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Chapter 12 
Estimating the Odds Ratio 

 
Overweight and sleep apnea 
 
Many otherwise healthy people do not breathe normally when they sleep, and most of 
them are not even aware that something goes wrong every night.  Instead of breathing 
peacefully and orderly they struggle breathing through collapsed upper airways, 
sometimes unable to take a breath at all (apnea) and sometimes taking only a shallow 
breath (hypopnea).  This common disorder has several names— apnea-hypopnea 
syndrome, sleep-disordered breathing, obstructive sleep apnea—depending on the 
frequency and severity of the abnormality.  For pedagogical reasons, I will ignore the 
heterogeneity; use the label "sleep apnea"; and treat the condition as a binary variable 
(present, absent) even though the pathology is measured on a continuous scale: from 
infrequent hypopneas to near-chocking every minute.  Keep in mind, however, that 
dichotomizing a continuous effect is almost always a bad idea in causal inquiry—as I 
argued at the end of chapter 9.   

When the effect takes on a binary form and the data set does not contain information 
on the person-time at risk, we cannot compute rates and have to rely on probabilities or 
odds and their derived measures of associations.  In multi-variable analysis, the linear 
probability model may be used to estimate conditional probability differences or modified 
probability differences (chapters 9 and 10).  Nonetheless, for reasons that were explained 
in chapter 3, we should always prefer to estimate ratio measures of effect—the probability 
ratio or the odds ratio.  In this chapter we will estimate various odds ratios for sleep 
apnea, using data from a cross-sectional sample of about 1,000 people.  Methods to 
estimate the probability ratio will be the topic of chapter 16. 

Only a few important causes of sleep apnea have been identified so far.  Of these, 
WEIGHT will draw our attention here as the exposure variable.  Again, for pedagogical 
reasons, I first dichotomized that continuous variable at an arbitrary cutoff value of 100kg: 
anyone in the sample whose weight exceeded 100kg was labeled "overweight".  In a 
second approach, I categorized weight into four groups—applying the cutoff points of 
70kg, 80kg, and 90kg—and created an ordinal WTGROUP variable (1,2,3,4) as well as 
three dummy variables called WEIGHT2, WEIGHT3, and WEIGHT4.  Other variables of 
interest, which will play the role of confounders or effect modifiers, are sex and age 
(dichotomized at 60 years).  Tables12–1 and 12–2 show my coding rules.  Please refer 
back to these tables later, when you need to interpret some of the printout. 

 
 

 Table 12–1. Variables and their coded values 
Variable Name Variable Values* 
WEIGHT 50-143 kg  (continuous)  
OVERWEIGHT 1 = overweight 0 or 2 = normal weight 
APNEA 1 = sleep apnea 0 or 2 = no sleep apnea 
SEX 1 = male 0 or 2 = female 
AGEBIN (age, BINary) 1 = "old" (age>60) 0 or 2 = "young" (age≤60) 

             * For SAS-related technical reasons, I used the value of 2 in tabular analysis and 
                the value of 0 in regression models          
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        Table 12–2.  Four categories of weight and their coding scheme 
Weight 
Category (kg) 

WEIGHT2 WEIGHT3 WEIGHT4 WTGROUP 

 < 70 0 0 0 1 
70 – 79 1 0 0 2 
80 – 89 0 1 0 3 
 ≥ 90   0 0 1 4 

 
 
Tabular methods 
 
Two methods are used to estimate odds ratios:  tabular analysis, also known as 
contingency tables or cross-classification tables, and logistic regression, a commonly used 
regression model.  We will start with the simpler method: tables. 

 
SAS code 
 
PROC FREQ;  
 TABLES overweight*apnea; 
run; 
 
PROC FREQ (short for frequency) is a SAS procedure for displaying a cross-classification 
table of the "multiplied" variables, written to the right of the TABLES statement.  The 
variable on the left (overweight) will be listed as the row variable.   
 
Selected SAS printout 
 
                    The FREQ Procedure 
 
                         Table of overweight by apnea 
 
                      overweight     apnea 
 
                      Frequency‚ 
                      Percent  ‚ 
                      Row Pct  ‚ 
                      Col Pct  ‚       1‚       2‚  Total 
                      ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
                             1 ‚     61 ‚     95 ‚    156 
                               ‚   5.68 ‚   8.85 ‚  14.53 
                               ‚  39.10 ‚  60.90 ‚ 
                               ‚  36.75 ‚  10.46 ‚ 
                      ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
                             2 ‚    105 ‚    813 ‚    918 
                               ‚   9.78 ‚  75.70 ‚  85.47 
                               ‚  11.44 ‚  88.56 ‚ 
                               ‚  63.25 ‚  89.54 ‚ 
                      ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
                      Total         166      908     1074 
                                  15.46    84.54   100.00 
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The printout contains not only counts per cell and per margin, but also row percentages, 
column percentages, and percentages of the total sample of 1,074 observations.  Because 
our causal theory dictates the order OVERWEIGHT APNEA, column percentages (the 
distribution of OVERWEIGHT in each category of APNEA) and percentages of the total 
sample are irrelevant, and will be suppressed from now on.   

To compute the marginal ("crude") odds ratio for sleep apnea, divide the odds of 
sleep apnea in overweight people (61/95) by the odds of sleep apnea in their normal-
weight counterparts (105/813).   
 
