
                                     Chapter 17 
      Estimating the Rate Ratio 

 
Tabular methods 

Cohort studies lend themselves to estimating the rate ratio, a measure of effect that is 
deficiency free or nearly so (chapter 3).  To show how this key parameter can be 
estimated, I will use an example from a cohort of 15,712 people at baseline, 391of whom 
fell victims to ischemic stroke during an average follow up of 10 years.  Many possible 
causal variables may be proposed, but in the interest of simplicity we will consider only 
two: hypertension status (playing the role of an exposure) and age (a confounder or an 
effect modifier).  Hypertension status usually belongs to the world of binary variables, 
whereas age was categorized into four groups for didactic reasons.  Table 17−1 shows 
relevant data.  Examine this table carefully; it is the foundation of what follows. 
 
Table 17−1.  Number of participants, person-years at risk, stroke cases, rates and rate 
ratios, by hypertension status and age group. 
 
 Hypertension  Normotension Rate 

Ratio
Age 
Group 

Number 
of 

People 

Person-
years at 

risk 

Number 
of 

Strokes 

Rate 
(per 
10,000) 

 Number 
of 

People 

Person-
years at 

risk 

Number    
of 

Strokes 

Rate 
(per 
10,000) 

 

45-49 1,046 10,329 39 37.8  3,173 32,144 13   4.0 9.3 
50-54 1,299 12,669 45 35.5  2,768 28,022 24   8.6 4.1 
55-59 1,476 14,053 75 53.4  2,364 23,411 44 18.8 2.8 
60-64 1,683 15,243 108 70.9  1,903 18,409 43 23.4 3.0 
All 5,504 52,294 267 51.1  10,208 101,986 124 12.2 4.2 
 
 
About one third of the participants (5,504) were classified as having hypertension.  This 
part of the cohort has "contributed" 52,294 person-years at risk and, unfortunately, 267 
strokes.  The remainder of the cohort (10,208 participants with normal blood pressure) 
has accounted for 101,986 person-years at risk and 124 strokes.   You will find these 
numbers in the last row of Table 17−1, and again in Table 17−2.  
 

    Table 17−2.  Number of strokes and person-  
                        years at risk, by hypertension status  

 Number of 
strokes 

Person-years 
at risk 

Hypertension 267 (a)   52,294 (N1) 
Normotension 124 (b) 101,986 (N2) 

All      391 154,280 
 

 
The marginal (crude) association is described by the rate ratio:   
Rate Ratio = (a/N1)/(b/N2) = (267/52,294)/(124/101,986) = 4.2 
 
Neither you nor I would be willing to assume that the marginal association estimates the 
hypertension effect on stroke, because we can think of several confounding paths: age- 



induced, for example.  For this reason, both the estimate and the standard error of the 
estimator behind it should be declared meaningless from a causal perspective.  
Nonetheless, I will compute the standard error to illustrate the method you would use if 
no conditioning on confounders were needed—say, if the causal assignments were 
determined at random. 
  
The standard error around the log of the rate ratio is a function of the number of events 
in each group (here, the number of strokes).  Following the notation of Table 17-2, it may 
be estimated as follows. 
 

SE[log(rate ratio)]= )124/1()267/1()/1()/1( +=+ ba = 0.1087 
 
Using the standard error, we can compute three kinds of 95% confidence limits: 
 
CI for the log(rate ratio): log(4.2)+1.96 x 0.1087 = 1.435+1.96 x 0.1087 = [1.222, 1.648] 
 
CI for the rate ratio:  [exp(1.222), exp(1.648)] = [3.4, 5.2] 
 
Confidence limit ratio (CLR) for the rate ratio:  5.2/3.4 = 1.5 
 
Let's consider next the role that age might play in our attempt to estimate the 
hypertension effect.  Looking at Table 17−1 again, we see that the age-specific rate ratios 
range from 2.8 to 9.3, so effect modification by age cannot be dismissed on this scale (and 
perhaps on the additive scale, too).  Nonetheless, I will assume homogeneity of the 
underlying causal parameter from which these estimates arose, and treat age as a 
confounder in line with a naïve causal diagram (Figure 17−1).  
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Figure 17−1.  A causal diagram showing confounding by age 
 
To estimate the effect of hypertension on stroke, you should condition on age.  For 
example, stratify the sample on age group and calculate a weighted average of four age-
specific rate ratios.   If we use the subscript "i" to denote the i-th stratum, and denote the 
weight by "w", then 

 

RR(adjusted)= 
∑
∑

i

ii
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RRw

 

 
To show the computation, I extracted relevant data from the rows of Table 17−1 and 
created four tables, one per age group (Table 17−3.) 



Table 17−3(a−d).  Age-specific relation of hypertension status and stroke 
 

                    a. Age group: 45-49 years 
 Number of 

strokes 
Person-

years at risk 
Rate Ratio Weight 

Hypertension 39 10,329 Ref.  
Normotension 13 32,144 9.3 3.16 

 
 

                     b. Age group: 50-54 years 
 Number of 

strokes 
Person-

years at risk 
Rate Ratio Weight 

Hypertension  45 12,669 Ref.  
Normotension  24 28,022 4.1 7.47 

 
 

                     c. Age group: 55-59 years 
 Number of 

strokes 
Person-

years at risk 
Rate Ratio Weight 

Hypertension  75 14,053 Ref.  
Normotension  44 23,411 2.8 16.50 

 
                      
                     d. Age group: 60-64 years 
 Number of 

strokes 
Person-

years at risk 
Rate Ratio Weight 

Hypertension  108 15,243 Ref.  
Normotension  43 18,409 3.0 19.48 

 
 
How did I compute the weights? 
 
We naturally expect the weight of the stratum-specific rate ratio to be inversely related to 
the variance of the stratum-specific estimator: the larger the variance, the smaller should 
be the weight.  Mathematical details aside, the following formula, which was proposed by 
Mantel and Haenszel, approximates that kind of weight for each age group.   
 
Number of strokes among normotensives x Person-years at risk of hypertensives 
                             Total person-years at risk in that age group 
 
For instance, the weight for the oldest group is  
 
                  (43 x 15,243) / (15,243+18,409) = 19.48 
 
and it is much larger than the corresponding weight for the youngest group (3.16).  Such 
a ranking appeals to our intuition.  The oldest group has contributed more "data", more 
strokes have occurred in that group, so its rate ratio (3.0) should have greater influence 
on the weighted average than, for example, the rate ratio of the youngest group (9.3).  
Again, we are assuming that both numbers (in fact, all four rate ratios) estimate a single, 
common causal parameter and that no other confounders exist. 
 



