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Chapter 13 
Estimating the Modified Odds Ratio 

 
Modified odds ratio vis-à-vis modified mean difference 
 
To a large extent, this chapter replicates the content of Chapter 10 (Estimating the 
modified mean difference), with one notable difference: the dependent variable changes 
from "mean Y" to "log odds (Y=1)".  As a result, regression coefficients will be interpreted 
as log odds ratios, and their exponential form will deliver modified odds ratios, rather 
than modified mean differences.  We switch from effect modification on the additive scale 
to effect modification on the multiplicative scale. 
 
Consider, for example, the basic interaction model on the additive scale 

Mean Y = β0 + β1 M + β2 E + β3 (M x E) 
which was re-written as   Mean Y = β0 + β1 M + (β2 + β3 M) E    
 
The parallel model on the log-odds scale is 
       Log odds (Y=1) = β0 + β1 M + β2 E + β3 (M x E) 
which may be re-written as  Log odds (Y=1) = β0 + β1 M + (β2 + β3 M) E   
 
As was the case in chapter 10, the effect of E on Y is no longer assumed to be constant.  It 
has turned into a function of M.  When M=0, the effect of one-unit increment in E is β2.  
But when M=1, the effect of one-unit increment in E is β2 + β3.   Recalling that the 
dependent variable is log-odds, rather than mean Y, these two estimates (β2, β2+β3) 
should be interpreted as a difference between two log-odds, which is equivalent to log 
odds ratio.  To obtain the modified odds ratio, one more step is needed: exponentiating 
β2 and β2+β3. 
 
When M=0, the effect of one-unit increment in E is estimated by OR=exp(β2) 
When M=1, the effect of one-unit increment in E is estimated by OR=exp(β2+β3). 
 
Because we estimate a ratio, and not a difference, we inevitably commit to examining 
effect modification on the multiplicative scale.  That is true for all models that specify a 
log function on the left hand-side of a regression equation, including linear regression: 
log(Y) = β0 + β1 M + β2 E + β3 (M x E).  In fact, every idea in this chapter perfectly overlaps 
an idea in Chapter 11, substituting the words "odds ratio" for "geometric mean ratio".  
Unfortunately, many fail to recognize the similarity between a linear regression model of 
a log-transformed Y and all other log-based models (logistic, Poisson, Cox).  They usually 
see in that linear model no more than a method "to normalize a skewed distribution of Y". 
 
Mortality after hospitalization for heart failure 
 
The modified odds ratio will be estimated on a sample of 1,011 patients who were 
hospitalized due to heart failure in 1995.  By the end of 2000, many of these patients have 
died.  Several causal variables will be examined: carrying a diagnosis of heart failure 
before the index hospitalization, diabetes status, and ejection fraction (the percentage of 
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blood volume in the left ventricle that is ejected during a single contraction.)  Table 13–1 
shows these variables, as well as a categorical version of ejection fraction (good, low, or 
very low).  The effect of interest is death. 
 
 

 Table 13–1. Variables and their coded values 
Variable Name Variable Values 
CHF (previous congestive 
heart failure) 

1 = yes 0 or 2 = no* 

EF  (ejection fraction) 10%-85%  
(continuous) 

 

 
EF_CAT 

 
good,  low,  very low 
(categorical) 

good = 50% or greater 
low  =  25%-50% 
very low = smaller than 25% 

DIABETES 1 = diabetes 0 = no diabetes 
DEATH 1 = dead 0 = alive 

             * For SAS-related technical reasons, I used the value of 2 in tabular analysis and 
                the value of 0 in regression models          
 
 
As shown in the 2x2 table below, patients known to have heart failure before their index 
hospitalization were more likely to die in the next five years than patients who developed 
overt heart failure for the first time.  The incidence odds ratio of death, mislabeled "Case-
Control (Odds Ratio)" on the output, was 2.5. 
 
