
Chapter 3 
Computing Effects 

 
Measures of frequency 
 
Consider a hypothetical trial that showed that drug A was superior to placebo: twenty 
percent of the patients who took the drug have recovered within one year as compared 
with ten percent of their counterparts who took placebo pills.  Table 3−1 shows detailed 
results for that causal contrast. 
 

Table 3−1.  Results of a hypothetical trial 
 

Treatment Group Recovery No recovery Total 
Drug A 200 800 1,000 
Placebo 100 900 1,000 

 
 
How will we estimate the effect of taking the drug as compared with taking placebo? 
 
To compute a measure of association (which is assumed to be a measure of effect) we may 
either subtract or divide the frequency of recovery in the two treatment groups.  There 
are, however, three possible measures of frequency we may subtract or divide: proportion, 
odds, and rate.  All three measures make up a ratio—the number of events (here, the 
number of patients who recovered) divided by some reference count. 

When the reference count in the denominator is the total number of people, 
including those who will eventually count as events, the frequency is called proportion.  
When the reference count includes only people who remained event-free, the frequency 
is called odds.   When the reference count is person-time at risk of the event, the 
frequency is called rate.  Notice again that all three measures share one numerator—the 
number of people who had an event—but each measure relies on a unique denominator. 

I will elaborate below on each measure of frequency and then compute and discuss 
the derived measures of effect. 
 
 
Proportion, proportion difference, and proportion ratio 
 
Everyone knows what a proportion is.  If 1,000 patients received a drug and 200 recovered 
within one year, then the proportion that recovered is 0.2 (or 20 percent).  But from here 
on we enter a territory of dense fog and heated debates about the meaning and origin of 
that number.  For me, and for many others I think, 0.2 is somehow related to the 
probability of recovery—a one-year summary of causal propensities to recover that were 
generated by the drug and by other causes of recovery.  For others, called subjective 
Bayesians, the word probability belongs to a different school of thought and should only 
reflect "degrees of beliefs" that reside in the human mind: the higher the probability of an 
assertion, the greater the belief in its truth.  In-between these extremes, there are 
gradations and equivocations.  Not surprisingly perhaps, the two extreme views of the 
meaning of the number 0.2 are tightly linked to one’s preference for a model of 
causation.  While indeterminism embraces the probabilistic interpretation of some 



proportions (though not all), determinism prefers to keep the physical phenomenon of 
an empirical proportion clearly separated the abstract concept of probability.  We have 
already seen seeds of the disagreement in the first chapter when a determinist and an 
indeterminist voiced diverging opinions about the reading of an imaginary risk-o-meter.  
In the next chapter you will see a full explanation for their disagreement. 

Regardless of labels, two measures of effect may be computed from proportions (here, 
percentages):  If we subtract the percentage of patients who recovered while taking 
placebo from the percentage of patients who recovered while taking the drug (20%-10%), 
the resulting effect size is 10 percentage points (not 10 percent!) in favor of the drug.  If 
we divide the numbers (0.2/0.1), the effect size is 2 in favor of the drug; no units 
attached.   

In the first computation, we estimated the effect on an additive scale: taking the drug, 
rather than taking placebo, will add 10 percentage points to the percentage that will 
recover.  In the second computation, we estimated the effect on a multiplicative scale: 
taking the drug will double the percentage that will recover with placebo.  Naturally, those 
10 percentage points are called a difference measure of effect (proportion difference or 
probability difference), whereas the number 2 is called a ratio measure of effect 
(proportion ratio or probability ratio).  Since a ratio describes the size of a numerator 
relative to the size of a denominator, relative proportion and relative probability 
frequently substitute for proportion ratio and probability ratio.  For now, don’t be 
tempted to replace proportion or probability with the word “risk.” 

Although we estimated the effect of our causal contrast on recovery, we may also 
estimate its effect on the complementary outcome namely, on “no recovery”, which might 
have included death.  Among patients who took the drug, 80 percent have remained sick 
or died as compared with 90 percent of their counterparts who took placebo.  Following 
this computation, the proportion difference remains unchanged, 10 percentage points in 
favor of the drug, but the proportion ratio changes to 0.89 (0.8/0.9=0.89).  Therefore, we 
have to infer that taking that drug, rather than taking placebo, will double the proportion 
that will recover but not halve the proportion that will not recover.  For some reason the 
effect on recovery when measured on a multiplicative scale is very different from the 
effect on remaining sick or dying which is the complementary condition.  Which is the 
true number? 

Both numbers are true.  This small surprise is a mathematical property of proportions 
that has not received much attention.  In a 2x2 table there are two proportion ratios for a 
binary outcome, each reflecting a category of interest.  One way around the difficulty is to 
turn our back to the proportion ratio in favor of the proportion difference, a quantity that 
does not depend on the chosen category of the outcome.  And indeed, many writers have 
argued that a difference measure of effect is superior to a ratio measure.  The arguments 
they supply, however, rest on entirely different reasons.  For example, a difference 
measure of effect fits well with deterministic causation and not so well with indeterministic 
causation.   