Applying the generic formula for a weighted average, we can calculate the conditional 
rate ratio according to the Mantel-Haenszel formula (RRM-H). 
 

RRM-H(age-adjusted) = 
∑
∑

i

ii

w
RRw

= 
48.1950.1647.716.3

0.348.198.250.161.447.73.916.3
+++

+++ xxxx
= 3.6 

 
Recall that the marginal rate ratio was 4.2.  Conditioning on age has, therefore, 
attenuated the association between hypertension and stroke—as expected.  Since 
hypertensives were older than normotensives, part of the marginal association has 
embedded the age effect on hypertension and stroke.  
 
With a little notation and simple algebra, it is possible to express the Mantel-Haenszel 
formula differently.  First, we display the data for the i-th stratum of the confounder by 
adding the subscript "i" (Table 17−4). 
 
 

Table 17−4.  Number of events and person-  
                     time at risk in the i-th stratum                       

 Number of 
events 

Person-time 
at risk 

Exposed ai N1i
Unexposed bi N2i

All               NTi

 
 
As before, the weight of the i-th stratum is given by: (bi x N1i) / NTi  
 
The weighted average is then, 
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Applying the formula on the right hand side to our example, we get the same adjusted 
rate ratio: 
 
RRM-H =

)652,33/243,1543()464,37/053,1444()691,40/669,1224()473,42/329,1013(
)652,33/409,18108()464,37/411,2375()691,40/022,2845()473,42/144,3239(

xxxx
xxxx

+++
+++  = 3.6   

 
In this version of the Mantel-Haenszel formula, we circumvent the need to compute 
stratum-specific rate ratios and stratum-specific weights.  Although the calculation is 
simpler and faster than the original math, you are paying a double price for the shortcut: 
first, you don't get to see the rate ratios that make up the average.  Second, you don't get 
to see the relative weights.   
 
If you wish to compute the standard error of the log (RRM-H), take the square root of the 
following expression: 
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[= 0.011291] 

SE [log(RRM-H)] = √0.011291 = 0.1063 
 
Or perhaps it is time to switch to Poisson regression and read these numbers off a 
printout… 
 
 
Poisson regression 
 
Poisson regression is one of two regression models by which we can estimate marginal rate 
ratios and conditional (adjusted) rate ratios.  (The other is Cox regression.)  I will first 
develop the theory behind the model and then illustrate the SAS code using, again, the 
example of hypertension and stroke.   

Let E be a binary exposure: 1=EXPOSED; 0=UNEXPOSED.  Other covariates and 
interaction terms may be added, but are avoided to simplify notation.  In our example of 
stroke, the exposure is hypertension status, and the goal is to estimate the rate ratio for 
the contrast between exposed (hypertensives) and unexposed (normotensives). 
 
Let the Greek letter λ stand for "rate".  On first try, we might specify the following 
regression model: 
 
 λ = β0 + β1 E      
 
The model is reasonable but the coefficient of E estimates the rate difference, not the rate 
ratio.  If we wish to estimate the rate ratio, we should substitute log(λ) for λ. 
   
   log(λ)  = β0 + β1 E     (Equation 17–1) 
  
In equation 17–1, the coefficient of the exposure is the log of the rate ratio, analogous to 
the log of the odds ratio in logistic regression.  Therefore, Rate Ratio = exp(β1) 
 
Since "rate" is defined as the number of events (which I will call "μ”) per person-time at 
risk (which I will call "N"), we may write "λ = μ /N", and rewrite equation 17–1 as follows: 

 
 log(μ /N)  = β0 + β1 E 
 
A little more algebra takes us to the following equations: 
 
 log(μ)–log(N) = β0 + β1 E 
 
 log(μ)   = β0 + β1 E + log(N)   (Equation 17–2) 
 
 μ  = exp[β0 + β1 E + log(N)]  (Equation 17–3) 
 
Notice that the coefficients in equation 17–2 or equation 17–3 are identical to the 
coefficients in equation 17–1.  Therefore, if we find a way to estimate the parameters of 
the last two equations, the rate ratio will be in our hands: exp(β1). 



To estimate β0 and β1 in equation 17–3 (or 17–2), we will have to construct a likelihood 
function (L), called the Poisson likelihood, analogous to the binomial likelihood, which 
we used to estimate the coefficients of a logistic regression model.  Once we succeed in 
expressing L as a function of β0 and β1, we will search for the maximum likelihood 
estimates—for those values of β0 and β1 that generate the largest possible value of L.  The 
road from here to the last step is a little long—about 4 pages—but I think it's worth 
following. 

As always, the likelihood is defined as the probability of observing "the data”.  In our 
example of hypertension and stroke, "the data" mean 267 strokes during 52,294 person-
years at risk of hypertensives and 124 strokes during 101,986 person-years at risk of 
normotensives.  Since the occurrence of stroke in one group is independent of its 
occurrence in the other, the probability of observing both counts—the likelihood—is the 
product of two independent probabilities. 
 
L = Pr (Y=267) x Pr (Y=124) 
 
What, then, are these probabilities?  What formula may we use to compute them?   
 
That's the place where an interesting probability distribution enters the story.  
  
 
Poisson probability distribution 
 
A few hundred years ago, Simeon Poisson proposed that the probability of observing "r" 
events might follow a "strange-looking" formula: 
 
Pr (Y=r) = e

–μ (μ)r / r!      (Equation 17–4) 
 
For example, the probability of observing 267 strokes in our sample of hypertensives is 
 

Pr (Y=267) = e
–μ (μ)267 / 267!       

 
Let's examine slowly the content of the right hand side of these equations: "e" is that well 
known irrational number (2.718…); "r" is the number of events we specify, such as 267; 
and r! (r factorial) is short for multiplication of sequential integers (1x2x3x…r).  But what 
is μ in this equation?  Well, μ is the number of events (here, the number of strokes) we 
expect to observe in our sample—the most probable number of events we expect to 
observe.  To use an example from the gambling world: Probability calculations could lead 
us to expect two winners of the lottery (μ=2) among one million lottery buyers, but we 
might observe one winner (r=1) or fifty winners (r=50), each with a certain probability. 
 
What, then, determines the value of μ, the number of events we expect to observe?   
 