ORMARGINAL = (61/95) / (105/813) = 0.6421 / 0.1292 = 4.97 
 
Many introductory courses and textbooks teach you to compute the odds ratio from a 2x2 
table by diagonal multiplication of the cells (61x813;  95x105) followed by division of the 
two products: OR = (61x813) / (95x105) = 4.97.  I advise you to never use that method.  
First, you can't see any ratio of two odds in that formula, so you will be following technical 
computation instead of thinking about two odds of the outcome and dividing them.  
Second and more important: if the four cells are not organized in the order above 
(overweight as the row variable; overweight and apnea in the left upper cell), diagonal 
multiplication and division might lead you to compute the odds ratio for not having sleep 
apnea. 

As we saw in chapter 3, the odds are defined as the ratio of two complementary 
probabilities (or percentages): Odd (sleep apnea)=Pr (sleep apnea)/Pr (no sleep apnea).  
Therefore, the marginal odds ratio may also be computed from the table's four row 
percentages: 
 
ORMARGINAL = (39.10/60.90) / (11.44/88.56) = 4.97 
 
If you use the code below, adding CMH as an option after the slash, SAS will compute the 
odds ratio (and a lot more, which I deleted).   
 
PROC FREQ;  
 TABLES overweight*apnea/NOCOL NOPERCENT CMH; 
run; 
 
Selected SAS printout 
 
                              The FREQ Procedure 
                         Table of overweight by apnea 
 
                      overweight     apnea 
 
                      Frequency‚ 
                      Row Pct  ‚       1‚       2‚  Total 
                      ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
                             1 ‚     61 ‚     95 ‚    156 
                               ‚  39.10 ‚  60.90 ‚ 
                      ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
                             2 ‚    105 ‚    813 ‚    918 
                               ‚  11.44 ‚  88.56 ‚ 
                      ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
                      Total         166      908     1074 
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                  Summary Statistics for overweight by apnea 
 
               Estimates of the Common Relative Risk (Row1/Row2) 
 
   Type of Study     Method                  Value     95% Confidence Limits 
   ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
   Case-Control      Mantel-Haenszel        4.9717       3.3985       7.2732 
     (Odds Ratio)     
 
Under the misnomer "Common Relative Risk" and to the right of the misnomer "Case-
Control", you find the odds ratio of interest, identical to what we have computed (4.97).  
In the context of our example, that number is simply the odds ratio for prevalent sleep 
apnea: the odds of prevalent sleep apnea in overweight people divided by the odds of 
prevalent sleep apnea in their normal-weight counterparts, as defined here.  Because the 
odds of prevalent disease are sometimes called the "prevalence odds" (to distinguish them 
from the odds of incident disease, which are called the "incidence odds"), the number 
4.97 may also be called the "prevalence odds ratio".  
 
 
The standard error of the (log) odds ratio 
 
Assuming that confounders are lurking in the background, the estimator behind 4.97 is 
biased and, therefore, the standard error of that estimator is of no interest.  Nor do we 
learn anything useful from any standard error-based computation, such as a confidence 
interval or a confidence limit ratio (chapter 8).  Nonetheless, for pedagogical reasons let’s 
assume that 4.97 emerged from an unbiased estimator and follow the method by which 
SAS has calculated the standard error and the 95% confidence interval. 

You have already seen (chapter 8) that the sampling (or replication) distribution of 
ratio measures of effect is not bell-shaped, so the standard error of that distribution does 
not describe well the spread of point estimates around the expected value.  You may also 
recall that the problem was solved by switching to the log (OR) scale and focusing on the 
bell-shaped distribution of the log (OR). (I will use the natural logarithm throughout, but 
keep the symbol "log" rather than "ln".)  What, then, is the standard error of the log 
(OR)?   Or, what is the variance of the log (OR)? 
 
Using the notation of Table 12–3, the following formula is typically used for that variance: 
 

dcba
ORVar 1111)][log( +++=      

 
The standard error is, of course, the square root of this expression. 
 

⎟
⎠
⎞+++⎜

⎝
⎛=

dcba
ORSE 1111)][log(  

 
Notice that the standard error is a function of the counts in the four cells, so it's crucial to 
have "enough" observations in each cell.  In fact, sparse data in just one cell could 
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markedly inflate the variance even if others contain large counts.  For example, if one cell 
contains just one observation (say, a=1), the inverse of that cell count is 1/1=1 and the 
variance would be at least 1, no matter how large are the counts in the other three cells. 
 

Table 12–3.  General notation of the 2x2 table 
 
                      overweight     apnea 
 
                      Frequency‚ 
                      Row Pct  ‚    1   ‚    2   ‚   
                      ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
                             1 ‚    a   ‚    b   ‚     
                               ‚        ‚        ‚ 
                      ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
                             2 ‚    c   ‚    d   ‚     
                               ‚        ‚        ‚ 
                      ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ 
                                                 ‚ T             
 
Plugging in the values from the SAS output for obesity and sleep apnea, we get: 
 

⎟
⎠
⎞+++⎜

⎝
⎛=

813
1

105
1

95
1

61
1)][log(ORSE  = 0.194 

 
Using the standard error, we can compute three kinds of 95% confidence limits: 
 
CI for the log(OR): log(4.97)+1.96 x 0.194 = 1.6034 ± 0.3802 =  [1.2232, 1.9836] 
 
CI for the OR:  [exp(1.2232), exp(1.9836)] = [3.4, 7.3]    
 
Confidence limit ratio (CLR) for the OR:  7.3/3.4 = 2.1 
 
The 95% confidence limits for the OR (3.4, 7.3) match the numbers on the SAS output 
(3.3985, 7.2732), after rounding.  
 
