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Chapter 18 

Estimating the Hazard Ratio 

 
What is the hazard? 
 
The hazard, or the hazard rate, is a rate-based measure of chance. Formal notation aside, the 
hazard at time t is defined as the limit of the following expression, when Δt tends to zero: 
 

Probability of an event in the interval [t, t+Δt) 
 
Δt 

 
Writing the numerator as the ratio of the count of events (c) to the count of "at risk" (N), we can 
see that the expression above is indeed a rate — the number of events per unit of time-at-risk: 

 
        c / N             c 

= 
Δt  N Δt 

 
Being the limit of the rate at Δt=0, the hazard may be viewed as the instantaneous rate at a time 
point. That is, the chance of something happening at a time, rather than between two times. 
 
Since the hazard is defined at every time point, we may bring up the idea of a hazard function, 
h(t) — the hazard rate as a function of time. This function is a theoretical idea (we cannot 
calculate an instantaneous rate), but it fits well with causal reality under the axiom of 
indeterminism. Anyone who felt, for example, risky and safe conditions while driving a car can 
imagine a hazard function with peaks and valleys at different moments. Figure 1 shows an 
example of what someone's hazard-of-death function might look like during some period (1AM 
till noon). The hazard at each moment is determined by the values that were taken by the causes 
of death at baseline. 
 
Figure 1. Hypothetical hazard-of-death function 
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Cox regression 
 
Cox regression is a regression model that enables us to estimate the hazard ratio (hazard rate 
ratio) — a measure of effect which may be computed whenever the time at risk is known. The 
model is named after the statistician who wrote the regression equation and proposed a method to 
solve it (to estimate the coefficients). For a reason that will be explained later, the model is also 
called "proportional hazards regression". Cox regression is shown next vis-à-vis three common 
regression models: linear, logistic, and Poisson. 
 

 
Linear regression:   mean Y            =  0 + 1 E   

 
Logistic regression:   log (odds)  =  0 + 1 E   
 
Poisson regression:   log (rate)           =  0 + 1 E   
 
Cox regression:   log h(t)              =  log h0(t) + 1 E  

 
A little algebra shows that the last equation may also be written as  
 
          h(t)   =  h0(t) x exp(1 E)  

 
 
The way to interpret the exposure coefficient, 1, in Cox regression is similar to the way you 
interpret the exposure coefficient in any log model. It is the difference between the log-hazard per 
one unit increment in E, which is equivalent to the log of the hazard ratio:  
 

1 = log (hazard ratio) 
 

Exponentiate the coefficient and you get the hazard ratio: 
 

hazard ratio = exp (1)  
 
We observe, however, a key difference between Cox regression and other regression models. 
Instead of the usual intercept, 0, we find a bizarre expression, log h0(t), which looks like a time-
varying intercept. Why is it there? What does it mean? 
 
The first question is easy to answer. It is there because the dependent variable is a function of 
time. We cannot simply write "log h(t) = 0 + 1 E" as before. How can the dependent variable be 
a function of time, when time (t) is not included among the input variables? Some expression of 
time must appear on the right hand side of the equation. 
   
As for the meaning of log h0(t), it is not different from the meaning of any classic intercept:       
log h0(t) takes the values of the dependent variable, log h(t), when E=0; or more generally, when 
all the independent variables take the value of zero. (That's the reason for the subscript "0".) 
Unfortunately, log h0(t) is often called “the baseline hazard”, a confusing term because "baseline" 
usually denotes the time at which follow up begins, not a zero value of variables. Moreover, when 
the zero value of one independent variable is meaningless (e.g., weight=0), the so-called baseline 
hazard is not quantifying any theoretical hazard. It is meaningless. 
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Why is Cox regression also called “proportional hazards regression”? 
 