The answer should become apparent after recalling the formula for a rate "λ = μ /N", and 
rewriting it as "μ = λ x N”.  Both the person-time at risk (N) and the rate (λ) determine 
the expected number of events (μ).  The larger is the person-time at risk and the larger 
the rate, the more events are expected to occur.  As we know, the person-time at-risk is 



largely determined by our study design, namely, the available follow up time, but what 
factors set the value of λ, the rate?   
 
That question was addressed in chapter 3.  In an indeterministic world the rate reflects 
the strength of all causal forces behind the event in question, which push toward 
realization of the effect.  We do not know, of course, how these forces determine the rate, 
or even the name of every causal variable, but our naïve regression model (equation 17–
1) has assumed a simple mathematical relation between a single cause (E) and the log of 
the rate (λ):  log (λ) = β0 + β1 E      
 
It is not crucial for you to understand the shape of the Poisson distribution, but it might 
be interesting.  Let's compute several Poisson probabilities for λ=0.003 and N=1,000 
person-years at risk.  On these assumptions, the expected number of events (μ) is 3         
(μ = λ x N = 0.003x1,000 = 3).  Enter μ=3 into equation 17–4 and you get the formula for 
the probability of observing any number of events (r) you would like to specify. 
 

Pr (Y=r) = e
–3 (3)r / r! 

 
For r= 0, 1, 2, 3,…,10  , we get the following Poisson probabilities: 

Pr (Y=0) = e
–3 (3)0 / 0! =  0.05    (0!=1 by definition) 

Pr (Y=1) = e
–3 (3)1 / 1! =  0.15 

Pr (Y=2) = e
–3 (3)2 / 2! =  0.22 

Pr (Y=3) = e
–3 (3)3 / 3! =  0.22 

Pr (Y=4) = e
–3 (3)4 / 4! =  0.17 

Pr (Y=5) = e
–3 (3)5 / 5! =  0.10 

Pr (Y=6) = e
–3 (3)6 / 6! =  0.05 

Pr (Y=7) = e
–3 (3)7 / 7! =  0.02 

Pr (Y=8) = e
–3 (3)8 / 8! =  0.008 

Pr (Y=9) = e
–3 (3)9 / 9! =  0.003 

Pr (Y=10) = e
–3 (3)10 / 10! =  0.001 

 
For example, with an underlying rate of 0.003, the probability of observing 1 event in a 
cohort of 1,000 person-years at risk is 0.15, whereas the probability of observing 10 events 
is only 0.001, a very small chance.  Figure 17−1 displays the above probabilities. 
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                            Figure 17−1.  The Poisson probability distribution for μ=3 
 
Since the Poisson distribution is a probability density function (chapter 8), the height of 
the bars sum to 1.  In other words, Pr (r > 0)=1 because we are certain to observe 
"something" (either no event or some number of events.)  But as you can see, the 
distribution is skewed to the right, having a long thin tail.  There is nothing surprising 
here.  When the event does not happen often (small λ, low rate) and the person-time at 
risk is modest, it is improbable to observe many events.  Notice also that the maximum 
probability is reached when the number of events is 2 or 3—at or near the expected value 
(μ=3). 
 
 
Poisson likelihood function 
 
After a detour through the Poisson probability distribution, let’s return to the example of 
hypertension and stroke, and write the Poisson likelihood for the observed data, which 
was our original goal.  Again, the likelihood in this case is the product of two independent 

probabilities, each of which is assumed to be a Poisson probability (e
–μ (μ)r / r!)  

 
L =  Pr (Y=267)       x          Pr (Y=124)  
 
   = e

–μ1 (μ1)
267 / 267!       x       e

–μ2 (μ2)
124 / 124! 

 
Keep in mind the meaning of μ1 and μ2 in the expression above: They are the expected 
number of strokes in hypertensives and normotensives, respectively.  And they should be 
different for two reasons: the person-time at risk is different (52,294 person-years of 
hypertensive people versus 101,986 person-years of normotensive people) and the 
underlying rate may be different because of causal variables, such as hypertension status. 
 
We have already seen in logistic regression that it is easier to work with the log-likelihood 
function than with the likelihood itself.  So we'll take the log of the last expression: 
 
Log–L =  –μ1 + 267 log(μ1) – log(267!) + [–μ2 + 124 log(μ2) – log(124!)]  
 
 = 267 log (μ1) – μ1  +  124 log(μ2) – μ2 – log(267!) – log(124!) 
 
We have already seen in the context of logistic regression that constant terms, such as 
log(267!) and log(124!), do not affect the computation of maximum likelihood estimates.  
Everyone omits them to simplify mathematical expressions and so will we:  
 
Log–L (revised) = 267 log (μ1) – μ1  +  124 log(μ2) – μ2   (Equation 17–5) 
 
So far we expressed the likelihood as a function of μ1 and μ2.  Now it’s time to invoke the 
Poisson regression model itself and to specify μ1 and μ2—the expected number of strokes 
in each group—as a function of the exposure variable (hypertension status) and the 
person-years at risk.  Specifically, recall that our regression model has assumed the 
following mathematical relation of E and N with μ: 
 



   log(μ)  = β0 + β1 E + log(N)   (Equation 17–2) 
 
   μ = exp[β0 + β1 E + log(N)]  (Equation 17–3) 
 
 
For the group of hypertensives, E=1 and N=52,294, so log(μ1) and μ1 are as follows: 
 
   log(μ1) = β0 + β1 + log(52294) 
 

μ1 = exp[β0 + β1 + log(52294)] 
 
 
For the group of normotensives, E=0 and N=101,986, so log(μ2) and μ2 are as follows: 
 
   log(μ2) = β0 + log(101986) 
 

μ2 = exp[β0 + log(101986)] 
 
 
Plugging these expressions of log(μ1), μ1, log(μ2), and μ2 into the Poisson log-likelihood 
function (equation 17–5), we get the following: 
 
Log–L (revised)   = 267 log (μ1) – μ1   +    124 log(μ2) – μ2

 
       = 267 [β0 + β1 + log(52294)] – exp[β0 + β1 + log(52294)]  
 
                             +   124 [β0 + log(101986)] – exp[β0 + log(101986)] 
 
        = 267 (β0 + β1) + 267 log(52294) – exp(β0 + β1)x52294  
   
                            +   124 β0 + 124 log(101986) – exp(β0)x101986 
 
Again, the addition or subtraction of constants, such as "267 log((52294)", does not affect 
the maximum likelihood estimates; it just shift the entire function up or down.  To 
simplify, we'll omit all constants and combine some terms to get the simplest possible 
expression: 
 
Log–L (revised) = (267+124)β0 + 267 β1  – [exp(β0 + β1)x52294 + exp(β0)x101986] 
 
We are done!  Examine the right hand side of the last equation and you will see that we 
finally expressed the log-likelihood as a function of β0 and β1, which was our goal at the 
beginning of this long journey.  In mathematical notation:  Log–L = f (β0, β1).  All that is 
left to do is to find the values of β0 and β1 that maximize the value of the function, and 
that can be done by iteration ("trial and error") with the help of an algorithm.  Retrace 
the steps back to equation 17–1 and you will realize that "exp(β1)" estimates the rate ratio 
for stroke for the contrast between hypertensives and normotensives. 
 