From an indeterministic viewpoint, a ratio measure is undoubtedly superior because it 
quantifies unambiguously the strength of one force relative to another—whatever those 
pairs of forces may be.  When we say that one causal propensity toward recovery is twice as 
strong as another (say, taking drug A relative to taking placebo), we have claimed all that 
needs to be claimed about reality.  No units are needed.  To me, this simple argument is 
powerful and convincing.  Moreover, indeterminism allows for the possibility that the 
effect on recovery would be different from the effect on non-recovery, even though the 
two conditions are complementary.  



Before turning to the odds, notice an important shortcoming of proportion-based 
measures of effect, whether a difference or a ratio.  The upper limit of a proportion (1.0) 
imposes an undesirable constraint on the effect size.  For example: if the proportion that 
recovered with placebo were 0.8, the effect size for any drug relative to placebo could not 
exceed 20 percentage points (100%-80%) on an additive scale and 1.25 (1.0/0.8) on a 
multiplicative scale.  Yet from the viewpoint of indeterministic causation any constraint on 
a ratio measure of effect is unacceptable.  Just as there is no limit to the relative strength 
of two magnetic fields, there should be no limit to the relative strength of two causal 
propensities.  As we’ll see later, other measures of effect do not share that shortcoming of 
a proportion. 

 
 

Odds, odds difference, and odds ratio 
 
Instead of asking how many patients have recovered per 1,000 recipients of drug A (which 
was 200 per 1,000 = 0.2), we may ask how many patients have recovered per 1,000 
recipients of that drug who remained sick.  (Again, the category “remained sick” includes 
deaths, if any.)  That ratio, called the odds of recovery, is computed below for each 
treatment group using the data in Table 3−1. 
 
Odds of recovery while taking the drug: 200 recovered / 800 remained sick = 250/1,000 = 
0.25 
Odds of recovery while taking placebo: 100 recovered / 900 remained sick = 111/1,000 = 
0.11 
 
A little arithmetic will show that the odds are a simple function of a proportion (or a 
probability).  For example: 
 
 

            200        200/1,000         Proportion recovered  
Odds of recovery while taking the drug:            =                       =    

                  800        800/1,000        Proportion remained sick   
    

       Pr (Z)       Pr (Z) 
Or in notation:         Odds (Z)    =                    =  

Pr (not Z)  1 − Pr (Z) 
 
where odds (Z) reads “odds of Z” and Pr denotes proportion or probability, depending on 
personal preference and context.  (Again, even in indeterminism not every proportion 
may be called probability.  We'll see an example in a later chapter.)   

Finally, notice that the odds of not recovering, 800/200, are just the inverse of the 
odds of recovering, 200/800.   And in general:  Odds (not Z) = 1 / Odds (Z) 
 
The odds are a favorite measure of frequency among gamblers, but have not been treated 
with similar respect among epidemiologists, often portrayed as a weak measure that 
survives on its ability to estimate the proportion of a rare event.  (When the event is rare—
say a proportion of 0.1— the proportion and the odds are similar.  Compare, for example, 
100/1,000 to 100/900.)  The odds, unlike proportion, have no upper limit, ranging from 
zero to infinity.   



To find the range of the odds, we will use the definition Odds (Z) = Pr (Z) / Pr (not 
Z) and compute the odds for two extreme values of Pr (Z): 
 
When Pr (Z) = 0, then Pr (not Z) = 1, and their ratio—the odds—is equal to zero.  When 
Pr (Z) = 1, then Pr (not Z) = 0 and their ratio is infinite.  Therefore, 0 ≤ Pr (Z) ≤ 1 implies 
Odds (Z) ≥ 0. 
 

In principle, both the odds difference and the odds ratio (also called relative odds) 
may serve as measures of effect, analogous to the proportion difference and the 
proportion ratio.   Nonetheless, nobody seems to compute the odds difference, perhaps 
because the scale is unknown to the layperson.  The odds ratio, in contrast, is widely used 
by epidemiologists, but mostly in case-control studies and cross-sectional studies and often 
reluctantly.  The same prejudice against the odds has been carried to the odds ratio whose 
claim to fame, in most minds, rests on its ability to estimate the proportion ratio of a rare 
event.  Can the odds ratio claim an independent status as a measure of effect?  The answer 
is not simple at all. 

On the one hand, since the odds are superior to the proportion for their lacking of an 
upper limit, the odds ratio is superior to the proportion ratio for the very same reason.  
Recalling a previous example:  If 80% of 1,000 patients have recovered while taking 
placebo (odds of 800/200), the proportion ratio for any causal contrast with placebo 
cannot exceed 1.25 (1.0/0.8).  The odds ratio, however, can take larger values because 
the odds of recovery have no upper limit.  For instance, if 999 of 1,000 patients who took 
drug A have recovered, their odds of recovery is 999/1 and the corresponding odds ratio 
for recovery is (999/1) / (800/200) ≈ 250.  And if all 1,000 recipients of that drug have 
recovered, both their odds of recovery and the odds ratio for recovery are infinite: 
(1,000/0)/(800/200). 

A second reason to prefer the odds ratio as a measure of effect has to do with our 
earlier bafflement about which proportion ratio to compute—for recovery or for “no 
recovery”.  The odds ratio for “not Z” is always the inverse of the odds ratio for “Z”: if 
taking a drug doubles the odds of recovery relative to taking placebo, it also halves the 
odds of “no recovery”.  To convince ourselves, let’s consider again the causal contrast in 
Table 3−1: drug A relative to placebo. 