PROC FREQ; 
 TABLES chf*death/NOCOL NOPERCENT RELRISK;  
run;   

  The FREQ Procedure 
 
                                      Table of CHF by DEATH 
 
                               CHF 
                                         DEATH(Vital status) 
 
                               Frequency‚ 
                               Row Pct  ‚dead    ‚alive   ‚  Total 
                               ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
                                      1 ‚    378 ‚    132 ‚    510 
                                        ‚  74.12 ‚  25.88 ‚ 
                               ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
                                      2 ‚    267 ‚    234 ‚    501 
                                        ‚  53.29 ‚  46.71 ‚ 
                               ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
                               Total         645      366     1011 
 
 
                           Estimates of the Relative Risk (Row1/Row2) 
 
                Type of Study                   Value       95% Confidence Limits 
                ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
                Case-Control (Odds Ratio)      2.5097        1.9260        3.2703 
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Diabetes modifies the effect of previous heart failure  
 
To explore effect modification by diabetes status, we compare the odds ratio of interest in 
two strata: diabetic patients and non-diabetic patients.  
 
PROC FREQ; 
 TABLES diabetes*chf*death/NOCOL NOPERCENT RELRISK;  
run;   
 
                                        The FREQ Procedure 
 
                                     Table 1 of CHF by DEATH 
                                    Controlling for DIABETES=0 
 
                               CHF 
                                         DEATH(Vital status) 
 
                               Frequency‚ 
                               Row Pct  ‚dead    ‚alive   ‚  Total 
                               ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
                                      1 ‚    207 ‚    102 ‚    309 
                                        ‚  66.99 ‚  33.01 ‚ 
                               ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
                                      2 ‚    181 ‚    177 ‚    358 
                                        ‚  50.56 ‚  49.44 ‚ 
                               ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
                               Total         388      279      667 
 
                           Estimates of the Relative Risk (Row1/Row2) 
                Type of Study                   Value       95% Confidence Limits 
                ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
                Case-Control (Odds Ratio)      1.9846        1.4485        2.7190 
 
 
                                     Table 2 of CHF by DEATH 
                                    Controlling for DIABETES=1 
 
                               CHF 
                                         DEATH(Vital status) 
 
                               Frequency‚ 
                               Row Pct  ‚dead    ‚alive   ‚  Total 
                               ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
                                      1 ‚    171 ‚     30 ‚    201 
                                        ‚  85.07 ‚  14.93 ‚ 
                               ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
                                      2 ‚     86 ‚     57 ‚    143 
                                        ‚  60.14 ‚  39.86 ‚ 
                               ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
                               Total         257       87      344 
 
                           Estimates of the Relative Risk (Row1/Row2) 
                Type of Study                   Value       95% Confidence Limits 
                ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
                Case-Control (Odds Ratio)      3.7779        2.2631        6.3066 
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Evidently, having a previous diagnosis of heart failure had a stronger effect on death in 
patients who were diabetics (OR=3.8) than in their non-diabetic counterparts (OR=2.0).  
To estimate the heterogeneity of the effect, we may compute the ratio of these two odds 
ratio (not the difference!): 3.8/2.0=1.9.  One effect is almost twice as strong as the other. 
 
Identical results may be obtained from a logistic regression model, regressing the log-odds 
of death on diabetes status, previous heart failure diagnosis, and their product: 
 
 
 
PROC LOGISTIC DESCENDING; 
 MODEL death = diabetes chf diabetes*chf; 
run; 
 
 
                                      The LOGISTIC Procedure 
 
                                        Model Information 
 
          Response Variable             DEATH                Vital status 
          Number of Response Levels     2 
          Model                         binary logit 
 
 
                             Number of Observations Used        1011 
 
 
                                         Response Profile 
 
                                  Ordered                   Total 
                                    Value     DEATH     Frequency 
 
                                        1     dead            645 
                                        2     alive           366 
 
                               Probability modeled is DEATH='dead'. 
 
                                     Model Convergence Status 
 
                          Convergence criterion (GCONV=1E-8) satisfied. 
 