 
Deconfounding the odds ratio 
 
On the assumptions of the naïve diagram below (Figure 12–1), the marginal association 
between overweight status and sleep apnea status contains not only the effect of weight 
but also confounding by age.  As was explained in chapter 7, you can deconfound the 
odds ratio by following three steps: 
 
1. Stratify the sample on age (a binary variable in this example) 
2. Estimate the odds ratio for the effect of overweight on sleep apnea in each age group 
3. On the assumption of no effect modification, compute a weighted average of the two 
estimates 
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OVERWEIGHT SLEEP APNEA 

AGE

 
 
Figure 12–1.  A causal diagram relating age, overweight, and sleep apnea. 
 
To generate stratified tables by SAS, we simply add the stratification variable to the 
TABLES statement as the left-most variable.  SAS will display a table for each stratum and 
even a weighted average of the odds ratio and its confidence interval.  And in general: 
The SAS statement TABLES var1*var2*var3*...*overweight*apnea will replicate the 
cross-classification of OVERWEIGHT and APNEA in all of the possible combinations of the 
preceding variables. 
 
 
 
SAS code 
 
PROC FREQ;  
 TABLES agebin*overweight*apnea/NOCOL NOPERCENT CMH; 
run; 
 
 
Selected SAS printout 
 
 
 
                              The FREQ Procedure 
 
                        Table 1 of overweight by apnea 
                           Controlling for agebin=1 
 
                      overweight     apnea 
 
                      Frequency‚ 
                      Row Pct  ‚       1‚       2‚  Total 
                      ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
                             1 ‚     36 ‚     42 ‚     78 
                               ‚  46.15 ‚  53.85 ‚ 
                      ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ     OR=(36/42)/(71/424)=5.12 
                             2 ‚     71 ‚    424 ‚    495 
                               ‚  14.34 ‚  85.66 ‚ 
                      ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
                      Total         107      466      573 
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                        Table 2 of overweight by apnea 
                           Controlling for agebin=2 
 
                      overweight     apnea 
 
                      Frequency‚ 
                      Row Pct  ‚       1‚       2‚  Total 
                      ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
                             1 ‚     25 ‚     53 ‚     78 
                               ‚  32.05 ‚  67.95 ‚ 
                      ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ     OR=(25/53)/(34/389)=5.40  
                             2 ‚     34 ‚    389 ‚    423 
                               ‚   8.04 ‚  91.96 ‚ 
                      ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
                      Total          59      442      501 
 
                  Summary Statistics for overweight by apnea 
                            Controlling for agebin 
 
               Estimates of the Common Relative Risk (Row1/Row2) 
 
   Type of Study     Method                  Value     95% Confidence Limits 
   ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
   Case-Control      Mantel-Haenszel        5.2324       3.5541       7.7032 
     (Odds Ratio)    Logit                  5.2360       3.5572       7.7070 
 
SAS does not compute the stratum-specific odds ratios, so I added the computation to the 
right of each table.  Since the stratum-specific odds ratios are fairly similar, we don’t have 
to worry about effect modification by age.  Their weighted average is shown at the bottom 
of the printout under the heading "value".  We find two, albeit similar, estimates (5.2324 
and 5.2360) and, again, two similar 95% confidence limits.   
 
How are the estimates computed? 
 
Neither is a simple average, for reasons that will become clear shortly.  The estimate 
computed by the Mantel-Haenszel method (5.2324) is a weighted average of the age-
specific odds ratios: 
 

21

21 40.512.5
ww

wwOR HaenszelMantel +
+

=−  

 
whereas the estimate computed by the logit method (5.2360) is computed by first taking a 
weighted average of the log odds ratios  
 

21

21
log

)40.5log()12.5log()log(
ww

wwOR it +
+

=     

 
followed by exponentiation of the result to return to the odds ratio scale: 
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⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
+

=
21

21
log

)40.5log()12.5log(exp
ww

wwOR it  

 
What are those weights? 
 
On the assumption of homogeneity of the causal parameter across the strata of age, our 
weights should reflect the spread of the sampling distribution from which each estimate 
arose.  An estimate that arose from a tighter distribution should carry more weight.  
Because the standard error (or the variance) measures the spread of a sampling 
distribution, the inverse of the variance (1/variance) may be a good choice for our 
weights: the smaller the variance (of the age-specific estimator), the larger is the inverse of 
the variance and the greater is the weight we would assign to the estimate. 
 
 
The Mantel-Haenszel Method  
 
Historically, the Mantel-Haenszel method preceded the logit method, and the formula for 
the weight in that approach only approximates the inverse of the variance (when the odds 
ratio is not too far from 1…)  Using the layout and notation of Table 12–3, the weight (w) 
in the Mantel-Haenszel formula is "bc/T".  Therefore, 
 
For the old age group (AGEBIN=1):           w1 = 42 x 71 / 573 = 5.204 
For the young age group (AGEBIN=2):      w2 = 53 x 34 / 501 = 3.597 
 
There is no surprise here.  Examining the age-specific 2x2 tables for "old"(AGEBIN=1) and 
"young"(AGEBIN=2), we generally find larger counts in the table for "old" people.  More 
data means a tighter sampling distribution behind their odds ratio, which justifies a larger 
weight. 
  
