Moreover, as you realized a moment ago, the inference rides on a one-way road of 
(questionable) evidence and logic: from HR=1.44 to a small p-value to HRcausal≠1.  The 
road ends at HRcausal≠1 and no U-turn is logically permitted. 

Which brings us to the scientific flaw.  Fisher and Neyman and many others have 
placed so much emphasis on falsifying a causal null (and on null hypothesis testing) 
because they mistakenly equated causal inquiry with sorting causes from non-causes: with 
knowing whether the contrast between streptokinase and placebo has any effect on death.  
This tenet undoubtedly corresponds to the layperson’s view of causation, but is 
scientifically wrong.  We learn almost nothing from “HRcausal≠1” because that knowledge 
entails values of the causal parameter that are trivially small.  And nobody, of course, 
would claim to have learned much from HRcausal≠1 if the value of HRcausal were sufficiently 
small.  So, at the end of the road we find ourselves back where we started: What we really 
want to know is the estimated value of HRcausal.  But null hypothesis testing does not 
answer that question and does not help to answer it, either.  It is an irrelevant procedure 
in causal inquiry. 

One escape route might be to claim that we are not interested in furnishing evidence 
against precise causal null, such as HRcausal=1.  We are really interested in evidence against 
a null of the form 0.98<HRcausal<1.02, and under certain conditions evidence against 
precise null also carries to a small interval null.  This is technically true, but the 
epistemological problem does not vanish.  If we state that the interval of no interest is 
[0.98, 1.02], do we seriously claim that knowledge of HRcausal=1.02 is uninteresting and 
that knowledge of HRcausal=1.021 is of value?  Where continuity of numbers exists, 
dichotomy must logically fail.  To sum up: to know something about hidden causal reality 
amounts to knowing (conjecturally) the value of the causal parameter, and a p-value does 
not deliver these goods.  From a scientific viewpoint it is useless. 

Much of my criticism of Fisher’s proposal, Neyman’s proposal, and p-values is not 
originally mine, and you can hardly find written rebuttals—perhaps because it’s hard to 
rebut the arguments.  But it does not matter at all, because no words will eliminate p-
values and null hypotheses testing from science.  They simply serve too many 
psychological needs and too many societal needs.  So rather than trying to fight them 
through logic and reasoning, we should invest effort in studying why they are hopelessly 
entrenched in people of reason.  “The p-value addiction: sources and scope” should make 
a good PhD dissertation in sociology or psychology.  And articles in The New England 
Journal of Medicine would be a good place to start. 
 
 
Confidence interval 
 
Every elementary course in statistics explains how to compute a 95% confidence interval 
around a point estimate from a bell-shaped distribution.  For a large enough sample, take 
the standard error (SE) and multiply it by 1.96.  Subtract the result from the point 
estimate and you get the lower end; add to the point estimate, and you get the upper end.   
For example: 
 

Lower limit of the mean difference: mean difference  – 1.96xSE(mean difference) 
 

Upper limit of the mean difference:  mean difference + 1.96xSE(mean difference) 
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The idea is fairly simple.  When the sampling distribution is bell-shaped and resembles 
that of the Z-statistic, 95% of the area under the curve is contained between (–1.96xSE) 
and (+1.96xSE). 

Things get a little more complex when we switch to ratio measures of effect.  The 
hazard ratio, for example, does not display a bell-shaped distribution, but the log version 
does.  We may, therefore, compute the 95% confidence interval for loge(HR) in the same 
way: 
 

Lower limit of the loge(HR): loge(HR) – 1.96xSE[loge(HR)] 
Upper limit of the loge(HR): loge(HR) + 1.96xSE[loge(HR)] 

 
To return to the hazard ratio scale and get the limits for the HR itself, we have to raise e 
to the power of these terms:  
 

 
Lower limit of the HR:   )][log(96.1)log( HRxSEHRe −

 
Upper limit of the HR:   )][log(96.1)log( HRxSEHRe +

 
(Notice that a confidence interval is symmetrical around the point estimate on the log 
scale, but the symmetry is gone when we return to the ratio scale by exponentiation.  The 
point estimate of a ratio measure is not located at the middle of the interval.) 
 