Let's see how SAS does it in a procedure called PROC GENMOD.   



SAS PROC GENMOD 
 
SAS code  (first, formatting and data steps) 
 
PROC FORMAT; 
 VALUE htnfmt 0='Normotensive'  
              1='Hypertensive'; 
 VALUE agefmt 1='D. 45-49' 
              2='C. 50-54' 
              3='B. 55-59' 
              4='A. 60-64';  
 run; 
 
DATA Poisson; 
 INPUT htn agegroup people personyears events; 
 logPYEARS=log(personyears); 
 
DATALINES; 
 
0 1 3173 32144   13 
0 2 2768 28022   24 
0 3 2364 23411   44  
0 4 1903 18409   43 
1 1 1046 10329   39 
1 2 1299 12669   45 
1 3 1476 14053   75 
1 4 1683 15243  108 
; 
run; 
 
Rather than reading the data (Table 17−1) from a data file, I entered the numbers 
directly in a data step (DATALINES).  Hypertension status and age group were coded as 
follows:   
 
HTN:  1=HYPERTENSION;  0=NORMOTENSION  
AGEGROUP: 1=45-49;  2=50-54;  3=55-59;  4=60-64   
 
For a reason that will become clear shortly, I also had to create a new variable, 
logPYEARS, which is the log of the person-years at risk.  Next is PROC GENMOD. 
 
PROC GENMOD; 
 CLASS htn; 
 MODEL events = htn / DIST=POISSON 
                      LINK=LOG 
       OFFSET=logPYEARS; 
ESTIMATE 'Beta htn' htn 1 -1/ exp; 



FORMAT HTN htnfmt.; 
run; 
 
To follow the logic of the PROC GENMOD code, recall the Poisson regression equation 
(equation 17–2): 
 
  log(μ)   = β0 + β1 E + log(N)   and compare it to the "model statement" 
 
MODEL events = htn / DIST=POISSON 
                     LINK=LOG 
      OFFSET=logPYEARS; 
 
On the left hand side of the "model statement", you find the variable EVENTS, the 
number of strokes, which is assumed to follow a Poisson probability distribution 
(DISTRIBUTION=POISSON).  But as the regression model shows, we should request the 
software to predict the log of that number (LINK=LOG). 
 
What is the purpose of the code "OFFSET=logPYEARS"? 
 
Notice that log(N) appears as a regressor on the right hand side of the Poisson regression 
equation, so we should have included it somehow in the "model statement".  If we wrote, 
however, "MODEL events = htn logPYEARS", SAS would have estimated a coefficient for 
this variable, too.  We don't want that to happen—we did not specify the equation as  
"log(μ) = β0 + β1 E +  β3 log(N)" but as "log(μ) = β0 + β1 E + log(N)".  The "coefficient" of 
log(N) should be 1. 
 
The option "OFFSET=logPYEARS" serves that purpose.  OFFSET means that logPYEARS is a 
special regression variable whose coefficient should not be estimated; it must be 1 (β3=1). 
 
Selected SAS output 
 
                             The GENMOD Procedure 
                              Model Information 
 
                      Data Set              WORK.POISSON 
                      Distribution               Poisson 
                      Link Function                  Log 
                      Dependent Variable          events 
                      Offset Variable          logPYEARS 
                      Observations Used                8 
 
                            Class Level Information 
 
                Class      Levels    Values 
 
                htn             2    Hypertensive Normotensive 
   

Algorithm converged. 
 



                       Analysis Of Parameter Estimates 
 
                                        Standard       Wald 95%          
 Parameter                DF  Estimate     Error   Confidence Limits   
 
 Intercept                 1   -6.7123    0.0898   -6.8883   -6.5363   
 htn        Hypertensive   1    1.4349    0.1087    1.2219    1.6479    
 htn        Normotensive   0    0.0000    0.0000    0.0000    0.0000       
 
                           Contrast Estimate Results 
 
                             Standard                                    
  Label           Estimate      Error             Confidence Limits     
 
  Beta htn          1.4349     0.1087             1.2219     1.6479    
  Exp(Beta htn)     4.1993                        3.3937     5.1961 
 
 
 
 

Regression equation: log (stroke rate) = –6.7123 + 1.4349 HTN 

 
The output I selected is self-explanatory.  After exponentiating the coefficient of the 
hypertension variable, we get a rate ratio of 4.2.  Compare this rate ratio and its standard 
error to the numbers we computed by hand at the very beginning of this chapter: The two 
methods have produced identical results.  Why do two vastly different mathematical trails 
lead to identical results?  Why should the most likely estimate from a Poisson likelihood 
function, which is founded on a strange-looking Poisson probability, precisely match the 
simple rate ratio we have quickly computed by hand?  I don't know the answer, but it's a 
good opportunity to ponder again about the mathematical fabric of the universe.  Have 
we invented statistics to discover causal connections or have we discovered the statistics 
with which Nature invented causal connections? 
 
Next, we will condition the association of hypertension and stroke on age by adding the 
variable AGEGROUP to the "model statement".  Recall that in tabular methods, we 
conditioned on age by stratification, followed by the computation of a weighted average 
(RRM-H) of the age-specific rate ratios.  In regression, conditioning is done in a black box; 
we get to see only the final result. 
 
There is more than one way to model the 4-level age variable.  If we add AGEGROUP to 
the "class statement", SAS will replace that variable with three "dummy variables", 
selecting one age group as the reference (Table 17–5). 
 