After entering the two weights into the formula, the result matches the number on the 
printout: 
 

23.5
597.3204.5

597.340.5204.512.5
=

+
+

=−
xxOR HaenszelMantel  

 
To derive a general formula for ORMantel-Haenszel for any number of confounders and any 
number of strata, I displayed the data for the i-th stratum by adding the subscript "i", 
using generic terms for "exposure status" (exposed; unexposed) and "disease status" 
(diseased; disease-free).   The notation is shown in Table 12−4.  
 

Table 12−4.  General notation of the 2x2  
                     table for the i-th stratum                       

 Diseased Disease-free  
Exposed ai bi  

Unexposed ci di  
               Ti

                        ORi = (ai/bi)/(ci/di) 
                          wi = bici/Ti
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The weighted average of all ORi would be 
 

ORMantel-Haenszel = 
∑
∑

i

ii

w
wOR

= 
∑

∑
iii

iiiiiiii

Tcb
Tcbdcba

/
/()//()/( )

=
∑

∑
iii

iiiiiiii

Tcb
Tcbcbda

/
/()/( )

 

 

ORMantel-Haenszel = 
∑
∑

iii

iii

Tcb
Tda

/
/

      (Equation 12−1)  

 
If you compute ORMantel-Haenszel by hand, I suggest that you calculate each ORi and each wi, 
and then enter the numbers into the original formula of a weighted average rather than 
taking a shortcut via Equation 12−1.  (It is always a good idea to see the stratum-specific 
estimates and their relative weights.)  Like any estimator, ORMantel-Haenszel (actually, the log 
of it) carries along a standard error, but the formula requires heavy notation and is not 
shown here.   
 
 
 
 
The "logit" method 
 
In the "logit" method, we switch to the log scale and use the (inverse) of the variance of 
the log odds ratio as our weight.  As we saw earlier, that variance is the sum of the inverse 
of the cell's counts: 
 

 
dcba

ORVar 1111)][log( +++=  

 
So, the weight of the estimated OR from the i-th stratum is  
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+++==

iiii
ii dcba

ORVarw 1111/1)][log(/1  

 

For the old age group (AGEBIN=1):          699.14
424
1

71
1

42
1

36
1/11 =⎟

⎠
⎞

⎜
⎝
⎛ +++=w  

 

For the young age group (AGEBIN=2):     007.11
389
1

34
1

53
1

25
1/12 =⎟

⎠
⎞

⎜
⎝
⎛ +++=w  

 
And the weighted average of the log (OR) is 
 

656.1
007.11699.14

007.11)40.5log(699.14)12.5log()log( log =
+
+

=
xxOR it  
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Transforming back to the odds ratio scale: 
 

24.5656.1
log == eOR it  

 
Extension to any number of strata is straightforward, but there is no short version of the 
formula: 
 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

∑
∑

i

ii
it w

wOR
OR

)log(
explog      (Equation 12−2)  

 

where  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+++=

iiii
i dcba

w 1111/1 , as we saw earlier 

 
The standard error of log(ORlogit) is a function of the stratum-specific weights: 
 

∑
=

i
it

w
ORSE 1)][log( log  

 
* 

 
Notice that in our example the two methods used different numbers for the weights, but 
the relative weights themselves were similar.  Compare, for example, the ratio of the two 
Mantel-Haenszel weights (5.204/3.597=1.4) to the ratio of the "logit" weights 
(14.699/11.007=1.3).  They are similar.   

After conditioning on age, the odds ratio (5.2) is a little larger than the marginal 
value (4.97), implying weak negative confounding: the marginal association 
underestimated the (presumed) effect.  Theoretically, we might have expected to observe 
positive confounding (attenuation after conditioning on age) because age should have a 
positive association with both sleep apnea and weight.  In this sample, however, there was 
a weak inverse association between overweight and age, which has caused negative 
confounding. 

Again, if you wish to condition on several categorical confounders simultaneously, 
simply add the conditioning variables to the TABLES statement:  
 
TABLES var1*var2*var3*...*overweight*apnea/NOCOL NOPERCENT CMH; 
 
SAS will create a 2x2 table of "overweight x apnea" in all of the possible joint strata of the 
confounders, and compute a weighted average according to the two methods: Mantel-
Haenszel and logit.  The confounders don't have to be binary variables, but they must be 
categorical, of course. 

Keep in mind that the more variables you add, the thinner you stratify and the smaller 
is the amount of data in each stratum.  Eventually, our precious goal of deconfounding 
might succumb to the force of randomness, because the weighted average of too many 
low-weighted estimates may be an average of poor estimates.  Logistic regression, which 
will be presented later, offers a partial remedy to this problem and also opens the door to 
the modeling of continuous variables. 
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Dose-response analysis 
 
A binary OVERWEIGHT variable leaves no room for exploring the dose-response function 
whereas a continuous weight variable cannot be studied by tabular methods.  In between, 
we may learn more about the effect of weight on sleep apnea from categorization of 
weight into four groups, using the ordinal variable WTGROUP (Table 12–2).  A similar 
approach was described in chapter 9 when we explored the effect of age on blood 
pressure. 
 