 
                             Analysis of Maximum Likelihood Estimates 
 
                                                Standard        
              Parameter       DF    Estimate       Error     
 
              Intercept        1      0.0223          
              DIABETES         1      0.3889      0.2009     
              CHF              1      0.6854      0.1607       
              DIABETES*CHF     1      0.6436      0.3069      
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The regression equation is therefore: 
 
Log odds (DEATH=1) = 

=  0.0223 + 0.3889 x DIABETES + 0.6854 x CHF + 0.6436 x DIABETES x CHF  
 
Following re-arrangement, we get 
 
Log odds (DEATH=1) = 0.0223 + 0.3889 x DIABETES + (0.6854 + 0.6436 x DIABETES) x CHF  
 

                    The CHF effect 
 
Recall that the term called "The CHF effect" is estimating a difference between two log 
odds, or log odds ratio.  Therefore the modified odds ratio takes the following form: 
 

Modified OR = exp(0.6854 + 0.6436 x DIABETES) 
 
In non-diabetics DIABETES=0, so the modified OR=exp(0.6854)=1.98 
In diabetics DIABETES=1, so the modified OR=exp(0.6854 + 0.6436 x 1)=3.78 
 
How do we interpret the coefficient of the interaction term? 
In this particular case of two binary variables, exponentiating that coefficient provides the 
same measure of heterogeneity we computed by tabular methods: exp(0.6436)=1.9 =  
3.78/1.98.  When the variables are not binary, the coefficient of the product term might 
not have such a simple interpretation. 
 
It is worthwhile to recall the reciprocal property of effect modification.  If diabetes 
modifies the effect of having heart failure before the index hospitalization, then having 
heart failure before the index hospitalization modifies the effect of diabetes.  To compute 
the modified odds ratio for the diabetes effect, we have to re-arrange the model 
differently, isolating a multiplier of the diabetes variable: 
 
Log odds (DEATH=1) = 0.0223 + 0.6854 x CHF + (0.3889 + 0.6436 x CHF) x DIABETES  
 

                             The Diabetes effect 
 

Modified OR = exp(0.3889 + 0.6436 x CHF) 
 
When CHF=0, the modified OR for the diabetes effect =exp(0.3889)=1.48 
When CHF=1, the modified OR for the diabetes effect=exp(0.3889 + 0.6436 x 1)=2.81 
 
The magnitude of the heterogeneity of these two effects of diabetes is identical to the 
magnitude of the heterogeneity of the CHF effect:  2.81/1.48=1.9.  The diabetes effect on 
death is almost twice as strong in the presence of a previous diagnosis of heart failure than 
in its absence.  Again, in this special case of two binary variables, we may also get that ratio 
measure of heterogeneity by exponentiating the coefficient of the interaction term: 
exp(0.6436)=1.9. 
 
Back to the modified effect of heart failure.  Let's write the model again—in notation: 
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Log odds (DEATH=1) = β0 + β1 DIABETES + (β2 + β3 DIABETES) CHF   
 
If we wish to compute confidence intervals for two modified odds ratios, we need two 
standard errors: SE(β2) for the effect of heart failure in non-diabetics and SE(β2 + β3) for 
the same effect in diabetics.  SE(β2) is available on the output: it is the standard error of 
the coefficient of CHF (0.1607).  The other standard error requires variance arithmetic, 
and cannot be computed from the available output.  Nonetheless, the SAS code below 
generates exactly the output we would like to see, namely, two CHF coefficients (one in 
non-diabetics and another in diabetics) and their standard errors.  Ignore the intercept 
and the coefficient of diabetes. 
 
 
PROC LOGISTIC DESCENDING; 
 CLASS diabetes; 
 MODEL death = diabetes chf(diabetes); 
run; 
 
                            Analysis of Maximum Likelihood Estimates 
 
                                                 Standard        
            Parameter          DF    Estimate       Error    
 
            Intercept           1      0.2168      
            DIABETES      0     1     -0.1945      0.1004       
            CHF(DIABETES) 0     1      0.6854      0.1607       
            CHF(DIABETES) 1     1      1.3290      0.2614      
 
 
In non diabetics, the modified OR=exp(0.6854)=1.98 
95% CI: exp(0.6854 + 1.96x0.1607) = [1.45, 2.72] 
 
In diabetes, the modified OR=exp(1.329)=3.78 
95% CI: exp(1.329 + 1.96x0.2614) = [2.26, 6.30] 
 
Flip back to the output from tabular analysis.  Both methods have produced the same 
results: the same points estimates and the same confidence limits. 
 
