
Chapter 2 
Causal Variables 

 

Causal contrasts 
 
Imagine a four-group trial in which thousands of patients were randomized to receive a 
pill that contained drug A, drug B, or placebo, or to receive no pill at all.  (Recipients of a 
pill were not told, of course, what it contained.)  We’ll assume that all patients adhered to 
their assigned treatment group.  Table 2−1 shows hypothetical results. 
 
Table 2−1.  Frequency of recovery in a hypothetical trial, by treatment group 
 

TREATMENT GROUP OUTCOME 
Drug A Drug B Placebo No pill 

Recovery within 
one year 

 
20% 

 
20% 

 
10% 

 
5% 

 
What is the effect of drug A on recovery? 
 
Anyone familiar with the rationale of trials knows that the percentage below the heading 
“Drug A” does not estimate the effect of that drug (whereas many people mistakenly call 
the percentage below the placebo heading “the placebo effect.”)  To estimate the effect of 
drug A, we have to compare the outcome of taking this drug (20% recovered) to the 
outcome of an alternative condition (by dividing the percentages, for example).  But as 
Table 2−1 shows, we may choose from three alternative conditions: taking drug B, taking 
placebo pill, and taking no pill.  The question “What is the effect of drug A on recovery?” 
cannot be answered until the question “As compared with what?” is answered.  In other 
words: the effect of which causal contrast do you wish to estimate? 

Although it is possible to argue that one causal contrast illuminates us more than 
others, we should not dismiss other contrasts too quickly: they may add to our knowledge 
of causal effects.  Looking at Table 2−1, many of us will highlight the comparison of drug 
A with placebo as the effect of interest—the so-called real effect of the drug.  Nonetheless, 
there are at least two other interesting effects that should be considered. 

First, although taking drug A was better than taking placebo, it was no better than 
taking drug B, useful knowledge no physician would dismiss.  In fact, as compared with 
drug B, drug A had no effect on recovery and vice versa.  Second, if drug A were to be 
prescribed routinely to patients, its effect should also be estimated relative to not taking a 
pill because most physicians will either prescribe a drug or not—they will not prescribe a 
placebo pill instead of a drug.  As a result, in the world of real medicine a patient may 
benefit from the sum of two separate effects: that of active ingredients and that of 
placebo.  One effect does not prohibit the other. 

The placebo effect itself can be estimated by contrasting the frequency of recovery 
while taking placebo (10%) with the frequency of recovery without taking a pill (5%).  
Now before you dismiss the placebo component of prescribing a drug as unreal, allow me 
to digress for a moment on a gloomy side note.  Unfortunately, we know very little about 
the realness or magnitude or variation of the placebo effect in medicine because few trials 



have estimated it; you will rarely find a third, “no pill” group in a placebo-controlled trial.  
And with your permission I will speculate why in one sentence.  In a world of specialized 
research most testers of new drugs are very worried about the placebo effect but have no 
interest in estimating it, whereas most researchers of the placebo effect don’t test new 
drugs.  A side effect of specialization, I think. 
 
How many causal contrasts are there? 
 
In some studies there is only one contrast—for example, the effect of an abnormal gene 
on longevity.  An abnormal gene may be present or may be absent; there are no other 
possibilities.  In a randomized trial the number of contrasts may be greater than two (as in 
our hypothetical trial) but it is usually small and certainly finite.  In an observational 
study, however, that number may be large, even infinite.  Consider for instance an 
observational study of the effect of smoking on lung cancer.  We may contrast continued 
smoking of 20 cigarettes per day with never smoking, or with quitting smoking, or with 
continued smoking of 10 cigarettes per day.  Each of these contrasts and many more 
conceivable pairs will add to our knowledge of the effect of smoking on lung cancer.  Or 
consider the effect of systolic blood pressure on stroke.  Many paired values make 
contrasts of interest: 180 millimeter mercury and 160; 175 and 120; 200 and 170; and so 
on. 

Causal contrasts run through most pages of this book but they are often hidden in 
what is called a causal variable, our next topic. 
 
 
A leap to causal variables 
 
Speeding on the road, having an abnormal gene, systolic blood pressure of 200-millimeter 
mercury, and taking a drug are all called causes only because of their effects.  But as we 
now realize their effects can be quantified only when a causal contrast is specified.  The 
absolute effect of any of these causes, if it can be defined at all, cannot be quantified in 
the empirical world.  So if we wish to study the effect of presumed causes, we have to study 
(presumed) causal contrasts. 