Since the hazard is a function of time, the hazard ratio, say, for exposed versus unexposed, is also 
a function of time; it may be different at different times of follow up. For example, if the 
exposure is some surgery (vs. no surgery), the hazard ratio of death may take values as follows: 
 

Time since baseline  Hazard ratio 
1 day 9 
2 days 3.5 
28 days 3.5 

… … 
… … 

365 days 0.8 
 
Cox regression, however, allows for only one hazard ratio, which is exp(1). The hazard ratio of 
death for surgery vs. no surgery is assumed to be the same at any time since baseline. The model 
may therefore be called "a constant hazard ratio model", but someone thought that "proportional" 
is a better word to describe a fixed ratio of two hazards over time. (When the ratio of two 
quantities is fixed, we may say that one quantity is proportional to the other, say, 1.5 times the 
other.) 
 
To get a visual impression of the proportional hazards feature, let's assume that E is a binary (0,1) 
exposure. Plugging in the value of E, we first derive two log-hazard functions: 
 
For exposed (E=1):   log h(t)   =  log h0(t) + 1 
 
For unexposed (E=0):   log h(t)   =  log h0(t) 
 
Not knowing the values of log h0(t), we have no idea how to draw either function. But we do 
know that the two functions progress in the same direction, and that the distance between them at 
any point is 1 — the difference in the log-hazard between exposed and unexposed (which is also 
the log of the hazard ratio). Figure 2 shows a hypothetical example where 1 = 0.7. Note that the 
Y-axis is not truly a log-hazard, because we don’t know the actual location of the functions on the 
Y-axis. We don't know the true value of the (log) hazard. 
 
Figure 2. Two log-hazard functions which are 0.7 log-hazard units apart 
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Switching now from log-hazard to hazard, we derive the corresponding hazard functions: 
 
For exposed (E=1):   h(t)   =  exp(log h0(t) + 1) = exp(log h0(t)) x exp(1) = h0(t) x exp(1) 
 
For unexposed (E=0):   h(t)   =  exp(log h0(t)) = h0(t) 
 
It is easy to see that at each time point the ratio of the hazard for exposed to the hazard for 
unexposed — the hazard ratio — is equal to exp(1), a constant: 
 

h(t) in exposed / h(t) in unexposed = h0(t) x exp(1) / h0(t) = exp(1) 
 
Figure 3 shows the respective hazard functions for the log-hazard functions that were depicted in 
Figure 2 (1 = 0.7). At each time point the value of h(t) for exposed is twice the value for 
unexposed: exp(0.7) ≈ 2.  A constant difference of 0.7 between log-hazard functions (Figure 2) is 
equivalent to a constant ratio of about 2 between hazard functions (Figure 3). Notice that Figure 3 
would have been identical to Figure 2 if the Y-axis were logarithmic. 
 
Figure 3. Two hazard functions where the hazard for exposed is about twice the hazard for 
unexposed (hazard ratio ≈ 2) 
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Cox partial likelihood function 
 
A regression model is useless without a method to estimate the coefficient of E, or more 
generally, the coefficients of all the independent variables. Similar to other regression models, the 
estimation in Cox regression requires two steps:  
 
1) Construct a likelihood function (with the coefficients on the independent side): 

Likelihood=f(1,2,3,…) 
 

2) Find the maximum likelihood estimates — the values of the coefficients that maximize the 
value of the likelihood. 

  
Here, however, we encounter a problem. Unlike other types of regression, the right hand side of 
Cox regression includes not only coefficients, but also a function of time, log h0(t). How can we 
estimate that time-varying intercept? Don't we have to assume something about the shape of the 
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so-called baseline hazard, the hazard function when all the independent variables take the value 
of zero?  
 
Fortunately, we can do without log h0(t) — even if it happens to be meaningful. Just as we didn't 
need the intercept, 0, to estimate the effect of E from linear, logistic, or Poisson regression, we 
don't need log h0(t) to estimate the effect of E from Cox regression. As far as effect estimation is 
concerned, the intercept is always a nuisance term. 
 