 
Diabetes modifies the effect of ejection fraction (categorical) 
 
We turn next to ejection fraction, and specifically to its categorical version: good, low, or 
very low.  Tabular analysis (below) show expected results: the frequency of death 
increased with worsening of ejection fraction.   
 
 
PROC FREQ; 
TABLES ef_cat*death/NOCOL NOPERCENT; 
run; 
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                                  The FREQ Procedure 
 
                                     Table of EF_CAT by DEATH 
 
                               EF_CAT 
                                         DEATH(Vital status) 
 
                               Frequency‚ 
                               Row Pct  ‚dead    ‚alive   ‚  Total 
                               ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
                               good     ‚    148 ‚    118 ‚    266 
                                        ‚  55.64 ‚  44.36 ‚   REF 
                               ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
                               low      ‚    343 ‚    184 ‚    527 
                                        ‚  65.09 ‚  34.91 ‚   OR=1.49 
                               ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
                               very low ‚    154 ‚     64 ‚    218 
                                        ‚  70.64 ‚  29.36 ‚   OR=1.92 
                               ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
                               Total         645      366     1011 
 
 
Does diabetes modify that effect, too?  
 
Again, stratified analysis should help to answer the question.   
 
 
PROC FREQ; 
TABLES diabetes*ef_cat*death/NOCOL NOPERCENT RELRISK; 
run; 
 
 
                                        The FREQ Procedure 
 
                                    Table 1 of EF_CAT by DEATH 
                                    Controlling for DIABETES=0 
 
                               EF_CAT 
                                         DEATH(Vital status) 
 
                               Frequency‚ 
                               Row Pct  ‚dead    ‚alive   ‚  Total 
                               ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
                               good     ‚     94 ‚     86 ‚    180 
                                        ‚  52.22 ‚  47.78 ‚    Reference 
                               ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
                               low      ‚    189 ‚    144 ‚    333 
                                        ‚  56.76 ‚  43.24 ‚    OR=1.20 
                               ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
                               very low ‚    105 ‚     49 ‚    154 
                                        ‚  68.18 ‚  31.82 ‚    OR=1.96 
                               ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
                               Total         388      279      667 
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                                    Table 2 of EF_CAT by DEATH 
                                    Controlling for DIABETES=1 
 
                               EF_CAT 
                                         DEATH(Vital status) 
 
                               Frequency‚ 
                               Row Pct  ‚dead    ‚alive   ‚  Total 
                               ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
                               good     ‚     54 ‚     32 ‚     86 
                                        ‚  62.79 ‚  37.21 ‚   Reference 
                               ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
                               low      ‚    154 ‚     40 ‚    194 
                                        ‚  79.38 ‚  20.62 ‚   OR=2.28 
                               ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
                               very low ‚     49 ‚     15 ‚     64 
                                        ‚  76.56 ‚  23.44 ‚   OR=1.94 
                               ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
                               Total         257       87      344 
 
 
 
Focusing first on the effect of low ejection fraction (versus normal), we see a stronger, 
harmful effect in diabetics (2.28) than in non-diabetics (1.20).  In contrast, the estimated 
odds ratio for very low ejection fraction (vs. normal) is almost identical in the two strata: 
1.94 vs. 1.96.  How come? 
 
When ejection fraction is very low, it might not matter anymore whether diabetes is 
present in the background.  That may be the case, of course, but the critical mind might 
question the credibility of the number 1.94.  That estimated effect of very low ejection 
fraction was derived from the smallest group (N=64 patients) and was based on the 
smallest number of deaths (49 deaths).  Moreover, the estimated odds ratio of 1.94 
contradicts the expected monotonicity of the dose-response function in diabetics.  It is 
smaller than the estimated effect of low ejection fraction, which was computed from a 
larger sample.  As always, every observation is compatible with more than one theory 
(Chapter 4).  
 