Table 17−5.  Substituting 3 "dummy variables" for AGEGROUP  
AGEGROUP AGE50-54 AGE55-59 AGE60-64 
1 (45-49 years) 0 0 0 
2 (50-54 years) 1 0 0 
3 (55-59 years) 0 1 0 
4 (60-64 years) 0 0 1 

 
 



PROC GENMOD; 
 CLASS htn agegroup; 
 MODEL events = htn agegroup / DIST=POISSON 
                               LINK=LOG 
      OFFSET=logPYEARS; 
ESTIMATE 'Beta htn' htn 1 -1/ exp; 
FORMAT htn htnfmt.; 
FORMAT agegroup agefmt.; 
 
run; 
 
 
 
 
Selected SAS output 
 
  
                             The GENMOD Procedure 
 
                              Model Information 
 
                      Data Set              WORK.POISSON 
                      Distribution               Poisson 
                      Link Function                  Log 
                      Dependent Variable          events 
                      Offset Variable          logPYEARS 
                      Observations Used                8 
 
 
                           Class Level Information 
 
         Class         Levels    Values 
 
         htn                2    Hypertensive Normotensive 
         agegroup           4    A. 60-64 B. 55-59 C. 50-54 D. 45-49 
 
 
  Algorithm converged. 
 
 
                       Analysis Of Parameter Estimates 
 
                                        Standard       Wald 95%         
 Parameter                DF  Estimate     Error   Confidence Limits    
 
 Intercept                 1   -7.2080    0.1510   -7.5039   -6.9122   
 htn        Hypertensive   1    1.3044    0.1100    1.0888    1.5200    
 htn        Normotensive   0    0.0000    0.0000    0.0000    0.0000      
 agegroup   A. 60-64       1    1.0056    0.1625    0.6872    1.3240    



 agegroup   B. 55-59       1    0.7592    0.1670    0.4319    1.0865     
 agegroup   C. 50-54       1    0.2207    0.1839   -0.1397    0.5811     
 agegroup   D. 45-49       0    0.0000    0.0000    0.0000    0.0000     
 
 
 
 
                           Contrast Estimate Results 
 
                             Standard                                     
  Label           Estimate      Error              Confidence Limits     
 
  Beta htn          1.3044     0.1100              1.0888     1.5200    
  Exp(Beta htn)     3.6855                         2.9708     4.5721 
 
 
 
 
 

log (stroke rate) = –7.208 + 1.3044 HTN +  
                                                  1.0056 AGE60-64 + 0.7592 AGE55-59 + 0.2207 AGE50-54 

 
Just like conditioning in tabular methods, adding age to the regression model has 
attenuated the association between hypertension and stroke.  The age-adjusted rate ratio 
from this model, exp(1.3044)=3.7, is similar to the Mantel-Haenszel rate ratio (3.6).  
Assuming that no other conditioning is needed, you may report the 95% CI (2.9 to 4.6) 
and the 95% CLR (4.57/2.97=1.5).  (In scientific inquiry, I would not.  The estimator and 
its standard error are still useless from a causal perspective.  It is easy to propose other 
confounding paths.) 
 
 
Poisson regression and person-based data file 
 
Although we developed the Poisson likelihood for group data (Table 17−1), the content 
of that table was obtained by observing individuals.  Each person has contributed years at 
risk (a value of the variable N) and event status over follow up: Y=1, if suffered a stroke or 
Y=0, if remained stroke-free.  These data were then summarized for hypertensives and 
normotensives and for four age groups.  What would the likelihood function look like if 
we were to use the original, person-based, data?   
 
In that case the likelihood function is not necessarily "Pr (Y=267) x Pr (Y=124)”, but may 
be expressed as the product of 15,712 individual probabilities—the size of our cohort.  
Depending on the fate of each cohort member, he or she "contributes" a probability of 
having suffered a stroke (Pr (Y=1)), or of having remained stroke-free (Pr (Y=0)).  The 
likelihood, L, is therefore 
 
L = Pr1 x Pr2 x Pr3 x …x P15712 

 
Again, let’s switch to the log-likelihood function because it is simpler to work on that 
scale.   As you know, the log of the product of terms is equal to the sum of the log of each 
term.   
 



Log-L = log (Pr1 x Pr2 x Pr3 x …xP15712)  = log (Pr1) + log (Pr2) + log (Pr3) +…+ log (Pr15712) 
 
Next, we'll assume that each of these 15,712 probabilities is a Poisson probability (more 
on that assumption later): 
   

Pr (Y=r) = e
–μ (μ)r / r!       

 
For a single person, however, "r" can take only two values: r=1, if the person had suffered 
a stroke or r=0, if the person had not. 

If the person had suffered a stroke, r=1 :     Pr (Y=1)  =  e
–μ 
μ1/1! = e

–μ 
μ 

And the log of that probability is         log [Pr (Y=1)] = log(μ)–μ 
 

If the person remained stroke-free, r=0 :   Pr (Y=0)  =  e
–μ 
μ0/0! = e

–μ

And the log of that probability is              log [Pr (Y=0)] = –μ 
 
Therefore, the log likelihood is the sum of two kinds of log of probability: 
 
Every stroke victim contributes to the summation " μμ −)(log ", and there are 391 such 
people.  Similarly, those who escaped that fate contribute " μ− ", and there are 15,321 
such people.  In semi-formal notation:   
 

Log-L =   +      Equation (17–6) ])[log(
391

μμ −∑ ∑ −
321,15

][ μ

 
All that is left to do is to replace μ in the last equation with expressions that contain β0 and 
β1, namely, with the right hand side of the Poisson regression equations: 
 
log(μ)  = β0 + β1 E + log(N)      (Equation 17–3) 
 
μ  = exp[β0 + β1 E + log(N)]     (Equation 17–4) 
 
Here are two examples that illustrate the replacement:   
 
• If Mr. Smith was hypertensive (E=1) and remained stroke-free during 7 years at risk 

(N=7), his value of μ = exp[β0 + β1 + log(7)].  Since Mr. Smith is one of 15,321 people 
who did not suffer a stroke, his contribution to equation 17–6 would be –μ, which is  
"–exp[β0 + β1 + log(7)]".   

• If Ms. Jones was normotensive (E=0) and suffered a stroke after 10 years (N=10), her 
value of μ = exp[β0 + log(10)], and her contribution to equation 17–6 would be 

μμ −)(log , which is "β0 + log(10) – exp[β0 + log(10)]" 
 
After summing all 15,712 replacing terms, the log-likelihood will be, again, a function of 
β0 and β1.  I could have ended the story by showing a formal messy expression of the 
function, but it is not essential.  The principles should suffice. 
 