SAS code 
 
PROC FREQ;  
 TABLES wtgroup*apnea/NOCOL NOPERCENT; 
run; 
 
Selected SAS printout 
 
 
                              The FREQ Procedure 
 
                           Table of WTGROUP by apnea 
 
                      WTGROUP     apnea 
 
                      Frequency‚ 
                      Row Pct  ‚       1‚       2‚  Total 
                      ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
                             1 ‚     10 ‚    251 ‚    261 
                               ‚   3.83 ‚  96.17 ‚  Reference 
                      ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
                             2 ‚     17 ‚    225 ‚    242 
                               ‚   7.02 ‚  92.98 ‚  OR = (17/225)/(10/251) =  1.90 
                      ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
                             3 ‚     32 ‚    214 ‚    246 
                               ‚  13.01 ‚  86.99 ‚  OR = (32/214)/(10/251) =  3.75 
                      ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
                             4 ‚    107 ‚    218 ‚    325 
                               ‚  32.92 ‚  67.08 ‚  OR =(107/218)/(10/251)=12.32 
                      ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
                      Total         166      908     1074 
 
SAS does not display odds ratios on the printout, so I added the estimates to the right of 
the 4x2 table.  Any category of WTGROUP may serve as the reference category, but the 
lowest (WTGROUP=1) should be a natural choice.  The estimates I computed also allow 
you to derive an odds ratio for any other causal contrast of interest, simply by dividing two 
of these numbers.  For example, the effect of WTGROUP=4 versus WTGROUP=2 on sleep 
apnea may be computed as 12.32 /1.90 = 6.5, because 
 
12.32/1.90 = [(107/218)/(10/251)] / [(17/225)/(10/251)] =(107/218)/ (17/225) = 6.5 
          
        Odds(apnea) Odds(apnea)  
        WTGROUP=4   WTGROUP=2 
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Displaying the dose-response function 
 
When the effect was a continuous variable, such as blood pressure, we explored the dose-
response relation by displaying the mean values of the dependent variable across the 
exposure categories—the so-called step function.  For example, in chapter 9 mean systolic 
blood pressure in four age groups was depicted as four horizontal lines, later connected 
by vertical lines to create a continuous graph (Figure 9–5.) 

When the effect resides in a binary variable, such as APNEA, the natural "response" is 
rate, probability or odds, so we may depict the odds of sleep apnea in each weight 
category as a horizontal line, analogous to mean blood pressure in each age category.  
Nonetheless, there is one important difference between a step function for the mean and 
a step function for the odds:  Whenever we choose to measure the effect on a ratio scale 
(here, odds ratio), the dose-response function should be displayed on a logarithmic scale, 
rather than on an arithmetic scale.  Alternatively, we may compute the log of the odds and 
display log values on an arithmetic scale.  The same rule applies to probability and rate, 
whenever ratios serve as their derived measures of effect. 

To understand why a log-scale graph should follow the computation of a ratio 
measure of effect, consider the following example:  Suppose that the odds of sleep apnea 
have doubled between adjacent categories of weight, such as 0.1, 0.2, 0.4, and 0.8 for the 
four ascending categories.  If these numbers were depicted as horizontal lines on an 
arithmetic scale, the vertical distance between adjacent lines would not correspond to the 
constant effect, which is an odds ratio of 2.  For instance, the effect of WTGROUP=4 versus 
WTGROUP=3 on sleep apnea (0.8–0.4=0.4) would seem twice as large as the effect of 
WTGROUP=3 versus WTGROUP=2 (0.4–0.2=0.2), even though these causal contrasts show 
an identical effect on a ratio scale (0.8/0.4 = 0.4/0.2 = 2).   By switching to the log scale, 
we prevent such a false visual impression because the difference between the logs of two 
numbers mirrors the ratio of the original numbers.  For example: 
 
(1)      log(0.8)–log(0.4) = log(0.4)–log(0.2) 
(2)              log(0.8/0.4) = log(0.4/0.2) 
(3)                     0.8/0.4  = 0.4/0.2 
 
The second equality is derived from the first by an arithmetic rule for logarithms, which 
you will find in the Appendix: log(a)–log(b) = log(a/b) 
 
If the odds ratios for adjacent categories are not identical, the log scale provides correct 
visual impression of a ratio-based, dose-response function.  To illustrate, I computed the 
"response" (odds and log-odds of sleep apnea) for each category of weight (Table 12−5) 
and depicted these numbers as a step function (Figure 12–2): the odds are displayed on a 
logarithmic Y-axis (left panel) whereas the log-odds are displayed on an arithmetic Y-axis 
(right panel).  As you see, both approaches led to the same graphical shape.  It is not 
entirely clear, however, how to draw a smooth line through this graph and whether a 
straight line would capture the true dose-response function behind our arbitrary 
categorization of weight.  Logistic regression will provide other means to address this 
issue. 
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       Table 12–5.  Odds and log odds of sleep apnea, by weight category  

Weight Category (kg) Odds (sleep apnea) Log odds (sleep apnea) 
< 70 10/251= 0.0398 –3.223 
70 – 79 17/225 =0.0755  –2.583 
80 – 89 32/214 =0.1495 –1.900 
 ≥ 90   107/218 =0.4908 –0.712 
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Figure 12–2.  Two methods to display a ratio-based, dose-response function for the effect 
of weight on sleep apnea: logarithmic scale (odds, left panel) and arithmetic scale (log-
odds, right panel). 

 
 
Logistic regression 
 
Just as linear regression allowed us to estimate the mean difference—whether marginal, 
conditional or modified (chapters 9 and 10) —logistic regression will allow us to estimate 
marginal, conditional and modified odds ratios.  The analogy gets even closer when we 
compare logistic regression to linear regression of log-transformed continuous variable 
(chapter 11).  In both models the dependent variable is the log of something and in both 
models the final product of interest is a ratio measure of effect: a geometric mean ratio 
(linear regression after log transformation) or an odds ratio (logistic regression). 