Contributors to causal contrasts will naturally fold into a variable.  Speeding and not 
speeding, for instance, are two categories of a variable we may label SPEEDING STATUS.  
By the same token an abnormal gene and a normal gene will make up the GENE variable.  
The four assignments in our hypothetical trial are four categories of a variable that may be 
called TREATMENT GROUP, whereas the values of systolic blood pressure reside in a 
variable we will abbreviate SBP.  It becomes apparent, then, that to explore a cause we 
have to study a causal variable by contrasting the effects (loosely speaking) of its values or 
categories.  And to acknowledge uncertainty of causality, we should add the adjective 
"presumed" in front of "causal variable."  The values of a causal variable are sometimes 
called causal assignments, even though they are not always assigned by a human being.  
For example: when we study systolic blood pressure as a cause of stroke, one’s value of 
systolic blood pressure is one’s causal assignment. 

You will not encounter often the words “presumed causal variable” in textbooks or 
scientific articles.  Many scientists shy away from the word cause and from any of its 
derivatives, assuming perhaps that semantic disguises could hide the pitfalls of causal 
inquiry.  But there may be two other explanations: First, long terms are cumbersome to 
say and to write.  Second, as we’ll see shortly, the variable we measure is often not the true 



causal variable.  Whatever the reason may be, epidemiologists have invented substitute 
terms for the causal variable of interest, which should be familiar to anyone who attended 
a basic course in epidemiology: risk factor, exposure variable, exposure status, or simply 
exposure.  In this book, all these terms and "causal variable" are used interchangeably. 

Words often invoke a mental image and the noun "exposure" might invoke the image 
of external harm that was delivered accidentally—like “radiation exposure”.  If that’s what 
runs through your mind, as ran through mine as a student, you should suppress the 
image.  Exposure is a causal variable (presumably) whose values need not be external nor 
should they be harmful.  One’s genotype is an endogenous exposure and exposure to 
radiation therapy may benefit patients.  

 
 

Theoretical causal variables  
 

It is common knowledge that certain molecules in the blood cause diseases, for example 
LDL-cholesterol (the so-called bad type) causes coronary atherosclerosis.  Now look at the 
previous sentence again with a critical eye, keeping in mind what a wise man has once said 
about the meaning of a scientific hypothesis: 

 
“For me, a hypothesis is a statement whose truth is temporarily assumed, but whose meaning 

must be beyond all doubt.”   

—Albert Einstein 
 
The statement “LDL-cholesterol causes coronary atherosclerosis” is vague.  It is vague 

not because the word cause is used, but because no exposure variable is specified and we 
are left wondering which causal contrasts should be studied to corroborate or refute that 
statement.  Surely it’s not the presence of LDL-cholesterol molecules in the blood as 
compared with their absence, which is biological nonsense.  Probed to clarify, we may try 
to improve by restating that the amount of LDL-cholesterol in the blood causes coronary 
atherosclerosis—a better formulation but still too vague for a scientific statement.  What is 
the content of an exposure variable called “the amount of LDL-cholesterol”? The total 
number of circulating molecules?  The number of molecules that travel through the left 
coronary artery in one second?  The concentration in Aortic blood?  Besides this 
ambiguity, each of these numbers change by the day, by the hour, or by the second, so a 
reference to time is missing. 

Although this isn’t a textbook about the causes of coronary heart disease, there is 
something to be learned from diving deeper into that example.  When I wrote the book, 
two exposures have attracted more attention than others: the number of LDL-cholesterol 
molecules that interact with—and thereby could injure—the lining of a coronary artery, 
and the number of molecules that get trapped in the arterial wall.  Both theories, 
however, still require us to clarify which numbers will make up the exposure variables: 
cumulative number of molecules over one’s lifetime, or perhaps a complex function that 
integrates values over volume and space and flow and time, a function that no one has 
written yet.   

 
What is the moral of the example? 

 



When we try to refine the definition of an exposure, we are pursuing science rigorously. 
Thinking intensively about the true cause may help us discard overly simplified theories 
and might get us closer to the theoretical exposure—the center of causal inquiry.  Along 
the way we often learn to appreciate the complexity of Nature and the imperfect nature of 
our causal theories.  A lesson in humbleness has never hurt a scientist. 
 
 
Surrogates of causal variables  
 
Regardless of how we might specify a theoretical exposure for the effect of LDL-
cholesterol on coronary atherosclerosis, we are years away from measuring any theoretical 
exposure of interest.  And this statement holds truth for many other possible causes 
because technology often lags behind scientific thought and scientific imagination.  Still, 
how would we study an exposure that cannot be measured and sometimes can be stated 
only vaguely? 

The typical solution is to study a surrogate variable, a well-defined variable that can be 
measured and has a strong causal link to the theoretical exposure we have in mind.  The 
causal link between the two may take three forms: the surrogate variable may be a strong 
cause of the theoretical exposure or vice versa, or both could be the effect of another 
cause (Figure 2−1).  A combination of a direct arrow between the two and a shared cause 
is also possible. 