Since "r" is constrained to be "1" or "0", is it legitimate to fit a Poisson regression model to 
person-based data?  After all, it is difficult to conceive a complete Poisson distribution for 
a single person, such as Mr. Smith: one can suffer no more than one incident stroke, and 
that is devastating enough.  

The answer should be "yes" for several reasons: First, a few lines of algebra can show 
that the Poisson distribution is the limit of the binomial distribution when the probability 
of the event tends to zero and the person-time at risk tends to infinity.  If we apply the 
Poisson distribution to a large cohort (many years at risk per person) and a rare event 
(low rate), we are effectively approximating a binomial probability distribution.  No one 
would complain about using the latter for a binary dependent variable. 

Second, think for a moment about a data file that contains "grouped data"—Table 
17−1 for instance—and reconstruct it in your mind as a file that contains 15,712 
individual records.  If you are willing to apply Poisson regression to the group file, should 
you not be willing to do so to its person-based counterpart?  Is a probability model tied to 
the method by which we organize the entries in a data file, or does it try to describe 
underlying causal reality?  

Finally (and a little more abstract): although Mr. Smith (for example) has contributed 
one row of data (E=1, N=7, Y=0), we may view his contribution to the right hand side of 
the regression "μ = exp[β0 + β1 E + log(N)]" as just one sample of many similar 
observations—of many Smith-like replications of E=1 and N=7.  Because a theoretical 
collective of [E=1; N=7] can generate more than a single stroke (μ >1), we may 
"legitimately" invoke the Poisson probability distribution.  In that abstract framework, 
which resonates with indeterministic causation (chapter 1), "r" is not constrained to be "0" 
or "1" even though it is empirically impossible to observe anything greater than r=1 in any 
given person.   
 
The SAS code below was fit to the original stroke data, namely, to a data file that 
contained 15,712 observations.  Notice two key changes: (1) The dependent variable is 
not EVENTS but STROKE, a binary variable, which takes the value of 1 or 0.  (2) Instead of 
logPYEARS, I used a variable called logPY—the log of years at risk for each member of the 
cohort.  The first model that I fit estimates the marginal rate ratio; the second, the so-
called age-adjusted rate ratio.  In the second model SAS, again, has replaced the variable 
AGEGROUP with three dummy variables, choosing the youngest group as the reference 
(Table 17–5.) 
 
SAS code 
 
PROC GENMOD; 
 CLASS htn; 
 MODEL stroke = htn  / DIST=POISSON 
                       LINK=LOG 
        OFFSET=logPY; 
ESTIMATE 'Beta htn' htn 1 -1/ exp; 
run; 
 
PROC GENMOD; 
 CLASS htn agegroup; 
 MODEL stroke = htn agegroup / DIST=POISSON 



                               LINK=LOG 
      OFFSET=logPY; 
ESTIMATE 'Beta htn' htn 1 -1/ exp; 
 
run; 
 
 
Selected SAS output 
 
 
 
                             The GENMOD Procedure 
 
                               Model Information 
 
          Data Set              WORK.ONE 
          Distribution           Poisson 
          Link Function              Log 
          Dependent Variable      stroke    
          Offset Variable          logPY 
          Observations Used        15712 
 
 
                            Class Level Information 
 
                Class      Levels    Values 
 
                htn             2    Hypertensive Normotensive 
 
  Algorithm converged. 
 
 
                       Analysis Of Parameter Estimates 
 
                                        Standard       Wald 95%          
 Parameter                DF  Estimate     Error   Confidence Limits    
 
 Intercept                 1   -6.7123    0.0898   -6.8883   -6.5363  
 htn        Hypertensive   1    1.4349    0.1087    1.2219    1.6479    
 htn        Normotensive   0    0.0000    0.0000    0.0000    0.0000      
 
 
                           Contrast Estimate Results 
 
                             Standard                                     
  Label           Estimate      Error              Confidence Limits     
 
  Beta htn          1.4349     0.1087              1.2219     1.6479    
  Exp(Beta htn)     4.1993                         3.3937     5.1961 
 



 
 
 
 

log (stroke rate) = –6.7123 + 1.4349 HTN

 
 
 
 
                              

The GENMOD Procedure 
 
                               Model Information 
 
          Data Set              WORK.ONE 
          Distribution           Poisson 
          Link Function              Log 
          Dependent Variable      stroke     
          Offset Variable          logPY 
          Observations Used        15712 
 
 
                           Class Level Information 
 
         Class         Levels    Values 
 
         htn                2    Hypertensive Normotensive 
         agegroup           4    A. 60-64 B. 55-59 C. 50-54 D. 45-49 
 
     Algorithm converged. 
 
 
                       Analysis Of Parameter Estimates 
 
                                        Standard       Wald 95%           
 Parameter                DF  Estimate     Error   Confidence Limits    
 
 Intercept                 1   -7.2080    0.1510   -7.5039   -6.9121   
 htn        Hypertensive   1    1.3044    0.1100    1.0888    1.5200    
 htn        Normotensive   0    0.0000    0.0000    0.0000    0.0000      
 agegroup   A. 60-64       1    1.0055    0.1625    0.6871    1.3240    
 agegroup   B. 55-59       1    0.7592    0.1670    0.4318    1.0865     
 agegroup   C. 50-54       1    0.2207    0.1839   -0.1397    0.5811     
 agegroup   D. 45-49       0    0.0000    0.0000    0.0000    0.0000      
 
                           Contrast Estimate Results 
 
                             Standard                                     
  Label           Estimate      Error              Confidence Limits    
 
  Beta htn          1.3044     0.1100              1.0888     1.5200    
  Exp(Beta htn)     3.6854                         2.9708     4.5720 
 



 
 
 
 
 
 
 
Table 17−6 compares the estimates we obtained for the hypertension "effect" by fitting 
Poisson regression to person-based data to those we had obtained before by tabular 
methods and by fitting Poisson regression to group data.  The similarity is remarkable.  
 