 
 
 
 
     200 / 800 
Odds ratio for recovery:     ------------------  =  9/4 
     100 / 900 
 
 
     800 / 200 
Odds ratio for “no recovery”:  ------------------- =  4/9 
     900 / 100  
 
 
This property of the odds ratio follows a property of the odds that was mentioned 

earlier: Odds (not Z) = 1 / Odds (Z).  The proof is shown below for the causal contrast of 
a drug with placebo. 



    
        Odds (not Z) given DRUG           1 / Odds (Z) given DRUG  

Odds ratio for “not Z” =  ----------------------------------------------------  =  ---------------------------------------------------  = 
       Odds (not Z) given PLACEBO       1 / Odds (Z) given PLACEBO 
 
 
         
        Odds (Z) given PLACEBO                              1   
               =  -----------------------------------------------    =      -----------------------------------------------   =  
        Odds (Z) given DRUG                Odds (Z) given DRUG 
                         ---------------------------------------------- 
                                                                                            Odds (Z) given PLACEBO  
 
         1 
               =    ------------------------------ 
                                      Odds ratio for Z  
 
Unfortunately, these two advantages of the odds ratio succumb to one, possibly fatal, 

mathematical deficiency, which is called "non-collapsibility".  Even if the causal contrast of 
a drug with placebo has a constant effect on recovery for each person, such as an odds 
ratio of 10, the observed odds ratio in the sample might not yield that number.  To 
illustrate this puzzling mathematical property, I chose a hypothetical sample of 1,000 that 
is composed of two groups (Table).  One group (100 people) has much higher chances of 
recovery than the other (900 people), yet both groups share the same odds ratio for 
recovery: in both groups the odds of recovery if taking drug A are 10-times the odds of 
recovering if taking placebo. 
 

 
  Odds of 

recovery 
Probability of 
recovery* 

Number 
expected to 
recover 

Number 
expected not 
to recover 

If taking 
drug A 

0.90 0.47 100 x 0.47 = 47 53  
100 people 
 If taking 

placebo 
0.09 0.08 100 x 0.08 =   8 92 

  OR=10 PR = 5.9   
If taking 
drug A 

0.10 0.09 900 x 0.09 = 81 819  
900 people 

If taking 
placebo 

0.01 0.01 900 x 0.01 =   9 891 

  OR=10 PR = 9   
* Odds(Z)=Pr(Z)/(1-Pr(Z)).  If we isolate "Pr(Z)", we get Pr(Z)=Odds(Z)/(1+Odds(Z)) 
OR denotes odds ratio; PR denotes probability ratio 
 
Based on these data, you would probably expect that the observed odds ratio for recovery 
in the whole sample of 1,000 people would be 10 as well.  Well, it is not.  After displaying 
the count of people who are expected to recover and the count of people who are 
expected to not recover (Table), the computed odds ratio turns out to be 8.5.  

 



 Recovered Not recovered Total 
If taking drug A   128(=47+81) 872(=53+819) 1000 
If taking placebo    17(=8+9) 983(=92+891) 1000 

 
 
     128/872    128/1000 
OR =          = 8.5  PR=       = 7.5 
      17/983     17/1000 

 
Notice that the probability ratio in the whole sample (7.5) resides between the 
probabilities we computed for the two groups (5.9 and 9), which seems reasonable.  It is 
their average.  This fact has inspired many writers to belittle the odds ratio and claim that 
the proportion ratio is the “right” measure of effect.  Well, neither measure is deficiency-
free so I am not sure how to reach a verdict, especially when a better measure is waiting 
just around the corner, in the next section (rate ratio).  Eventually, both the proportion 
ratio and the odds ratio may reserve a seat in causal inquiry only to the extent that they 
estimate the rate ratio.  Or maybe the issue is much deeper than I can explain here. 
 
I will conclude this section with two short notes: one is mathematical; the other, semantic. 
   
The odds ratio and the proportion ratio always behave according to the following rules of 
inequality (proof omitted):  
  
If the odds ratio > 1, then the odds ratio > the larger of the two proportion ratios.   
If the odds ratio < 1, then the odds ratio < the smaller of the two proportion ratios.   
 

For example: In our hypothetical trial the odds ratio for recovery (drug A relative to 
placebo) was 2.25—larger than the corresponding proportion ratio, which was 2 (and 
obviously larger than the proportion ratio for “no recovery”.)  Likewise, the odds ratio for 
“no recovery” is 0.44—smaller than the corresponding proportion ratio, which is 0.89. 
This fact has inspired many writers to criticize the odds ratio for exaggerating the effect 
size, implicitly assuming that the proportion ratio is the “right” measure of effect.  Well, 
neither is deficiency-free so I am not sure how to reach a verdict, especially when a better 
measure is waiting just around the corner, in the next section.  

On a semantic note: You may have noticed that “the odds of recovery are 200 to 800” 
or “the odds ratio is 9/4” sound much like probabilistic expressions.  Nonetheless, 
opponents of empirical probabilities use these expressions freely for lack of a substitute.  
No one in the odds department has yet invented a counterpart to the word proportion. 
 