 
 
 

Surrogate Variable Theoretical Variable

Surrogate VariableTheoretical Variable

Theoretical Variable

Surrogate Variable

Shared Cause

 
 
Figure 2−1.  Three kinds of relations between a surrogate variable and a theoretical 
exposure 
 
The logic of using a surrogate measure evolves from the idea that the actual value of the 
true exposure (that is, one’s causal assignment) is not essential; it may be replaced by the 
value of another variable that preserves the true causal contrast between people.  For 
example: if Judy’s value of the theoretical exposure is 5 exposure-units and Jeff’s value is 
10 exposure-units on a scale that is bound at zero, the causal contrast between them will 
be preserved by a surrogate variable on which Judy’s value is 80 mg/L and Jeff’s value is 



160 mg/L.  On this variable, Jeff would still be ranked twice as high as Judy (or Judy half 
as high as Jeff.)  In our example above, incidental blood concentration of LDL-cholesterol 
may play the role of a surrogate measure, but to claim it can do so, we need more than a 
simple diagram.  We have to supply a chain of reasoning, one paragraphs long.   

At any given moment, the concentration of LDL-cholesterol in the blood should affect 
the number of molecules that interact with the arterial wall.  In other words, these two 
variables may be connected by a causal arrow.  Extending that momentary relation to an 
infinite series of moments, we may assume that the integration of blood concentration of 
LDL-cholesterol over one's lifetime preserves causal contrasts on our theoretical 
exposure.  And although the lifetime concentration of any molecule cannot be measured 
(yet), we may invoke, again, the assumption of preserved causal contrasts: lifetime 
concentration and incidental concentration should rank people reasonably similar.  If 
Judy’s lifetime concentration is “low”, her incidental concentration is likely to be “low” as 
well.  And if Jeff’s is “high”, his incidental concentration is likely to be “high” as well.  
These variables are strongly correlated, to use statistical jargon.  

We have finally completed a chain of reasoning for using the incidental concentration 
of LDL-cholesterol in the blood to study the effect of LDL-cholesterol molecules on 
coronary atherosclerosis and that is exactly what epidemiologists have done.  By now you 
might have realized, however, that the road from a theoretical exposure (interacting 
molecules at the arterial wall over decades) to a measured surrogate (blood concentration 
on February 2, 1987 at 8:53AM) is loaded with so-called reasonable assumptions about 
preserved causal contrasts.  Only one signpost is missing—a method to distinguish 
between reasonable scientific assumptions and their unreasonable counterparts.  If you 
find one (and it’s not a vote), send me a note. 

As I mentioned earlier, a surrogate variable need not be a cause of its theoretical 
exposure; a reversed causal order would work, too.  Consider, for instance, the amount of 
fat in the abdomen—a postulated causal variable for some diseases— and one of its 
effects: the circumference of the waist, which is an easily measured surrogate variable.  
Indeed, in many epidemiological studies waist circumference (or the ratio of waist 
circumference to hip circumference) has substituted for the amount of abdominal fat.  

Besides being the cause or effect of a theoretical exposure, a surrogate measure will 
be correlated with the theoretical exposure whenever the two share common causes, as 
illustrated in Figure 2−1 and by the following example:  Contemporary technology 
enables us to measure the amount of abdominal fat directly by imaging methods such as 
computed tomography and magnetic resonance.  If measured, this variable may substitute 
for a theoretical exposure that somehow entails lifetime variation of abdominal fat.  
Though a single measurement of any variable is neither the cause nor the effect of 
lifetime values, the two quantities share similar causes:  whatever affect lifetime variation 
of abdominal fat (genes and diet, for example) should also affect the amount of fat on the 
day it was measured.  And when two variables have a cause in common, they will be 
correlated, which means, again, that one variable will partially preserve the causal 
contrasts on the other.  (Thinking back, we have implicitly used this reasoning earlier to 
substitute the incidental concentration of LDL-cholesterol for lifetime average 
concentration.)  In chapter 6 we will discuss another important, yet unhelpful, 
consequence of a shared a cause—a phenomenon called confounding. 

Surrogate variables are often used in other aspects of causal inquiry, replacing 
theoretical effects and theoretical confounders that cannot be measured.  I might even 
dare saying that surrogate variables are the norm, not the exception, in most 
epidemiological studies.  Unfortunately, epidemiologists often neglect to state what a 



surrogate variable stands for, either assuming that it’s common sense knowledge or 
assuming that nobody dare guessing.  Unlike their surrogates, theoretical variables are 
hard to define and commit to. 
 