Table 17−6.  Point estimates of the rate ratio and standard errors, by three methods 
                    of estimation 
 Tabular Methods 

(before rounding) 
Poisson Regression 
(group data) 

Poisson Regression 
(person-based) 

Marginal rate ratio 4.1993 4.1993 4.1993 
Conditional rate ratio* 3.5707 3.6855 3.6854 
Standard error** 0.1063 0.1100 0.1100 
*”Age-adjusted” 
**SE of log (conditional rate ratio) 
 
 
Estimating the modified rate ratio 
 
Suppose we decide that age plays the role of an effect modifier and, therefore, prefer to 
present age-specific rate ratios of the hypertension effect (Table 17−1).  To obtain these 
estimates by regression, we may fit a model that contains interaction terms between age 
and hypertension. 

In one commonly used method, the 4-level AGEGROUP variable is first replaced by 
three "dummy variables", choosing one age group as the reference (see Table 17−5 
again).  Then, we fit a model that contains three interaction terms (in addition, of course, 
to the "main effects"):  HTN x AGE50-54, HTN x AGE55-59, and HTN x AGE60-64.  Here is 
that model: 
 
log (stroke rate) = β0  
                                + β1 HTN  
                                      + β2 AGE50-54 + β3 AGE55-59 + β4 AGE60-64 
                                            + β5 HTN x AGE50-54 + β6 HTN x AGE55-59 + β7 HTN x AGE60-64 
 

         (Equation 17–7) 
 
This model allows the hypertension effect to vary by age.  Table 17−7, for example, shows 
how to estimate that effect in age group 50-54: 
 
   Table 17−7.  The hypertension effect in age group 50-54 years 

Causal assignment Y = log (stroke rate) 
HTN=1 and AGE50-54=1 β0+β1x1+β2x1+β3x0+β4x0+β5x1+β6x0+β7x0  
HTN=0 and AGE50-54=1 β0+β1x0+β2x1+β3x0+β4x0+β5x0+β6x0+β7x0 
Effect of HTN (difference in Y)       β1                 +               β5               

log (stroke rate) = –7.208 + 1.3044 HTN +  
                                                  1.0055 AGE60-64 + 0.7592 AGE55-59 + 0.2207 AGE50-54 



 
β1 + β5 = difference in Y = difference in log (stroke rate) = log (stroke rate ratio). 
 
Rate RatioAGE50-54  = exp (β1 + β5) 
 
And in general, to compute any age-specific effect of hypertension, we just need to re-
organize the model to highlight the property of effect modification.  For instance, to 
estimate the hypertension effect we have computed in Table17−7, combine the terms    
"β1 HTN” and "β5 HTN x AGE50-54” as shown below: 
 
log (stroke rate) = β0  
                                + β2 AGE50-54 + β3 AGE55-59 + β4 AGE60-64  
                                      + β6 HTN x AGE55-59 + β7 HTN x AGE60-64 
                                            + (β1 + β5 AGE50-54) HTN 
 
Since in that group the variable AGE50-54 takes the value of 1, the effect of hypertension 
is, again, β1 + β5 x 1. 
 
By similar grouping of terms, we can get the hypertension effect for all four age groups 
(Table17−8.)  Remember: these are hypertension effects, not age effects. 
 

Table 17−8.  Age-specific rate ratios of the hypertension effect 
Age group Grouped variables Age-specific rate ratio 
45-49 HTN exp(β1) 
50-54 HTN;  HTN x AGE50-54 exp(β1 + β5) 
55-59 HTN;  HTN x AGE55-59 exp(β1 + β6) 
60-64 HTN;  HTN x AGE60-64 exp(β1 + β7) 

 
 
Fortunately, PROC GENMOD does not require us to create dummy variables or three 
interaction terms.  If we specify the variable AGEGROUP in the “class statement” and add 
the product term HTN x AGEGROUP to the "model statement", the software creates all of 
the above. 
 
SAS code (fit to person-based data) 
 
PROC GENMOD; 
 CLASS htn agegroup; 
 MODEL stroke = htn agegroup htn*agegroup / DIST=POISSON 
                                            LINK=LOG 
                   OFFSET=logPY; 
run; 
 
Selected SAS output  
 
                             The GENMOD Procedure 
                               Model Information 
 
          Data Set              WORK.ONE 



          Distribution           Poisson 
          Link Function              Log 
          Dependent Variable      stroke  
          Offset Variable          logPY 
          Observations Used        15712 
 
                           Class Level Information 
 
         Class         Levels    Values 
 
         htn                2    Hypertensive Normotensive 
         AGEGROUP           4    A. 60-64 B. 55-59 C. 50-54 D. 45-49 
 
  Algorithm converged. 
 
 
                       Analysis Of Parameter Estimates 
 
                                                               Standard 
       Parameter                             DF     Estimate       Error 
 
       Intercept                              1   β0 -7.8130      0.2774 
       htn           Hypertensive             1   β1  2.2339      0.3203 
       htn           Normotensive             0       0.0000      0.0000 
       AGEGROUP      A. 60-64                 1   β4  1.7536      0.3165 
       AGEGROUP      B. 55-59                 1   β3  1.5363      0.3157 
       AGEGROUP      C. 50-54                 1   β2  0.7503      0.3444 
       AGEGROUP      D. 45-49                 0       0.0000      0.0000 
       htn*AGEGROUP  Hypertensive  A. 60-64   1   β7 -1.1243      0.3675 
       htn*AGEGROUP  Hypertensive  B. 55-59   1   β6 -1.1902      0.3723 
       htn*AGEGROUP  Hypertensive  C. 50-54   1   β5 -0.8115      0.4080 
       htn*AGEGROUP  Hypertensive  D. 45-49   0       0.0000      0.0000 
       htn*AGEGROUP  Normotensive  A. 60-64   0       0.0000      0.0000 
       htn*AGEGROUP  Normotensive  B. 55-59   0       0.0000      0.0000 
       htn*AGEGROUP  Normotensive  C. 50-54   0       0.0000      0.0000 
       htn*AGEGROUP  Normotensive  D. 45-49   0       0.0000      0.0000 
 
 
To the left of each estimate, I added our notation of the regression equation (equation 
17–7.)  After entering the estimates into Table 17−8, we get the age-specific rate ratios of 
the hypertension effect (Table 17−9). 
 