The multiplier 1.96 is derived from the confidence level—here 95%.  If you want an 
80% confidence interval, the multiplier will be smaller and if you want 99%, it will be 
larger.  The larger the percentage, the wider is the interval, which makes an intuitive 
sense: if you wish to have more confidence, you have to throw a wider net.  These days it’s 
hard to find anything in the literature besides 95% confidence intervals, but there is 
nothing more sacred in 95% than, say, 93.3%. 

To illustrate the arithmetic, let’s follow again the results from the streptokinase trial.  
The hazard ratio for death was 1.44 and the estimated standard error was 0.19.  
Therefore, the lower limit of a 95% confidence interval is about 1.0 (e

log(1.44)–1.96x0.19) and 

the upper limit is about 2.1 (e
log(1.44)+1.96x0.19). 

That was the easy part of the story.  What is not so easy is to inject a truthful 
interpretation into what we have done and to avoid false ones.  The truth, unfortunately, 
is this:  If the estimator is unbiased, if you were repeatedly generating point estimates 
from that estimator, and if you were to construct a 95% confidence interval around each 
point estimate, you would have gotten many different intervals.  Of these, 95% would have 
contained the causal parameter: HRcausal.  Five percents of the intervals would not. 

We have, however, only one point estimate (1.44) and one confidence interval [1.0, 
2.1], so what may we say about the relation between the interval at hand and the causal 
parameter?  The embarrassing answer is, nothing.  But since that answer is hard to 
swallow, three interpretations were made up: one rides on the word “confidence”; another 
rides on the word “plausibility”; and a third rides on the word “precision”.  As you will see 
shortly, all three lead nowhere. 

According to the first interpretation we are taught to say that “we have 95% 
confidence that the interval [1.0, 2.1] contains the causal parameter”, which sounds very 
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close to certainty.  But where is that 95% coming from?  What is the reason for the 
confidence? 

In the business enterprise, we may say that we are 95% confident that a business deal 
will be successful.  In statistics, however, percentage confidence must originate in the 
math of probability.  And there hides the devil.  In the frequentist world, the world in 
which the confidence interval was computed, the probability that the parameter lies in 
one particular interval cannot be 95%.  The causal parameter is a number, such as 1.2 or 
0.9 or 1.0, and a number does not form a probability distribution: either the number 
belongs to the interval [1.0, 2.1] or it does not.  To talk about the probability that the 
causal parameter resides in one specific interval is not different from talking about the 
probability that the causal null is true.  And as you saw earlier, "Pr (HRcausal=1 | data) = 
0.05" does not belong in frequentist statistics.  Nor does its equivalent in the confidence 
interval department:   "Pr (1.0≤HRcausal≤2.1 | data) = 0.95" is a forbidden statement. 

A second interpretation of a confidence interval appeals to the idea of “plausibility”.  
Instead of saying that we are 95% confident that the causal parameter resides in the 
interval [1.0, 2.1], we say that the interval displays a plausible range for the causal 
parameter.  Values within are plausible and values outside are not.  This interpretation 
survives a little longer than the first one but only because it thrives on the seducing power 
of the word “plausible”.  One absurdity becomes evident as soon as we turn to values at or 
around the limits:  That dichotomy forces us to claim that 1.0 and 2.1 are both plausible 
values of the causal parameter whereas 2.2 is not.  Yet 2.2 is a very close neighbor of 2.1—a 
much closer neighbor of 2.1 than is 1.0—so how can we seriously contemplate the 
numbers 1.0 and 2.1 in one breadth and build a wall between 2.1 and 2.2 in another? 