 
Rate, rate difference, and rate ratio 
 
In every group of people, both the proportion of an event and the odds of an event, say 
death, depend on follow-up time.  Bizarre exceptions aside, the proportion of deaths 
within one minute is close to zero (as are the odds), whereas the proportion of deaths 
within 100 years is about 1 (and the odds are large or infinite.)  In-between, the value of 
each measure of frequency almost always increases and never decreases.  

This dependency of proportion and odds on follow up time detracts from the merit of 
derived measures of effect such as proportion ratio and odds ratio.  Imagine, for example, 



a 100-year long trial of the effect of some drug on death as compared with placebo.  
Toward the end of that trial, both the proportion ratio and the odds ratio converge 
toward 1—no effect of the drug—even if the drug prolongs life as compared with placebo.  
And if we dismiss this trial as unrealistically long, another embarrassing difficulty arises in 
a trial that is too short, say, one-hour long.  In either example it is hard to explain exactly 
what went wrong.  Why does the length of a trial strikingly distort the estimated effect?  
Moreover, how and where to draw a theoretical range for permissible trial length? 

Trials may indeed be too long or too short, but it only means that they are 
economically inefficient—either consuming extra resources for no extra return or costing 
too little to produce useful results.  It seems awkward, however, to call a trial flawed just 
because it was allowed to continue for many years.  From a theoretical viewpoint, the fault 
is not rooted in the length of any study but in those measures of frequency from which we 
compute measures of effect.  Rather than quantifying the strength of causal forces, 
proportion and odds quantify the cumulative effect of those forces up to arbitrary time.  
And a cumulative effect is produced from a mixture of two ingredients: the strength of 
causal forces, which may be constant over time, and follow up time, which continually 
increases.   
 

To measure the strength of causal forces alone, we should look for a measure of 
frequency that does not obligatorily change over time—a measure that may produce a 
single number instead of a series of numbers that depend on follow-up time.  Such a 
measure shall describe the velocity at which an event happens: the higher the velocity, the 
stronger the underlying causal forces.  This measure is called the rate of an event—the 
number of events divided by the person-time at risk of that event.   

When “person-time at risk” is presented to students for the first time, many of them 
are puzzled about the logic behind this idea. (I was one.)  Drawing an analogy from 
persons to cars and from person-time to driving-time might help.  If you were asked to 
compare the causal forces toward a car crash in two towns, you would not be satisfied with 
knowing the number of crashes relative to the number of cars in each town.  You would 
also want to know how much time drivers in each town spend on the road (and perhaps 
how many miles they drive.)  Suppose, for example, that the number of cars were 
identical in the two towns, the proportion of crashes in one town twice the proportion in 
the other, yet drivers in the crash-prone town also spend twice as much time on the road.  
If so, the number of crashes per car-on-the-road-time—that is, the rate of crashes—would 
have been the same in these towns. 

We may gain deeper understanding of “person-time at risk” from thinking some more 
about the dimensions in which causes operate and their effects occur.  One obvious 
dimension is “head count”—how many people are at risk of death or how many cars are at 
risk of a crash.  Another equally important dimension is the axis of time because no event 
will happen if time were to freeze.  “Person-time at risk” fully incorporates the time 
dimension, by tallying the time-at-risk for each person, whereas proportion and odds treat 
time naively, as if it were uniform for all people at risk.  For instance: when we say that the 
odds of one-year death in a group are 0.25 (1 death per 4 survivors), we implicitly assume 
that every group member was known to be at risk for one full year, which means that no 
one was lost to follow up and that all deaths occurred on the 365th day.    

Though almost always false, the assumption of uniform time-at-risk may be tolerated 
under the following condition: Both events and losses to follow up occur infrequently.  If 
a 1,000-patient trial lasted one year, 2 percent of the patients have died during that year, 
and 2 percent have been lost to follow-up, then we don’t grossly err by assuming that all 



1,000 patients were at risk of death for one full year.  On the other hand, if half the 
patients have died in the first six months, then at least half the patients were not at risk of 
death for a full year.  (After having an event, one is no longer at risk of precisely the same 
event even when recurrence is possible.) 

 
Must the rate be constant over time? 

 
Since the rate measures the velocity at which events occur and since that velocity mirrors 
underlying causal forces, any change in these forces will affect event velocity—that is, the 
rate will change.  The recovery rate among recipients of a drug may be slow during the 
first month of treatment, fast in the next five months, and slow again thereafter.  Such 
fluctuation may be explained by accentuation or attenuation of causal forces toward 
recovery, including the force generated by the drug (if any).  Now, stretching our 
scientific-mathematical imagination, we may picture an extreme situation where the rate 
continually changes during some period such that every moment—every time t—has a 
unique rate.  We’ll call that number the instantaneous rate.  The simplest analogy again 
comes from the driving world.  The speed of a car, as recorded at each moment on the 
speedometer, need not be constant, and may change from moment to moment by 
applying force to the accelerator or the brake. 
 

To define the instantaneous rate at a time point t, we need to follow a mental exercise 
in which we compute the rate repeatedly for a shrinking time interval [t, t+Δt], where Δt is 
positive and tends to zero.  The resulting series of numbers will converge toward some 
value—the instantaneous rate at time t, denoted R (t).  (Read “R of t” or “R as a function 
of t.”) 
 