A simple logistic regression model for the marginal association between OVERWEIGHT 
(1=overweight; 0=normal weight) and APNEA (1=sleep apnea; 0=no sleep apnea) takes the 
following form: 
 
 Log odds (APNEA=1)  = β0 + β1 OVERWEIGHT 
 
To understand the meaning of the coefficient β1, compare the model above to the linear 
regression model below: 
 
  Mean Y   = β0 + β1 OVERWEIGHT 
 
In linear regression, β1 estimates the mean difference in Y for the causal contrast between 
overweight and normal weight.  In logistic regression, β1 estimates the difference in the 
log odds of sleep apnea for the same causal contrast.  Since the difference between the 
logs of two numbers may also be expressed as the log of their ratio, log(a)–
log(b)=log(a/b), the difference between two log odds of sleep apnea is also the log of the 
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odds ratio for sleep apnea:  β1 = log OR 
 
Therefore, the odds ratio for sleep apnea, contrasting overweight and normal weight, is 
computed by exponentiation of β1:  exp(β1) = OR 

We see again the analogy to linear regression of a log-transformed continuous variable 
(chapter 11) where the exponentiated coefficient delivered a ratio measure of effect.  In 
that model it was the geometric mean ratio; in logistic regression it is the odds ratio. 
 
Another way to derive the meaning of β1 is shown in Table 12–6. 
 
   Table 12–6.  Computing the effect of overweight (1=overweight; 0=normal weight) 
             on sleep apnea from a simple logistic regression model 

Causal assignments 
 

log odds (APNEA=1)   = β0 + β1 OVERWEIGHT 

OVERWEIGHT = 1 log odds (APNEA=1)   = β0 + β1 x 1 
OVERWEIGHT = 0 log odds (APNEA=1)   = β0 + β1 x 0 

 
Effect of 1 unit increment 

 

difference in log odds 
               or                   =        β1
log of the odds ratio                                              

 
In this approach, which mimics similar tables for the mean difference (chapters 9 and 
10), we compute two predicted log odds under two causal assignments and calculate the 
difference between them, which turns out to be β1.  Notice that the intercept in logistic 
regression, just as in linear regression, helps to predict the value of the dependent 
variable but does not deliver any knowledge about causal effects.  Estimating an effect and 
predicting the value of a dependent variable are different tasks. 
 
The equation    Log odds (APNEA=1)  = β0 + β1 OVERWEIGHT 
is my preferred expression of the logistic regression model, because the right hand side is 
a simple linear term and we can see the analogy to linear regression and to other 
regression models.  Nonetheless, there are three alternative equations, which may be 
easily derived from the equation above: 
 
(1)   Odds (APNEA=1)  =      exp (β0 + β1 OVERWEIGHT) 

 
 

        exp (β0 + β1 OVERWEIGHT) 
(2)   Pr (APNEA=1)   =  

          1 + exp (β0 + β1 OVERWEIGHT) 
 
 

                            1 
(3)   Pr (APNEA=1)   =  

          1 + exp [–(β0 + β1 OVERWEIGHT)] 
 
 
 
Expression (1) follows my preferred equation:  if "Log odds (A=1) = B", then 
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"Odd(A=1)=exp(B)".  Expression (2) follows the first because probability and odds are 
connected by the following equality (in simplified notation):  Pr = Odds/ (1 + Odds).   
Expression (3) is derived from the second after dividing the numerator and denominator 
by the numerator and reversing the order of the terms in the new denominator. 

Having understood the arithmetic principles of a simple logistic regression model, you 
might have realized that extensions to the multi-variable setting are analogous to what you 
have seen in linear regression.  In fact, the right hand side of every model we fit in 
chapters 9 and 10 may be exported into the right hand side of logistic regression—
including dummy variables, continuous variables, quadratic terms, confounders, and 
interaction terms.  Ample examples will follow, but the only difference would be the scale 
on which the effect is estimated.  Instead of estimating mean differences, the coefficients 
will be estimating log odds ratios.  And instead of estimating effect modification on the 
additive scale, we will be estimating effect modification on the multiplicative scale.  Again, 
the analogy would seem even closer if you recall the computation of various geometric 
mean ratios (chapter 11). 
 
 
The binomial likelihood function 
 
An equation such as “log odds (APNEA=1)= β0 + β1 OVERWEIGHT” from which we can 
compute the odds ratio does not help much—unless we find a method to estimate the 
coefficients from the data.  To explain the estimation method as simply as possible, let's 
pretend that our sample includes only 5 people, instead of 1,074, whose names are Jeff, 
John, Sandy, Sara, and Jack.  Each of these five people has contributed a value of 
OVERWEIGHT and a value of APNEA, and the relation between the two variables is 
summarized in Table 12–7.  In this small sample the odds ratio for sleep apnea is 
(2/1)/(1/1)=2, for the contrast between overweight and normal weight. 
 

Table 12–7.  Cross-classification of overweight and apnea in a  
                      small hypothetical sample (N=5) 

 
                                          

   apnea 
                     overweight        
                               ‚    1     ‚    0     ‚   
                      ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒˆ 
                             1 ‚    2     ‚    1     ‚     
                               ‚Jeff, John‚  Sandy   ‚ 
                      ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒˆ 
                             0 ‚    1     ‚    1     ‚     
                               ‚   Sara   ‚   Jack   ‚ 
                      ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒˆƒ 
                                               
                    
How can we estimate that number by fitting the logistic regression model  
"log odds (APNEA=1)= β0 + β1 OVERWEIGHT” ? 
 