Realizing the last point, Cox suggested a radical idea back in the 1970s. He proposed to estimate 
the coefficient(s) using a partial likelihood function which does not include log h0(t). If you like 
analogies, it is similar to estimating the coefficient of E in logistic regression, without estimating 
the intercept. (In fact, that's exactly what we do when we fit a conditional logistic regression 
model to data from an individually matched case-control study.) 
 
According to a circulated gossip, Cox's solution of the regression equation was belittled by many 
when it was presented for the first time at a statistics conference. Those who belittled his idea are 
probably still hiding somewhere, if they are still around, because partial likelihood has become a 
standard tool in statistics, and Cox's seminal paper on this topic is counted among the most cited 
papers in science. I suspect that Cox's critics at that time have learned the lesson that many 
arrogant minds haven't learned yet: It is the duty of the scholar to try to tear apart an idea on 
substantive arguments, but it is foolish to dismiss an idea because "it doesn't sound right to my 
brilliant mind". 
 
Back to partial likelihood. A likelihood function tells us something about the likelihood of the 
observed data as a function of the coefficients. Here, part of the observed data is a sequence of 
events during some follow-up time. Figure 4 shows a hypothetical example.  
 
Figure 4. The first five events in a cohort study, or a trial 
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Assuming independent events, the likelihood of observing n events is the product of the 
likelihood of observing each event. But what is that single-event quantity? Simple hand-waving 
(and some math) suggests that the likelihood of an event that was observed at time t is given by 
the following proportion of hazards: 
 

h(t) for the person who had the event 
 

Sum of h(t) for all those who were at risk at that time 
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To construct the partial likelihood function (Lp), write the product of the likelihood of observed 
events (Lp=Lt=1 x Lt=2 x…), substituting the expression above for each event.a Then, replace each 
h(t) with the right hand side of Cox regression [in our case, with h0(t) x exp(1E)]. Finally, plug 
in the values of the independent variables (in our case, the value of E), and you got the function 
— the partial likelihood as a function of the coefficients. The maximum partial likelihood 
estimates of the coefficients may be found by some trial-and-error algorithm. 
 
What happened, though, to the time-dependent intercept, log h0(t)? Does it appear in the 
likelihood function?  
 
No, it does not. To see why not, let's derive the likelihood of the first event in Figure 4. We'll 
assume that the person in the figure was exposed, and that 100 people were at risk at that time, 30 
of whom were exposed and 70 were not. 
 
Using the alternative expression of Cox regression, h(t) = h0(t) x exp(1E), we first derive the 
hazard at the first time point, h(t=1), for those 100 people at risk: 
 
For every exposed person (E=1):   h(t=1) = h0(t=1) x exp(1) 
 
For every unexposed person (E=0):  h(t=1) = h0(t=1) 
 
The likelihood of the first event is the hazard for the exposed person (to whom it happened) 
divided by the sum of the hazard for 100 people: 30 exposed and 70 unexposed. In notation: 
 

h0(t=1) x exp(1)       exp(1) 
Likelihood of event 1 =       =  

 30 x h0(t=1) x exp(1) + 70 x h0(t=1)           30 exp(1) + 70  
 
As you see above, h0(t) is cancelled in the likelihood term for the first event (and for any event). 
Therefore, the partial likelihood is a function of the coefficient(s) alone. It is neither a function of 
follow-up time nor a function of the time-at-risk.  
 
Time-at-risk is needed only to identify the "risk set", the set of people who were at risk at the time 
of each event. The actual event time does not matter. For instance, as long as the risk set at t=1 
comprised 30 exposed and 70 unexposed, that time point could be one day, or three weeks, or 14 
months since baseline. Likewise, if the risk set at t=2 comprised 90 people, say, evenly split 
between exposed and unexposed, it does not matter whether the second event happened two days 
or 15 months after the first event. All that matters is who had the event and who was at risk at 
each event time. When these parameters are fixed, the spacing makes no difference.  
 