Using notation:    R (t) =  limit of R in the interval [t, t+Δt] 
     when Δt 0    
  

The instantaneous rate is often called the hazard rate or just the hazard, a historical 
misnomer.  The term “hazard” was coined in industrial studies in which events were always 
bad—like the premature failure of a light bulb.  And indeed, in statistical textbooks you 
may find expressions such as “the hazard of failure” and “failure-time analysis” where 
“failure” stands for “event”.  This jargon resonates well in some human studies, say, failure 
of a drug to prevent death, but sounds silly in others.  Cancer patients would be delighted 
to hear that “their hazard of failure is high”, if the speaker is talking about the 
instantaneous rate of cancer remission. 

I have criticized proportion and odds for their time-dependency, so you may wonder 
why I am not condemning the rate for its time-dependency.  Though time affects all three 
measures of frequency, it affects them for fundamentally different reasons.  The rate may 
change over time because causal reality could change—causal propensities are not 
obliged to remain constant—whereas proportion and odds change over time, in part 
because we change the follow-up time.  We determine how many days or months or years 
a study will last, and thereby influence the values of proportion and odds.  Of course, 
arbitrary follow-up time also enters into every rate we compute (by setting the maximum 
person-time at risk) but that does not diminish one bit from the theoretical standing of 
the instantaneous rate.  When the instantaneous rate is constant over some follow-up 
time, our computed rate for that period estimates that number directly.  When it is not 
constant, our computed rate is some average of several, or possibly infinite, instantaneous 



rates.  Keep in mind that the instantaneous rate is a parameter—a number that exists out 
there, so we think, but forever remains unknown. 

Now, I have a small pedagogical confession to make.  When I criticized proportion 
(and odds) for their time-dependency, I deliberately avoided using the word probability 
because it’s not true that probability always mixes follow-up time with causal propensities.  
We can define the instantaneous probability (and, therefore, the instantaneous odds) in 
complete analogy to the instantaneous rate, and it is even possible to derive one from the 
other.  Nonetheless, there is a key difference between probability and rate: the leap from 
instantaneous probability to computed proportion does not resemble the leap from 
instantaneous rate to computed rate.  Computed proportion does not estimate—nor is it 
the average of—instantaneous probabilities.  Follow-up time does mix in. 

After grasping the meaning of a rate, the rest should be simple.  Like proportion and 
odds, the rate provides us with two derived measures of effect: rate difference, with units 
attached, and rate ratio, which is unit free.  From an indeterministic viewpoint, the 
instantaneous rate ratio has a complete set of desired properties:  it quantifies the relative 
strength of two causal propensities without mixing in follow-up time; it is unit free; and it 
has no upper limit.  What else could we ask for? 

Rate ratio and rate difference can be computed only when we obtain data from a trial 
or a cohort study.  In other designs the time at risk remains unknown, so we must turn to 
proportion-based measures of effect or to odds-based measures of effect.  Fortunately, 
however, when the event happens infrequently, both the proportion ratio and the odds 
ratio estimate the rate ratio reasonably well: all three ratio-measures of effect yield similar 
results (proofs omitted).  And as we’ll see in chapter 14, in one version of the case-control 
study the odds ratio directly estimates the rate ratio, regardless of how frequently the 
event happens. 

To conclude this section, we’ll compute the rate difference and the rate ratio for the 
example that opened this chapter, using hypothetical data on person-time at “risk” of 
recovery (another example of a misnomer). 

Suppose that no patient was lost to follow up during that one-year trial and that 
recovery of patients in both treatment groups has spread uniformly over time.  When an 
even number of events spread uniformly over one year, we can pair all of the patients who 
had the event such that each pair contributes exactly one person-year at risk.  For 
example, a person who had the event after one month will be paired with a person who 
had the event after 11 months, for a combined person-time of one year.  If so, the 1,000 
recipients of drug A have contributed 900 person-years: 100 person-years by the 200 
patients who have recovered (200/2) and 800 person-years by those 800 patients who 
remained sick.  Similar calculation yields 950 person-years of 1,000 placebo recipients, 
recalling that 100 of them have recovered (Table 3−1). 

  
The rate difference is therefore,   
200/900 − 100/950 = 222 /1,000 − 105/1,000 = 117 per 1,000 person-years. 
 
In words: If 1,000 patients were to take the drug rather than placebo for one year, 117 
additional patients will recover during that year. 
 
    200 / 900 
And the rate ratio is,  ------------------- = 2.1 
                                      100 / 950 
 



In words: the causal propensity to recover while taking the drug is 2.1 times as strong as 
the causal propensity to recover while taking placebo. 
 
 
What is “risk”? (three paragraphs on fuzzy language) 
 
Terms such as “risk”, “rate”, “confounding”, and “bias” are found in the vocabulary of the 
layperson who fires them easily—sometimes appropriately and more often not.  Rate, in 
particular, is often misused or ambiguously used by laypersons and scientists alike in 
phrases such as “prevalence rate” (should be prevalence proportion) and “one-year event 
rate” (rate or proportion?) 