Or in other words, how can we estimate β1, which is the log of the odds ratio? 
 
The process requires several steps, collectively called "maximum likelihood estimation", a 
fairly scary term, which need not intimidate anyone with knowledge of high school 

 15



Last revised Feb 9, 2009 

algebra and one simple rule of probability: the probability of observing a series of 
independent events is the product of the probability of observing each event in that series. 

In the first step, we construct a function called "likelihood" (often denoted by the 
letter L), which corresponds to the probability of observing our data.  Simplistically, we 
may write: 

Likelihood = Pr("data") 
 

Next, we should state explicitly what we mean by Pr("data").  The "data" here are 5 
observations of 5 people, some of whom have apnea (APNEA=1) and some of whom do 
not (APNEA=0); some of whom are overweight (OVERWEIGHT=1) and some of whom are 
not (OVERWEIGHT=0).  According to our causal theory, the probability of the apnea 
status of each person depends on the person's weight status.  In statistical notation we may 
write, for example, Pr(APNEA=1/OVERWEIGHT=1).  Read: "the probability that a person 
has apnea, given that the person is overweight."   Or another example:  
Pr(APNEA=0/OVERWEIGHT=0).  Read: "the probability that a person does not apnea, 
given that the person is not overweight."  Table 12–8 shows the five observations and their 
associated probabilities, in notation. 
 
      Table 12–8.  Apnea status, overweight status, and the associated probability (N=5) 

Name 
(Observation #) 

Observed 
apnea status 

Observed 
overweight status 

Probability of the observation 
("data") 

Jeff      (1) APNEA=1 OVERWEIGHT=1 Pr(APNEA=1/OVERWEIGHT=1)
John    (2) APNEA=1 OVERWEIGHT=1 Pr(APNEA=1/OVERWEIGHT=1)
Sandy  (3) APNEA=0 OVERWEIGHT=1 Pr(APNEA=0/OVERWEIGHT=1)
Sara    (4) APNEA=1 OVERWEIGHT=0 Pr(APNEA=1/OVERWEIGHT=0)
Jack     (5) APNEA=0 OVERWEIGHT=0 Pr(APNEA=0/OVERWEIGHT=0)

 
On the assumption of independence between the observations (for instance, Jeff’s apnea 
status does not depend on Jack's apnea status), the probability of observing what we have 
observed should be the product of the five individual probabilities, shown in the right 
column of Table 12–7.  This product is called the likelihood of (observing) the data. 
 
Likelihood =  Pr(APNEA=1/OVERWEIGHT=1)   Jeff 

       x 
  Pr(APNEA=1/OVERWEIGHT=1)   John 

       x 
Pr(APNEA=0/OVERWEIGHT=1)   Sandy 
                    x 
Pr(APNEA=1/OVERWEIGHT=0)   Sara 
                    x 
Pr(APNEA=0/OVERWEIGHT=0)  Jack 

 
 
 
 
We'll keep this product term in mind for a moment, and turn back to the logistic 
regression model (using expression 2).  That model has specified the relation between a 
person's weight and his or her probability of having sleep apnea as follows:    
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        exp (β0 + β1 OVERWEIGHT) 
   Pr (APNEA=1)   =  

          1 + exp (β0 + β1 OVERWEIGHT) 
 
We may use this expression for each person, namely, enter the values of APNEA and 
OVERWEIGHT for Jeff, John, Sandy, Sara, and Jack, and derive 5 expressions for their 5 
probabilities.  Each expression will contain one or both of the unknown coefficients, β0 
and β1.   Here are the five expressions. 
 

 
            exp (β0 + β1x1) 

Jeff:  Pr (APNEA=1/OVERWEIGHT=1)   =       
           1 + exp (β0 + β1x1) 

 
 

           exp (β0 + β1x1) 
John:  Pr (APNEA=1/OVERWEIGHT=1)   =       

          1 + exp (β0 + β1x1) 
 
 
 
Sandy:  Pr (APNEA=0/OVERWEIGHT=1)   =   1 – Pr(APNEA=1/OVERWEIGHT=1)  
 
                          exp (β0 + β1x1) 
                       =   1 –       
                   1 + exp (β0 + β1x1) 
 
 

          exp (β0 + β1x0) 
Sara:  Pr (APNEA=1/OVERWEIGHT=0)   =       

                  1 + exp (β0 + β1x0) 
 
 
 
Jack:  Pr (APNEA=0/OVERWEIGHT=0)   =  1 – Pr(APNEA=1/OVERWEIGHT=0)  
 
                          exp (β0 + β1x0) 
                       =  1 –       
                   1 + exp (β0 + β1x0) 
 
 
If we substitute the last five expressions for the five probabilities in the likelihood formula, 
the likelihood will be expressed as a function of two unknown values: β0 and β1.  In 
mathematical notation: L = f (β0, β1).  Read: "the likelihood of observing the data is a 
function of β0 and β1, the regression coefficients." 