Logistic regression can easily replicate these tabular analyses.  To do so, we may create two 
dummy variables for the three levels of ejection fraction in a data step, or request SAS to 
create those for us by introducing the variable EF_CAT in the class statement.   I used the 
options PARAM=REF REF=FIRST to ensure that "good ejection fraction" will serve as the 
reference category. 
 
PROC LOGISTIC DESCENDING; 
 CLASS ef_cat/PARAM=REF REF=FIRST; 
 MODEL death = ef_cat; 
run; 
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                                      The LOGISTIC Procedure 
                                        Model Information 
 
          Response Variable             DEATH                Vital status 
          Number of Response Levels     2 
          Model                         binary logit 
 
                             Number of Observations Used        1011 
 
 
                                         Response Profile 
 
                                  Ordered                   Total 
                                    Value     DEATH     Frequency 
 
                                        1     dead            645 
                                        2     alive           366 
 
                               Probability modeled is DEATH='dead'. 
 
                                     Class Level Information 
 
                                                          Design 
                                Class      Value        Variables 
 
                                EF_CAT     good          0      0 
                                           low           1      0 
                                           very low      0      1 
 
 
                                     Model Convergence Status 
 
                          Convergence criterion (GCONV=1E-8) satisfied. 
 
                             Analysis of Maximum Likelihood Estimates 
 
                                                   Standard        
           Parameter             DF    Estimate       Error     
 
           Intercept              1      0.2265      
           EF_CAT    low          1      0.3963      0.1536        
           EF_CAT    very low     1      0.6515      0.1933     
 
 
                                      Odds Ratio Estimates 
 
                                                 Point          95% Wald 
                   Effect                     Estimate      Confidence Limits 
 
                   EF_CAT low      vs good       1.486       1.100       2.008 
                   EF_CAT very low vs good       1.918       1.314       2.802 
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Notice the dummy coding in the section "design variables".  Each of the two columns 
corresponds to a dummy variable, but they were not named there.  Later on, these 
dummy variables carry long, identifying names under the heading "Parameter": one is 
called "EF_CAT low" and the other is called "EF_CAT very low".  The output shows the 
odds ratios, and even states the reference category (vs good).  Both point estimates are 
identical to those computed by tabular analysis. 
 
Turning next to modeling effect modification by diabetes.  Again, we could create two 
dummy variables to represent the three categories of ejection fraction, and add two 
product terms.  Alternatively, SAS will create the interaction terms for us if we introduce 
the variables in the class statement. 
 
 
PROC LOGISTIC DESCENDING; 
 CLASS diabetes ef_cat/PARAM=REF REF=FIRST; 
 MODEL death = diabetes ef_cat diabetes*ef_cat; 
run; 
 
                            Analysis of Maximum Likelihood Estimates 
 
                                                          Standard           
   Parameter                            DF    Estimate       Error     
 
   Intercept                             1      0.0889        
   DIABETES        1                     1      0.4343      0.2684       
   EF_CAT          low                   1      0.1830      0.1857     
   EF_CAT          very low              1      0.6732      0.2285      
   DIABETES*EF_CAT 1        low          1      0.6418      0.3402       
   DIABETES*EF_CAT 1        very low     1     -0.0127      0.4348    
 
To write the regression equation, let's shorten the lengthy names of the dummy variables 
and the interaction terms 
 
Log odds (DEATH=1) = 0.0889 + 0.4343 x DIABETES + 0.183 x LOW + 0.6732 x VERY LOW +        
                                       0.6418 x DIABETES x LOW – 0.0127 x DIABETES x VERY LOW 
 
After re-arrangement, we can easily identify the effects of interest, shown in parentheses.  
 
Log odds (DEATH=1) =   0.0889 + 0.4343 x DIABETES +  

(0.1830 + 0.6418 x DIABETES) x LOW +  
(0.6732 – 0.0127 x DIABETES) x VERY LOW 

 
 
When diabetes is absent (DIABETES=0), 
Modified OR (low vs. normal) = exp(0.183)=1.20 
Modified OR (very low vs. normal) = exp(0.6732)=1.96 
 
When diabetes is present (DIABETES=1), 
Modified OR (low vs. normal) = exp(0.183 + 0.6418)= exp(0.8248)= 2.28 
Modified OR (very low vs. normal) = exp(0.6732 – 0.0127)= exp(0.6605)=1.94 
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Compare these results to those computed by tabular analysis. They are identical. 
 