But the first prize for ambiguity undoubtedly goes to the word “risk” and its main 
derivative the “relative risk”.  For some writers, risk is synonymous with probability.  For 
others it is a synonym for both probability and rate but not for odds.  For others yet, risk is 
a generic descriptor of all three measures of frequency.  I have even encountered writers 
who felt a need to tack “risk” in front of odds (risk-odds), perhaps to help the poor odds 
gain some credentials for causal inquiry. 

A remedy may be found when precision replaces ambiguity and some conventions 
emerge from within the guilds of epidemiologists and statisticians.  Until then, I suggest 
that you try to avoid the word “risk” whenever possible.  Most often, though not always, 
there is a more precise word you can use: proportion, probability, odds, rate, hazard.  And 
if you must make a statement such as “The odds ratio estimates the relative risk”, be sure 
to explain that risk means proportion to you (if it does) and that ratio and relative are 
interchangeable words.  Or better, just write: “The odds ratio estimates the proportion 
ratio” or “The relative odds estimates the relative proportion”. 

 
 

Effects on continuous variables 
 
If the world were made up only of binary outcomes—crash or no crash, dead or alive, 
recovered or not—this chapter could have ended right after the last section.  Many 
effects, however, do not come from binary outcomes.  Some dwell in discrete, related 
categories such as full recovery, partial recovery and no recovery, whereas others make up 
a continuous variable: blood pressure, hemoglobin concentration, lung function—to 
name a few examples. 

When the effect takes the form of discrete categories or when we artificially transform 
a continuous variable into a categorical one, we can still rely on proportion and odds and 
rate to estimate effects, although it’s not always that simple.  For instance: does it make 
sense to compute the odds of partial recovery counting in the denominator patients who 
remained sick and patients who have fully recovered?  Perhaps not.  Is it appropriate to 
count in that denominator only patients who remained sick?  Certainly not.  If you discard 
one of three categories of a variable, the ratio of the remaining two categories is not odds.  
Any gambler will tell you. 

We will leave these technical difficulties unresolved and turn our attention to a far 
more common challenge, which would require fresh methods: how to estimate the effect 
of an exposure on a continuous variable?  But first, one paragraph on a semantic matter. 

What a cause does to a continuous variable is to determine deterministically, or to 
help determine through a causal propensity, a value—blood pressure, hemoglobin 
concentration, lung function.  Since the phrase “smoking is a cause of the value of lung 



function” sounds awkward, a cause of a continuous variable takes on another name—
determinant, a semantic twist on the word "cause" that unfortunately sounds as if it was 
derived from the word determinism.  Keep in mind, therefore, that there is no theoretical 
difference between the expressions “smoking is a cause of lung cancer” and “smoking is a 
determinant of a measure of lung function called FEV1“ (short for forced expiratory 
volume in one second.)  Both expressions state a causal theory; neither implies a 
particular model of causation. 
 
 
Arithmetic mean difference  
 
Because a determinant of a continuous variable does not bring about an event—an FEV1 

of 2.1 liters is not “an event”—we cannot estimate effects from measures of frequency.  
Another measure of effect in needed.  The simplest substitute is the difference in the 
arithmetic mean between two causal assignments, for example, the difference in mean 
FEV1 between smoking and former smoking.  I will illustrate using real data.  
 
Table 3−2 shows the first few observations (or rows or records) from a dataset that 
contained the FEV1 values of 3,968 smokers and 4,931 former smokers.  The larger one’s 
FEV1, the better is one’s lung function. 
 

Table 3−2.  First 8 observations of smoking status and FEV1

 
Observation Smoking Status 

 
FEV1 (liters) 

1 Smoker 3.15 
2 Smoker 2.58 
3 Smoker 2.02 
4 Former smoker 2.64 
5 Smoker 3.11 
6 Smoker 1.14 
7 Former smoker 2.36 
8 Former smoker 3.55 

Source: ARIC 
 
 

In that dataset, the arithmetic mean of FEV1 among former smokers was 3 liters, whereas 
the arithmetic mean among smokers was 2.6 liters.  Therefore, the estimated effect of that 
causal contrast on FEV1 is a difference of 0.4 liter in favor of former smoking.   

But before building up too much faith in that estimate, think for a moment about the 
variable SMOKING STATUS and its causal assignments.  There is no doubt that this 
variable is located giant steps away from any theoretical exposure of interest.  Both 
continued smoking and former smoking are composed of many different causal 
assignments—continued smoking of 2 packs a day for 20 years, continued smoking of 2 
cigarettes a day for 5 years, quitting smoking 20 years ago after having smoked 5 cigarettes 
a day for 5 years, recent quitting after having smoked 2 packs a day for 20 years, and many 
more.  Do all nested causal contrasts between smoking and former smoking produce a 
difference in FEV1 of 0.4 liter?  Of course not.  But for pedagogical purposes let’s ignore 
that difficult reality and pretend that both smokers and former smokers were 



homogenous groups—say, all smokers had smoked a pack a day for 20 years and all 
former smokers had quit 10 years before their FEV1 was measured, after having smoked a 
pack a day for 10 years.  To alleviate fear of confounding (chapter 6), we’ll also pretend 
that smoking status was randomly assigned.  With these generous assumptions in mind, 
0.4 liter is the estimated effect of not smoking for 10 years after having smoked a pack a 
day for 10 years. 
 