 
Legitimizing causal variables 
 

One day I was walking down the hallway in my department, talking with a colleague 
about new results we have just received from a programmer.  “Look at the sex group 
effect”, I commented, pointing to a number on a computer printout that showed that the 
frequency of stroke was higher in men than in women.  “You mean the difference 
between men and women”, my colleague corrected me.  “No”, I said, “I mean the sex 
effect, or the gender effect if you prefer the newspeak.”   

My colleague is not alone in his linguistic camp.  Many epidemiologists sort variables 
into those that are entitled to be called causes of effects and those that are not, often 
placing sex, race and age on the list of forbidden variables.  To be called a cause, they 
argue, a variable must contain causal assignments that are exchangeable—it must be 
possible for a human being to switch from one causal assignment to another, in principle 
at least.  One can continue to smoke or can quit smoking, take drug A or take placebo 
pill, have systolic blood pressure of 180 or of 120.  But a man cannot be a woman, a 
woman cannot be a man, a white person cannot be a black person, and a black person 
cannot be a white person.  As for age, in some minds it should join the list of non-causes 
for two reasons: first, one cannot exchange one’s actual age with any other age.  Second, 
aging is equivalent to the passage of time and the passage of time per se does not cause 
anything—so it is argued.  (Go tell a homeowner in mid-January that the passage of time 
did not cause her 50-year old furnace to break.) 

 
Why should we require that causal assignments be exchangeable?   

 
I think we should not, but the disagreement may be retraceable, in part, to a choice 
between models of causation, and in part, to the idea that one causal assignment could be 
replaced by another.  Contemplating a component cause of some event, the deterministic 
mind naturally brings up a human being and a “what if” question: “What if that 
component cause had been absent?” which explicitly means, “Would the event have 
occurred had the causal assignment been different, and all other matters unchanged?”  
Now, he will naturally imagine a world with a different causal assignment and judge 
whether it’s reasonable to switch to that imaginary world.  If it’s not, he will be inclined to 
reject the candidate for the title “component cause” along with the causal variable to 
which it belongs. 

“What if a person had not smoked?” sounds reasonable.  A smoker could have 
switched to an alternative causal assignment, which is “not smoking”.  But “What if a man 
had been a woman?” does not sound reasonable.  A man could not have been a woman.  
Or could he? 

I dislike the deterministic trail of reasoning mainly because it forces me to discuss 
simple-minded questions (“Could a man have been a woman?”) and invites a stingy 
rebuttal.  Yes, a man could have been a woman in at least two ways—surgical sex change 
and taking female hormones.  And maybe some day a man may be able to become a 
woman by replacing every pair of XY chromosomes in his body with XX: Who knows?  
We’ve all heard about science fiction stories of the past that have turned into respected 



science of the present—gene therapy, for example.  Does this mean that genotype was not 
a causal variable in the nineteenth century and has become one in the twenty first 
century?  Does causal reality depend on human imagination, scientific knowledge, and 
today’s technology? 

There are other rebuttals I may offer, however.  Scientists often treat variables such as 
sex, race and age as surrogates for theoretical exposures of interest, many of which 
contain exchangeable causal assignments even by contemporary thought.  When a 
medical researcher is examining the effect of the patient’s sex on the use of a diagnostic 
procedure, she has in mind a sexist attitude of physicians or sex-dependent symptoms, for 
which the patient’s sex is a surrogate.  When an epidemiologist is studying the effect of 
race on survival of stroke patients, he has in mind race-related biology, sociology, and 
medical care—not skin pigmentation.  And age is a surrogate variable for theoretical 
exposures such as the error rate of biological systems, malfunction of repair mechanisms, 
and cumulative exposure to external hazards.  All of these theoretical exposures contain 
exchangeable causal assignments, just in case we have to comply with that preference of 
the deterministic mind. 

But we don’t.  If we hold an indeterministic model of causation, no logic requires us 
to create a list of illegitimate exposures.  Two causal assignments may generate two 
different propensities to bring about an effect regardless of whether any human being 
may be able to switch from one assignment to the other.  Nor does causal reality depend 
on our ability to explore its existence by a randomized trial.  We may compare the causal 
propensity of male sex to that of female sex without phrasing the issue as “if a man were a 
woman” and without asking whether it is possible at this time to randomize to sex group.  
It is no different from comparing the gravitational force of the earth to that of the moon 
without asking whether the earth could have become the moon. 

Finally, there is nothing to suggest empirically that some variables are entitled to be 
called exposures and others are not.  When we inspect a computer printout, the estimated 
effect of sex (whatever sex represents) on the frequency of stroke is indistinguishable 
from that of blood pressure.  If the number next to the sex variable does not estimate an 
effect, what other reality does it describe? 
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