Another embarrassing finding has to do with the relation between the plausible range 
and the confidence level.   Figure 8−8 shows the contrast between plausible values and 
implausible ones according to four levels of confidence.  It is easy to see how fragile the 
idea becomes.  To increase or decrease the range of plausible values all that we need to 
do is to change the level of confidence.  In fact, we can shrink or stretch that range to our 
liking by setting the confidence level lower or higher, respectively.  For example, what is 
not plausible for a 95% confidence interval will become plausible for 97%, or for 99.9%, 
and so on. 
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99% confidence interval
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95% confidence interval

plausible valuesimplausible values implausible values

90% confidence interval

plausible valuesimplausible values implausible values

85% confidence interval

plausible valuesimplausible values implausible values

Hazard Ratio
 
Figure 8−8.  Plausible values and implausible values according to four levels of confidence 
 

The third interpretation capitalizes on the word “precision”: the tighter the 
confidence interval, the more precise is the estimate.  But what does the adjective 
“precise” mean in the context of a point estimate?  If it means “closer to the truth”, as it 
sounds indeed, then the claim is false.  Regardless of the width of the confidence interval, 
we have no way of knowing whether one estimate lies close to the truth or far from the 
truth, and no semantic twist can change this unpleasant fact.   

Furthermore, the adjective “imprecise” is sometimes dishonestly used to turn a 95% 
confidence interval into a p-value because the two are mathematically related:  If the null 
value is contained in the interval, the p-value is larger than 0.05, and if the null value is 
contained in the interval and is close to one end, then the p-value is just larger than 0.05.  
Now, instead of saying that “the result was borderline statistically significant” (whatever 
that means), one could direct the spotlight to the point estimate and say that it is 
“imprecise”: almost kosher but not quite so.  To some minds, such practice amounts to 
abusing two ideas in one sentence: the idea of a confidence interval and the idea of a p-
value.  I agree. 
 
Where do we go from here? 
 

One route is to close the books on frequentist statistics and switch to another school 
called Bayesian statistics, which allows us to compute probabilities of hypotheses and to 
construct credible intervals—the Bayesian counterparts of confidence intervals.  
Bayesianism, however, is more than a statistical tool and carries its own share of 
epistemological and technical difficulties.  For example, the probability that a hypothesis 
is true is not derived from data alone; it is also conditional on prior probability that the 
hypothesis is true (which means prior beliefs).  Having no interest in using data to 
transform pre-study beliefs about the value of a causal parameter into post-study beliefs, I 
reject that philosophy of science.  Nor does it matter to me what goes into those prior 
beliefs—whether it is expert opinion, vagueness, or semi-empirical content.  To my mind, 
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and I hope to your mind too, scientific knowledge is conjectural (and therefore, fallible) 
knowledge of hidden reality; it is not the probability that conjectural knowledge is true. 

If you wish to stay within the frequentist school, you have to realize that both a p-value 
and a confidence interval are derived from simple arithmetic on two ingredients: the 
point estimate and the standard error.  To get the p-value, we start by dividing the point 
estimate by the standard error and to get a 95% confidence interval, we take the point 
estimate and add and subtract the product "1.96xSE".  We should not be surprised, 
perhaps, that no arithmetic can extract more information than whatever is already 
contained in the point estimate and the standard error.  So instead of looking for a 
miraculous tool for statistical inference, let’s return to the starting point. 
 
--The key result of a study is the point estimate—a conjectural value of the causal 
parameter.  Neither a p-value, nor a decision about the truth of the causal null, nor a 
confidence interval may assume a more important theoretical role than the role of the 
point estimate. 
 
--In our search for the causal parameter, we should strive for an estimate from an 
unbiased estimator.  We can never be certain, however, that the estimator is unbiased:  We 
cannot know whether the expected value is equal to the causal parameter or how close it 
might be. 
 
--In our search for the causal parameter, we should strive for an estimate from an 
(unbiased) estimator whose sampling distribution is tight.  Regardless of how tight that 
distribution is, however, we can never be certain that our estimate lies close to the causal 
parameter.  No confidence interval and no credible interval can change that cruel reality. 
 