What are the properties of the mean difference? 
 
As its name implies, the mean difference belongs to the class of difference measures of 
effect, quantifying effects on an additive scale.  And like its counterparts in that class the 
mean difference carries the units along, a property that makes it dependent on the 
measurement scale.  But the main drawback of this measure has to do with its claim about 
causal reality:  After 10 years of smoking, continued smoking for another 10 years, rather 
than abstaining, should lead to a difference in FEV1 of 0.4 liter regardless of whether the 
value of FEV1 at the start point was 3 liters or 2 liters or 1 liter.  The mean difference tells 
us that a causal contrast works with a constant absolute effect, no matter what the start 
point may be (Figure 3−1.)  Thinking back for a moment, the same message was delivered 
by difference measures of frequency.  Is this how Nature works? Always? Never? 
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Figure 3−1.  Estimated effects of smoking status on the FEV1 of three people based on a  
                     mean difference of 0.4 liter 
 

Nobody knows the answer.  No more than anyone knows whether a rate difference 
describes causal reality better than a rate ratio or, at a deeper level, which model of 
causation operates in this ultra-complex world.  Some writers provide examples where a 
constant difference seems empirically appropriate and other examples where it does not, 



but there is a whiff of circular reasoning here.  We rely on data to compute a difference 
measure of effect, not knowing that we chose the appropriate measure, yet argue that 
data-driven results could somehow retroactively certify or discredit our choice. 

The mean difference unquestionably fails in one situation and rests on shaky grounds 
in several others.  If the effect variable takes only positive values and is bound at zero, the 
mean difference cannot do the job of describing causal reality for some causal contrasts.  
Suppose, for example, that the difference in mean FEV1 between smoking and never 
smoking were 1 liter in favor of never smoking.  Can that number describe the effect of 
taking up smoking for people whose initial FEV1 is 0.9 liter?  It cannot.  Smoking or not 
smoking, their FEV1 will never decline to −0.1 liter (not to mention that a range of above 
zero values is incompatible with life). 

We should also question the performance of the mean difference whenever the 
distribution of the effect variable is skewed rather than symmetrical.  The arithmetic mean 
of a severely skewed distribution does not point to the center of the distribution because 
one tail strongly pulls the value in that direction.  And if the meaning of the mean is 
questionable, so is the meaning of any mean-derived measure.   

Two other shortcomings of the arithmetic mean are often cited by statisticians:  
Similar to skewness, outlying values of an otherwise symmetrical distribution will pull the 
mean toward their end, and unequal variance of two means will undermine the variance 
of the mean difference, a crucial statistic that will show up in later chapters. 
 
 
Geometric mean ratio 
 
Regardless of whether a mean difference makes sense, we should look for an alternative—
for a unit-free ratio measure that can quantify causal propensities for effects that reside in 
a continuous variable.  A natural candidate is the geometric mean ratio, the ratio of two 
geometric means.  Table 3−3 shows the analogy between the geometric mean and the 
arithmetic mean. 
 
Table 3−3. A comparison of the geometric mean and the arithmetic mean 
 Arithmetic mean  Geometric mean 
 
Measurement scale 

 
Additive scale 

 

 
Multiplicative scale 
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Measure of effect Arithmetic mean difference Geometric mean ratio 
* Σ is shorthand for repeated summation; Π is shorthand for repeated multiplication. 
 

Despite crowded notation, the computation is simple: to calculate the arithmetic 
mean, we add up n numbers and divide the sum by n; to calculate the geometric mean, we 
multiply n numbers and take the n-root of the product.  To gain intuitive understanding 



of why the geometric mean describes the center of a distribution, think first about a group 
whose members have the same value of a (a1=a2=…=an.)   If so, the geometric mean is the 
n root of n self-multiplications of a, which is equal to a—as expected.  Now think about a 
group of n members whose values are not exactly the same but are rather scattered 
around some center.  The n root of the product of all these values should inform us 
where that center is located. 

We can compute the ratio of two geometric means, say group A relative to group B, 

using the formula n
naaa ⋅⋅⋅ ...21 / n

nbbb ⋅⋅⋅ ...21 ), but that would require many 

multiplications and working with extremely large products.  Just think about multiplying 
3,968 FEV1 values of smokers and 4,931 values of former smokers… 

Which brings us to logarithmic transformation—a handy tool for numerous statistical 
methods of causal inquiry.  (This may be a good time to refresh your memory of the 
algebra of logarithms and exponents.)  

It is not too difficult to show that the following equality holds for any logarithmic base 
(say, base 10):  
 

log (geometric mean) = 
n

aaa nlog...loglog 21 +++   

Or in words: the logarithm of the geometric mean is equal to the arithmetic mean of log-
transformed values. 
 
Proof (if interested): 
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This identity will help us to compute the log of the geometric mean ratio for group A 
relative to group B.  (Then, one quick exponentiation at the end will give us the 
geometric mean ratio.) 
 
 geometric mean A

  log  ---------------------------------   = log (geometric mean A) − log (geometric mean B) = B

 geometric mean B

 

=
A

n

n
aaa log...loglog 21 +++

  −  
B

n

n
bbb log...loglog 21 +++

 

 
Exponentiation of the last expression (taking the antilog) will yield the geometric 

mean ratio, which was our goal.  But check again what the last mathematical expression 
means.  It is simply the arithmetic mean difference of a new variable, a variable whose 
values were computed from the original variable by taking the logarithm. 