 
   Table 17−9.  Age-specific rate ratios of the hypertension effect 

Age 
group 

Grouped variables Age-specific rate ratio 
 

45-49 HTN exp(β1)        = exp(2.2339)                                         = 9.3 
50-54 HTN;  HTN x AGE50-54 exp(β1 + β5) = exp[2.2339+(–0.8115)]=exp(1.4224)= 4.1 
55-59 HTN;  HTN x AGE55-59 exp(β1 + β6) = exp[2.2339+(–1.1902)]=exp(1.0437)= 2.8 
60-64 HTN;  HTN x AGE60-64 exp(β1 + β7) = exp[2.2339+(–1.1243)]=exp(1.1096)= 3.0 



 
The results are identical to those we computed by tabular methods (Table 17–1).  Indeed, 
in this example Poisson regression added nothing but complexity.  Of course, if we had to 
condition on several confounders while estimating the modified rate ratio, tabular 
methods could not have delivered the goods. 
 
One more task is still ahead: computing the standard error for each age-specific log(rate 
ratio) of the hypertension effect.  In notation, the following standard errors are needed: 
 
SE[log(RRAGE 45-49)]= SE (β1) 
SE[log(RRAGE 50-54)]= SE (β1 + β5) 
SE[log(RRAGE 55-59)]= SE (β1 + β6) 
SE[log(RRAGE 60-64)]= SE (β1 + β7) 
  
Variance arithmetic tells us that we can’t just add two standard errors to get the standard 
error of the sum of two coefficients.  The math is a bit more complex and requires 
something called "covariance", which may be requested in SAS.  Fortunately, however, it is 
possible to get the standard errors of interest by specifying the interaction model 
differently.  The alternative code (shown below) also saves us the trouble of summing 
coefficients.  What we get on the printout is precisely what we need: four age-specific 
log(rate ratios) and their standard errors. 
 
 
SAS code 
 
PROC GENMOD; 
 CLASS agegroup htn; 
 MODEL stroke = agegroup htn(agegroup) / DIST=POISSON 
                                         LINK=LOG 
                OFFSET=logPY; 
 
run; 
 
Selected SAS printout 
 
                             The GENMOD Procedure 
 
                               Model Information 
 
          Data Set              WORK.ONE 
          Distribution           Poisson 
          Link Function              Log 
          Dependent Variable      stroke 
          Offset Variable          logPY 
          Observations Used        15712 
 
                           Class Level Information 
 
         Class         Levels    Values 



 
         AGEGROUP           4    A. 60-64 B. 55-59 C. 50-54 D. 45-49 
         htn                2    Hypertensive Normotensive 
 
  Algorithm converged. 
 
 
                        Analysis Of Parameter Estimates 
 
                                                                Standard 
       Parameter                              DF    Estimate       Error 
 
       Intercept                               1     -7.8130      0.2774 
       AGEGROUP       A. 60-64                 1      1.7536      0.3165 
       AGEGROUP       B. 55-59                 1      1.5363      0.3157 
       AGEGROUP       C. 50-54                 1      0.7503      0.3444 
       AGEGROUP       D. 45-49                 0      0.0000      0.0000 
       htn(AGEGROUP)  Hypertensive  A. 60-64   1      1.1096      0.1803 
       htn(AGEGROUP)  Normotensive  A. 60-64   0      0.0000      0.0000 
       htn(AGEGROUP)  Hypertensive  B. 55-59   1      1.0437      0.1899 
       htn(AGEGROUP)  Normotensive  B. 55-59   0      0.0000      0.0000 
       htn(AGEGROUP)  Hypertensive  C. 50-54   1      1.4225      0.2528 
       htn(AGEGROUP)  Normotensive  C. 50-54   0      0.0000      0.0000 
       htn(AGEGROUP)  Hypertensive  D. 45-49   1      2.2339      0.3203 
       htn(AGEGROUP)  Normotensive  D. 45-49   0      0.0000      0.0000 
 
 
 
 

Table 17−10 shows the meaning of each coefficient that I highlighted on the printout, as 
well as the computation of 95% confidence intervals (CI) and 95% confidence limit ratios 
(CLR). 
 
   Table 17−10.  Age-specific rate ratios of the hypertension effect and confidence intervals 

Age 
group 

β=log(RRAGE-SPECIFIC) 
 

SE(β) RRAGE-SPECIFIC

 
95% CI* 95% CLR 

45-49 2.2339 0.3203 exp(2.2339)=9.3 [5, 17] 17/5=3.4 
50-54 1.4225 0.2528 exp(1.4225)=4.1 [2.5, 6.8] 6.8/2.5=2.7 
55-59 1.0437 0.1899 exp(1.0437)=2.8 [2.0, 4.1] 4.1/2.0=2.1 
60-64 1.1096 0.1803 exp(1.1096)=3.0 [2.1, 4.3] 4.3/2.1=2.0 

   * exp [β+1.96SE(β)] 
 
 
You might have wondered why I didn't get the age-specific rate ratios by simply fitting the 
original regression model four times—one model per each age group—rather than by 
modeling interaction terms.   For example, why didn't I use the following SAS code of 
stratified regression? 
 
PROC GENMOD; 
 CLASS htn; 



 MODEL stroke = htn / DIST=POISSON 
                      LINK=LOG 
       OFFSET=logPY; 
 BY agegroup; 
run; 
 
Well, I could have used this code, and we would have seen identical results.  Nonetheless, 
the two methods will often produce different estimates when the model contains 
covariates—for example, if we had to condition on smoking status while estimating the 
age-specific rate ratios of the hypertension effect.  So which method should you choose in 
the presence of covariates: a single model that contains interaction terms or stratum-
specific models? 

I have raised this question before in the context of other regression models (chapter 
10, for example) and answer it again here.  I prefer an interaction model to stratified 
regression—for a reason that has nothing to do with testing a null hypothesis about the 
coefficients of interaction terms.  When we search for modification of the hypertension 
effect by age group while conditioning on another variable (say, smoking status), each 
age-specific estimate of the hypertension effect behaves like a weighted average across the 
strata of smoking.  If each age group contains a unique distribution of smoking status, the 
age-specific estimates from stratified regression will be based on different sets of weights.  
In contrast, every age-specific estimate from an interaction model will rely on the 
distribution of smoking status in the entire cohort—on the same set of weights. 

 
Apart from a special likelihood function and some features of the PROC GENMOD code, you 
may think about Poisson regression along the general principles of any regression of the 
form "R = β0 + β1 E +…"    The closest analogy may be logistic regression.  In a logistic 
model, R was "log(odds)", whereas in Poisson, R is "log(rate)".  That's about it.   
Poisson regression is useful and elegant, but almost nobody uses it to estimate the rate 
ratio unless the data file contains only group data.  For person-based data from a cohort 
study, everyone turns to Cox regression—the next chapter. 
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