The partial likelihood, as constructed above, does not allow for coinciding events (called "ties"), 
but there are statistical methods to handle the problem. If ties are uncommon, you can solve the 
problem by adding a trivial error: change a date. For example, if time is counted in days and two 

                                                 
a In many texts, the likelihood of an event is called “probability”. There is a subtle point here which is usually ignored. 
Since time is continuous, event probabilities form a probability density function, which means that the probability of an 
event at any time point must be zero. In practice, however, time is treated as a discrete variable (hours, days), so the 
computed probability is not truly a time point probability. For example, when follow-up is counted in days, the 
probability of an event on a given date means the probability of it happening during a 24-hour interval. All of this 
surely sounds “a little different” from the theoretical proportion of hazards (which are instantaneous rates). 
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events happened on day 178, change the date of one event to be day 177 or day 179. Those who 
object to this inelegant solution should think about the following point: If the results are sensitive 
to such trivial alteration of data, the problem of ties must be trivial as compared with the bigger 
data problem we have (perhaps short follow-up, or sparse data). Furthermore, you can change the 
date both ahead and backward to see if the results are similar. 
 
In classic Cox regression, people who already had the event are excluded from the risk set, just 
like the exclusion of prevalent disease at baseline. Therefore, the hazard and the hazard ratio are 
"conditional" measures. For example, the hazard at t=2 is conditional on not having the event 
before t=2. For reasons that are beyond the scope of this text, conditioning may not be a good 
idea in both cases. 
 
Lastly, we may now understand why the likelihood is called "partial". The "full" likelihood 
should take into account not only observed events, but also observed "non-events". The latter are 
ignored when the likelihood function is constructed. For example, we did not consider the 99 
likelihoods for 99 people who remained event-free at t=1. 
 
 
On the proportional hazards assumption 
 
I explained earlier why Cox regression is called "proportional hazards regression". It is time to 
explain why this descriptor is misleading, if not a misnomer. Cox regression doesn't have to be a 
"proportional hazards regression" at all. If you want to allow the hazard ratio to be different at 
each time point, simply fit the following model: 
 

log h(t)  =  log h0(t) + 1 E + 2 Et  

 
where Et is not the name of a movie, but the product "exposure x follow-up time". In this model 
the hazard ratio is no longer a constant. It is a function of time: HR = exp (1 + 2 t). In fact, you 
have just invoked the "non-proportional hazards assumption" in Cox regression! 
 
Don't want to allow the hazard ratio to vary so much? That's easy. Categorize the follow-up time 
(two intervals, three intervals, any k intervals); replace k intervals by k-1 dummy variables; and fit 
a similar model with k-1 product terms. Now the hazard ratio is forced to be constant only within 
each interval. 
 
But the issue is much deeper than fitting different models. Reading scientific literature, you get 
the impression that scientists are extremely worried about possible violation of the proportional 
hazards assumption. Actually, some of them seem to be obsessed with it, which is funny from one 
point of view and serious from another. 
 
It is funny because the same scientists regularly impose a comparable assumption without 
blinking an eye. Consider, for example, the following multi-variable logistic regression model 
where E is the exposure and Q, R, S, and T are covariates for conditioning:  
 

log odds (D=1)  =  0 + 1 E + 2 Q + 3 R + 4 S + 5 T 

 
Analogous to "the proportional hazards model", this model may be called "the proportional odds 
model". Instead of imposing proportionality of the hazard over time points, the model imposes 
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proportionality of the odds over covariates' values. The ratio of the disease odds in exposed to the 
disease odds in unexposed (the odds ratio) is assumed to be identical for any value of Q, for any 
value of R, for any value of S, and for any value of T. Yet I have read hundreds of papers in 
which such a model was fit — without calling it "the proportional odds model" and without 
worrying about possible violation of "the proportional odds assumption". The same scientists who 
pay careful attention to a proportionality assumption in one model (Cox) regularly ignore it in 
other models (logistic, Poisson, log-probability). How come? I will try to answer this question 
later. 
 