The geometric mean ratio will fail when the effect variable takes negative values, but 
that doesn’t happen often in biomedical science.  A far more common problem is a 
cluster of zero values.  In such cases, we add a small positive constant to every value, 
whether zero or not, thereby slightly shifting the distribution to the right.  A word of 
caution, though:  I have seen results that were sensitive to the choice of that small 
constant—adding 0.1 and adding 0.01 have led to substantially different geometric mean 
ratios even though the original values ranged from 0 to 50. 

 
Back to our example.  To compute the geometric mean ratio of FEV1 for smokers relative 
to former smokers, we’ll first take the log of every FEV1 value in the dataset, compute the 
mean of the new variable among smokers (0.393) and among former smokers (0.462), 
compute the mean difference (−0.069), and transform back the result by exponentiation 
(10−0.069 = 0.85).  And if we choose to subtract in reverse order, the mean difference will be 
positive (0.069) and the geometric mean ratio greater than one (100.069=1.17), which is 
just the inverse value (100.069 = 1 / 10−0.069).  Any base will work as long as it is used 
throughout. 
 
What does the number 0.85 say about causal reality? 
 
In the language of indeterminism this number compares, on a ratio scale, two causal 
propensities to determine, or set, or influence the value of FEV1.  As compared with 
quitting, continued smoking for another 10 years is trying to set the value of FEV1 at a 
lower value—at 0.85 of whatever value the other causal assignment is aiming at.  If 
abstaining from smoking is aiming at an FEV1 of 2 liters after 10 years, continued smoking 
is aiming at 0.85 that value, which is 1.7 liter (15% lower).  And if abstaining is aiming at 1 
liter, continued smoking is aiming as 0.85 liter (again, 15% lower.)  A causal contrast 
works to produce an effect whose value is a constant ratio, which implies that the absolute 
effect will not be constant.  Unlike the arithmetic mean difference, the absolute effect will 
depend on one’s FEV1 at the start point (Figure 3−2.) 
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Figure 3−2.  Estimated effects of smoking status on the FEV1 of three people based on a 
                     geometric mean ratio of 0.85 (or 1.17) 
 
 
Arithmetic mean difference or geometric mean ratio? 
 
Comparing Figure 3−2 with Figure 3−1, we realize that the geometric mean ratio and the 
arithmetic mean difference are not just two ways to estimate an effect.  They are 
alternative models of causal reality that sharply disagree about the magnitude of effects 
beyond any reconciliation.  One model says that a causal contrast tends to bring about a 
constant difference whereas the other says that a causal contrast tends to bring about a 
constant ratio (which means a constant percentage change.)   

To see how acute the disagreement is, consider another example—the effect of two 
alternative treatments on the length of hospital stay.  Suppose we computed for that 
causal contrast an arithmetic mean difference of 2 days and a geometric mean ratio of 0.5.  
What inference will we draw from each number? 

The arithmetic mean difference tells us that one treatment will shorten the hospital 
stay by 2 days as compared with the other: from 3 days to 1 day, from 6 to 4, from 10 to 8.  
In contrast, the geometric mean ratio tells us that one treatment will shorten the hospital 
stay by 50%: from 3 days to 1.5 days, from 6 to 3, from 10 to 5.  These are very different 
claims about causal reality no study can adjudicate: you have to choose one or the other.  
If you subscribe to indeterminism the choice is easy—compute a ratio.  If you subscribe to 
determinism, you may be able to rationalize your way to the mean difference.  And if you 
don’t want to commit to either model of causation, you will have to choose by other 
means: statistical assumptions and arguments, or weak theoretical arguments (for 
example, I think that the causal contrast works by cutting a fixed number of hospital 
days.) 



Many statisticians advocate the use of logarithmic transformation—and therefore, the 
geometric mean ratio—when some statistical assumptions justify transformation.  Which 
brings up interesting questions about the interplay between mathematical reasoning and 
causal reasoning.  Should scientific inquiry comply with statistical preference or should 
statistical procedures comply with scientific preference?  Is statistics only a tool in the 
hands of scientific inquiry or is it also a prescription for how scientific inquiry should 
proceed?  Which comes first and how much influence should one have on the other?   

We will return to these fascinating questions in later chapters in connection with 
other crucial decisions in causal inquiry.  For now I will offer my general answer and let 
others offer dissenting views.  I don’t like the idea that I should succumb my philosophy 
of science to statistical dictates, if there are any.  (Statistics speaks in many voices—
hypothesis testing, estimation, frequentist, likelihood, Bayes.)  In my opinion, statistics is a 
toolkit to choose from to one’s scientific liking.  Some statistical tools serve well my views 
about causal inquiry, others do not serve so well, and others do not fit at all.  No amount 
of statistical-philosophical ink, for example, will convince me to use anything in statistics 
that reads like a Bayesian thought (with all due respect to my Bayesian colleagues.) 
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