If you accept these tenets of the scientific method, the role of the standard error 
becomes clear—and modest.  Derived from the sample size and inversely related to it, the 
standard error informs us about the sampling distribution of the estimator, not about the 
estimate at hand.  It is no more than an aid in comparing the quality of several estimators 
(of the same causal parameter); in choosing between competing estimates; and in 
temporarily accepting or rejecting a point estimate.  Of course, no naïve rule of inference 
follows the standard error, just as no rule of inference can tell us that an estimator is truly 
unbiased.  But in either case the empirical road remains open.  If you reject a point 
estimate on the account of testable bias, your criticism may be tested.  And if you reject a 
point estimate on the account of a large standard error, you or others may get another 
estimate from a larger sample.  That societal rules might prevent us from doing so is a 
technical matter—not an epistemological problem (chapter 4).  That no final verdict is 
possible reassures us that the method accords with the conjectural nature of scientific 
knowledge. 
 
 
Confidence limit difference and confidence limit ratio 
 
No words will convince scientists and statisticians to replace p-values and 95% confidence 
intervals with something so trivial and non-decisive as the standard error.  The battle was 
lost long ago.  If a plain standard error is to return to science eventually, it must ride on 
the back of a confidence interval: it must present itself as some derivation from a 
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confidence interval (even though the truth is the other way around).  To that end, a 
clever idea was proposed in 2001. 

Since most of us associate a confidence interval with “precision”, what matters in 
precision is the margin of error—not the bounds on the error!  Therefore, when the 
estimator displays a bell-shaped sampling distribution, anyone who takes precision 
seriously should report the width of the confidence interval: the confidence limit 
difference (CLD).  For example, the width of the 95% confidence interval for a mean 
difference (from a large enough sample) is 
 

upper limit                      minus                 lower limit   = 
 

(mean difference + 1.96xSE)          –       (mean difference – 1.96xSE) = 
 

                              2x1.96xSE = 3.92xSE  
 
This little trick has taken us back to the scale of a standard error, using a multiplier that 
makes no conceptual difference.  The reference point is, of course, zero: a sampling 
distribution from an infinite sample will have zero standard error.  And the smaller the 
quantity (3.92xSE), the tighter is the sampling distribution.   
 
Most causal parameters, however, are measured on a ratio scale and their sampling 
distribution is not bell-shaped, which creates a technical problem.  Being a standard 
deviation, the standard error does not describe well the spread of a skewed distribution, 
so we have to start with the log version again.  For example, for a binary causal contrast, 
the width of the confidence interval for the log of the hazard ratio is 
 

upper limit                      minus                 lower limit   = 
 

loge(HR) + 1.96xSE[loge(HR)]          –       {loge(HR) –  1.96xSE[loge(HR)]} = 
 

                   2x1.96xSE[loge(HR)] = 3.92x SE[loge(HR)] 
 
That solution will do, but, unfortunately, we have not used the confidence limits for the 
hazard ratio itself, as many would like.  A little trick will solve the problem:  if we divide 
the upper limit for the hazard ratio by the lower limit, we get  as shown 
below: 

)][log(92.3 HRxSEe

 

       Upper limit / Lower limit =  )][log(92.3
)][log(96.1)log(

)][log(96.1)log(
HRxSE

HRxSEHR

HRxSEHR

e
e
e

=−

+

 

 
The ratio of the upper to lower limit is naturally called the confidence limit ratio (CLR).  
If you examine the formula, you will see that it is simply e raised to the power of what we 
called the “confidence limit difference” on the log scale.  Now the reference point has 
changed to 1.  With an infinite sample, SE[log(HR)]=0 and e

3.92x0
=1.  The closer the CLR 

to 1, the tighter is the sampling distribution. 
 
To sum up:  The frequentist version of statistics can tell us about randomness-related 
properties of the estimator—of the process that generated the point estimate.  It cannot 
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tell us whether the estimate has hit on the causal parameter or by how much it has missed 
it.  Any complaints should be filed with Nature. 
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