Again, alternative SAS code (below) generates exactly the output we would like to see, 
namely, a pair of coefficients (for LOW and VERY LOW) in non-diabetics and another pair 
in diabetics, as well as four standard errors.  Ignore the intercept and the coefficient of 
diabetes. 
 
 
PROC LOGISTIC DESCENDING; 
 CLASS diabetes ef_cat/PARAM=REF REF=FIRST; 
 MODEL death = diabetes ef_cat(diabetes); 
run; 
 
 
                                     Class Level Information 
 
                                                           Design 
                               Class        Value        Variables 
 
                               DIABETES     0             0 
                                            1             1 
 
                               EF_CAT       good          0      0 
                                            low           1      0 
                                            very low      0      1 
 
                            Analysis of Maximum Likelihood Estimates 
 
                                                       Standard        
      Parameter                      DF    Estimate       Error     
 
      Intercept                       1      0.0889       
      DIABETES         1              1      0.4343      0.2684       
      EF_CAT(DIABETES) low      0     1      0.1830      0.1857       
      EF_CAT(DIABETES) very low 0     1      0.6732      0.2285       
      EF_CAT(DIABETES) low      1     1      0.8248      0.2851       
      EF_CAT(DIABETES) very low 1     1      0.6605      0.3699    
 
The coefficients in bold print are identical to those we calculated by hand from the 
previous output that contained interaction terms. 
 
The nature of effect modification may be grasped better, if we display the two dose-
response functions for the effect of ejection fraction on death: one in diabetics and 
another in non-diabetic.  Each of these functions is, of course, step-like.  To display them, 
we start with the interaction model 
 
Log odds (DEATH=1) =   0.0889 + 0.4343 x DIABETES +  

(0.1830 + 0.6418 x DIABETES) x LOW +  
(0.6732 – 0.0127 x DIABETES) x VERY LOW 
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And write the model separately by diabetes status.  In non-diabetics (DIABETES=0), the 
regression equation is reduced to 
 

Log odds (DEATH=1) =   0.0889 + 0.1830 x LOW + 0.6732 x VERY LOW 
 
Whereas in diabetics (DIABETES=1), the regression is reduced to 
 

Log odds (DEATH=1) =   0.5232 + 0.8248 x LOW + 0.6605 x VERY LOW 
 
Using these equations, we can compute the log-odds of death for each ejection fraction 
category, in diabetics and non-diabetics (Table 13–2).  
 
       Table 13–2.  Log odds of death, by ejection fraction category and diabetes status  

 
Ejection fraction 
category 

Values of dummy 
variables 

Log odds (death) 

  Non-diabetics Diabetics 
Good (>50%) LOW = 0;   VERY LOW=0 0.0889  0.5232 
Low (25%-50%) LOW = 1;   VERY LOW=0 0.2719 1.3480 
Very low (<25%) LOW = 0;   VERY LOW=1 0.7621 1.1837 

 
Finally, we display the two step functions in a single graph (Figure 13–1).  As expected, 
the log odds of death usually increase as we move from right to left on the X-axis, that is, 
when ejection fraction decreases.  To interpret the graphs more quantitatively, we should 
recall that each vertical distance between two horizontal lines is a difference between two 
log-odds, or log odds ratio.  Low ejection fraction (versus good ejection fraction) has a 
stronger effect on death in diabetics than in non-diabetics, which may be inferred by 
comparing the respective vertical distances.  In contrast, the vertical distance between very 
low ejection fraction and good ejection fraction is similar in the two groups.  The 
reciprocal property of effect modification is evident, too: the effect of diabetes is strongest 
in patients with low ejection fraction (middle vertical distance), but seems almost 
identical in patients with very low ejection fraction and in patients with good ejection 
fraction. 
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Figure 13–1.  Two dose-response functions for the effect of ejection fraction 
on death: in diabetics (solid line) and in non-diabetics (dashed line) 
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Diabetes modifies the effect of ejection fraction (continuous) 
 
Although linearity on the log scale is far from apparent, especially in diabetics, we will 
examine an interaction model with ejection fraction in its original, continuous form. 