The model above is called a main effects model. This model, and similar log models, claim that 
none of the covariates modifies the exposure effect on the disease, which amounts to 
proportionality of the odds (or the rate, or the probability) across the values of the covariates. Is 
there a comparable idea for time? Does Cox regression, without time-containing product term(s), 
claim no effect modification by time? Here we get into a serious, frequently overlooked, issue. 
 
First, time is not a modifier of any effect because a modifier must be a causal variable, and time 
causes nothing. Any time variable (age, period, birth year) that is associated with an outcome 
merely substitutes for an unknown list of causal variables. If interested, you may read more on 
this topic in my commentary on period and cohort effects (posted on my website). 
 
Second, according to an axiom of causality, all effects operate between a time point exposure and 
a time point outcome, which implies that a causal parameter might depend on the time interval 
between the two variables. For instance, the effect of some surgery (vs. no surgery) on death 
might be different at 24 hours post-surgery, at 157 hours, and at 8760 hours (three years post-
surgery). If so, the so-called effect over a time interval, say, by three years since surgery, is not 
truly a causal parameter. It is some kind of an average of unknown true effect sizes at different 
time points. To use a metaphor, the so-called effect of surgery on death by three years may be as 
informative as the average price of some stock between 2007 and 2009. 
 
From this perspective, a model with a constant hazard ratio is equivalent to a naïve theory — not 
an assumption — that the effect of a time point exposure on a time point outcome is identical for 
different intervals between the two variables. This theory may be explored and challenged not 
only in Cox regression but also in other models, provided that follow-up data are available. For 
instance, we may fit logistic regression models to trial data on surgery and death, truncating the 
end-date at different times (e.g., 24 hours since baseline, 157 hours since baseline). The estimated 
odds ratios for different length intervals may tell us something about the truth of the "same effect" 
theory. 
 
How often do you see scientists fit such a series of logistic regression models, or even entertain 
them? Rarely. How often do you see scientists address the very same issue in Cox regression? 
Often. What is the explanation for that discordant behavior? One author proposed that it's a 
matter of linguistics and psychology. Since the words "proportional hazards" often show up in the 
name of the model — Cox proportional hazards regression — scientists and statisticians feel 
compelled to address "the proportional hazards assumption". If so, the solution is simple: take 
these words out. Call it "Cox regression", which is both shorter and more accurate. (Cox is 
credited not only with the regression equation, but also with its solution.) 
 
In my view, however, the explanation is deeper than word choice and psychology. We observe 
here a common disconnect between statistical ideas as regularly taught by statisticians, and causal 
ideas, which are rarely taught to statisticians and scientists. We observe here what may be called 
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"mechanical use of statistics", an ailment of modern science. To demonstrate my point, consider a 
typical "let me reassure you" statement that many authors write after running Cox regression: 
 
"The proportional hazards assumption was tested by adding interaction terms with time. The 
coefficients of these terms were not statistically significant (p>0.05)." 
 
Three components of this statement indicate superficial understanding of both science and 
statistics. First, as you already understand, "proportional hazards" is not an assumption but a 
(naïve) causal theory which claims that the effect of a time point exposure on some outcome is 
identical at future time points. Second, whatever the null hypothesis states (no effect or no 
interaction), rejection of the null adds insignificant knowledge, because the complementary of the 
null is "everything but null" — essentially a useless piece of knowledge. Third, the lack of 
statistical significance (p>0.05) provides evidence for only one thing: that testing of the null was 
a waste of time. Large p-values provide no reassurance that the hazard ratio is indeed constant, 
because the lack of evidence against the null is not evidence for the null. Try to memorize the last 
sentence, which too many try to forget. 
 
Does the last paragraph sound wrong to you? Do you find it hard to believe that it's all true? If so, 
ask your teachers of statistics to write a rebuttal. Chances are they wouldn't. And please don't 
settle for spoken words. They evaporate as soon as they leave the mouth. 