 
PROC LOGISTIC DESCENDING; 
 MODEL death = diabetes ef diabetes*ef; 
run; 
 
 
                            Analysis of Maximum Likelihood Estimates 
 
                                               Standard          
              Parameter      DF    Estimate       Error     
 
              Intercept       1      0.8093      0.1962       
              DIABETES        1      1.0926      0.3954        
              EF              1     -0.0128     0.00477      
              DIABETES*EF     1    -0.00889     0.00952       
 
The regression equation is therefore  
Log odds (DEATH=1) = 

= 0.8093 + 1.0926 x DIABETES – 0.0128 x EF – 0.00889 x DIABETES x EF  
 
Following re-organization, we get 
 
Log odds (DEATH=1) = 0.8093 + 1.0926 x DIABETES + (–0.0128 – 0.00889 x DIABETES) x EF  
 

                     The ejection fraction effect 
 
According to this model, the effect of ejection fraction is a function of diabetes status.  
The log odds of death changes by "–0.0128 – 0.00889 x DIABETES” per 1 percentage point 
increment in ejection fraction.  If we are interested in the effect of declining ejection 
fraction, we just have to reverse the sign.  The log odds of death changes by "0.0128 + 
0.00889 x DIABETES” per 1 percentage point decrement in ejection fraction.  Recall that a 
change in the log-odds means log odds ratio, so the term "0.0128 + 0.00889 x DIABETES” is 
also a term for the modified odds ratio per 1 percentage point decrement in ejection 
fraction.  A more meaningful estimate may be computed for a decrement of 10 
percentage points.  For example: 
 
In non diabetics, the modified OR=exp(0.0128x10)=1.13 
In diabetes, the modified OR=exp([0.0128+0.0089]x10)= exp(0.0217x10)= 1.24 
 
Stratum-specific estimates, and their confidence limits may also be generated by 
alternative SAS code (below). 
 
PROC LOGISTIC DESCENDING; 
 CLASS diabetes; 
 MODEL death = diabetes ef(diabetes); 
run; 
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                                     Class Level Information 
                                                         
                                 Class        Value     
 
                                 DIABETES     0                 
                                              1                
 
                             Analysis of Maximum Likelihood Estimates 
 
                                                 Standard          
             Parameter         DF    Estimate       Error     
 
             Intercept          1      1.3556             
             DIABETES     0     1     -0.5463      0.1977        
             EF(DIABETES) 0     1     -0.0128     0.00477        
             EF(DIABETES) 1     1     -0.0217     0.00824      
 
Again, recall that the negative coefficient estimate log odds ratio per 1 percentage point 
increment in ejection fraction; larger ejection fraction decreases the log odds of death. 
The effect of worsening ejection fraction may be computed by reversing the negative sign: 
smaller ejection fraction increases the log odds of death.  Starting with the interaction 
model, we can easily write the two dose-response functions. 
 
Log odds (DEATH=1) = 0.8093 + 1.0926 x DIABETES + (–0.0128 – 0.00889 x DIABETES) x EF  
 
In diabetics:  Log odds (DEATH=1) = 1.9019 – 0.0217 x EF  
In non-diabetics:  Log odds (DEATH=1) = 0.8093 – 0.0128 x EF  
 
The two lines are displayed in Figure 13–2.  When ejection fraction decreases (moving 
from right to left on the X-axis), the log odds of death increases more steeply in diabetics 
than in non-diabetics. 
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Figure 13–2.  Two dose-response functions for the effect of ejection 
fraction on death: in diabetics (solid line) and in non-diabetics (dashed 
line) 
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Complexity need not end here.  Suppose we entertain modification of a quadratic dose-
response function.  In other words, we assume that the relation of ejection fraction to the 
log-odds of death is curvilinear, but the exact shape differs between diabetics and non-
diabetics.  The model will contain the variables DIABETES, EF, and EF2 and two product 
terms: DIABETES*EF and DIABETES*EF2. 
 
PROC LOGISTIC DESCENDING; 
 MODEL death = diabetes ef ef*ef diabetes*ef diabetes*ef*ef; 
run; 
 
     
                             Analysis of Maximum Likelihood Estimates 
 
                                                 Standard         
             Parameter         DF    Estimate       Error     
 
             Intercept          1      1.5741      
             DIABETES           1      0.2125      0.8930        
             EF                 1     -0.0578      0.0227        
             EF*EF              1    0.000550    0.000271       
             DIABETES*EF        1      0.0424      0.0456       
             DIABETES*EF*EF     1    -0.00062    0.000532       
 
 
Log odds (DEATH=1) = 

= 1.5741 + 0.2125 x DIABETES – 0.0578 x EF + 0.00055 x EF2 + 0.0424 x 
DIABETES x EF – 0.00062 x DIABETES x EF2

The two dose-response functions are reduced to the following: 
 
In non-diabetics (DIABETES=0):  

Log odds (DEATH=1) = 1.5741 – 0.0578 x EF + 0.00055 x EF2

 
In diabetics (DIABETES=1): 

Log odds (DEATH=1) = 1.7866 – 0.0154 x EF – 0.00007 x EF2

 
Almost identical results may be obtained by stratified regression (below).  Recall, however, 
that stratified regression and an interaction model may generate very different results 
when other covariates are included in the model—for example, if we had to remove 
confounding by age and sex.  Omitting confounders, we get the same key coefficients by 
stratified regression. 
 
 
PROC SORT; BY diabetes; 
PROC LOGISTIC DESCENDING; 
 MODEL death = ef ef*ef; 
 BY diabetes; 
run; 
 
 

 15



Last revised Feb 9, 2009 

-----------------------------------------DIABETES=0------------------------ 
 
                                      The LOGISTIC Procedure 
 
                             Number of Observations Used         667 
 
                                         Response Profile 
 
                                  Ordered                   Total 
                                    Value     DEATH     Frequency 
 
                                        1     dead            388 
                                        2     alive           279 
 
                               Probability modeled is DEATH='dead'. 
 
                            Analysis of Maximum Likelihood Estimates 
 
                                              Standard         
               Parameter    DF    Estimate       Error     
 
               Intercept     1      1.5737       
               EF            1     -0.0578      0.0227     
               EF*EF         1    0.000550    0.000271        
 
 
-----------------------------------------DIABETES=1----------------------- 
 
                                      The LOGISTIC Procedure 
 
  
                             Number of Observations Used         344 
 
                                         Response Profile 
 
                                  Ordered                   Total 
                                    Value     DEATH     Frequency 
 
                                        1     dead            257 
                                        2     alive            87 
 
                               Probability modeled is DEATH='dead'. 
 
                            Analysis of Maximum Likelihood Estimates 
 
                                              Standard      
               Parameter    DF    Estimate       Error    
 
               Intercept     1      1.7866       
               EF            1     -0.0154      0.0395      
               EF*EF         1    -0.00007    0.000458        
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Figure 13–3 depicts the two dose-response functions.  Some departure from linearity is 
observed in non-diabetic patients who seem to "tolerate" some decline from normal 
ejection fraction without substantial increase in their log-odds of death.  The dose-
response function for diabetics seems fairly linear within the observed range of ejection 
fraction.  As you can see, reconciling the inference from different dose-response models 
may not be easy.  Even simple scientific inference may not be simple. 
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Figure 13–3. Two dose-response functions for the effect of ejection fraction 
on death: in diabetics (solid line) and in non-diabetics (dashed line) 

 
To sum up¸ estimating the modified odds ratio is not conceptually different from 
estimating the modified mean difference (Chapter 10) and is virtually identical to 
estimating the modified geometric mean ratio (Chapter 11).  We just have to remember 
the crucial, extra step of exponentiation. 
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