Obviously, we may enter different pairs of values of β0 and β1 into the function we have 
just derived and compute different values of the likelihood, some larger than others.  But 
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one pair (and only one) will yield the largest value of L.  This pair is called the maximum 
likelihood estimates (MLE) of the likelihood function.   Moreover, it turns out that 
 

The maximum likelihood estimate of β1 = The log of the odds ratio 
 
How do we actually solve the likelihood function and find the maximum likelihood 
estimates? 
 
In this simple example, a formal step-by-step solution is possible, just as we solve a set of 
equations with two unknown quantities.  In more complex equations, with several 
covariates, the method requires iteration ("trial and error"), as well as an iteration 
algorithm.   
 
 
SAS PROC LOGISTIC 
 
The SAS code below displays the hypothetical data from our small sample of five people 
and shows how to fit a simple logistic regression model using SAS.  As was the case in 
linear regression, the MODEL statement is capturing the essence of the regression model: 
the dependent variable (here, binary apnea status) is written to the left of the equality 
sign whereas the predictors (here, only one) are written to the right.  The option RL after 
the slash requests the computation of a 95% confidence interval. 
 
SAS code  
 
DATA one; 
 INPUT name $ APNEA OVERWEIGHT; 
 DATALINES; 
 
Jeff   1 1  
John   1 1  
Sandy  0 1  
Sara   1 0  
Jack   0 0 
 ; 
run; 
 
PROC LOGISTIC DESCENDING; 
MODEL apnea=overweight/RL; 
run; 
 
 
Selected SAS printout 
 
                                      The LOGISTIC Procedure 
 
                                        Model Information 
 
                          Data Set                      WORK.ONE 
                          Response Variable             APNEA 
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                          Number of Response Levels     2 
                          Model                         binary logit 
 
                             Number of Observations Used           5 
 
 
                                         Response Profile 
 
                                Ordered                      Total 
                                  Value        APNEA     Frequency 
 
                                      1            1             3 
                                      2            0             2 
 
                                 Probability modeled is APNEA=1. 
 
 
                                     Model Convergence Status 
                          Convergence criterion (GCONV=1E-8) satisfied. 
 
 
                                       Model Fit Statistics 
 
                                                           Intercept 
                                            Intercept            and 
                              Criterion          Only     Covariates 
 
                              -2 Log L                     6.592 
 
 
                             Analysis of Maximum Likelihood Estimates 
 
                                                    Standard          
                 Parameter     DF    Estimate       Error     
 
                 Intercept      1    2.343E-7      1.4142        
                 OVERWEIGHT     1      0.6931      1.8708      
 
 
                                       Odds Ratio Estimates 
 
                                            Point          95% Wald 
                           Effect         Estimate      Confidence Limits 
 
                           OVERWEIGHT       2.000       0.051      78.248 
 
At the beginning of the printout we find information about the sample and the 
dependent variable.  Technically, either category of a binary dependent variable may be 
considered the "event", so it is important to know what was modeled: the probability (or 
odds) of having sleep apnea or the probability (or odds) of not having sleep apnea?  Here 
the printout states "Probability modeled is APNEA=1", as we prefer.  Notice the term "logit" 
at the top of the printout, which is a synonym of "log-odds". 

Statements about "model convergence" refer to the search for the maximum 
likelihood estimates through a sequence of iterations.  This process generates a series of 
estimates on the way to those that maximize the likelihood function.  While approaching 
the final numbers, the results of successive iterations do not differ much anymore, and 
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when the differences are "small enough", the convergence criterion is satisfied.  At that 
point, the process stops and the estimated coefficients from the last iteration are reported.  
In this example, the maximum likelihood estimates were found to be β0=2.343E-7 and 
β1=0.6931.  Therefore, the regression model takes the following form: 
 

Log odds (APNEA=1)= 2.343E-7 + 0.6931 x OVERWEIGHT 
 
Or alternatively, 

 
    exp (2.343E-7 + 0.6931 x OVERWEIGHT) 

  Pr (APNEA=1)     =  
     1 + exp (2.343E-7 + 0.6931 x OVERWEIGHT) 

 
 
You may wonder what was the maximal value of the likelihood function itself, namely, the 
largest value of that function as generated by plugging in the maximum likelihood 
estimates, β0=2.343E-7 and β1=0.6931.  That number is not shown on the printout, but we 
do find a derivation, -2 Log L, in the section "model fit statistics".  The number 6.592 
under the column heading "Intercept and Covariates" is equal to (–2) times the log of the 
maximum value of the likelihood.  Therefore, 
 

–2 Log L = 6.592 
       Log L = –3.296 

                                     L = exp(–3.296) = 0.037 
 

Notice how small is the likelihood—the probability of observing our data—given the 
regression model "log odds (APNEA=1)= 2.343E-7 + 0.6931 x OVERWEIGHT”.  Yet of all 
possible values of the likelihood function, 0.037 is the maximum.  Again, that maximum is 
reached when β0=2.343E-7 and β1=0.6931 are entered into the likelihood function. 
 
Last but not least, we find the key result at the bottom of the printout: the odds of sleep 
apnea in this hypothetical sample of 5 people were twice as high for overweight people as 
compared with their normal weight counterparts:  exp(0.6931) = 2.  A logistic regression 
model and maximum likelihood estimation converged with the results we had computed 
earlier by hand from a 2x2 table.  I find myself wondering whether that was a miracle. 
 
 
More on maximum likelihood estimation 
 
I have described above the principles of maximum likelihood estimation using a simple 
situation: a tiny sample and a logistic regression model with a single predictor.   The very 
same principles, however, are followed when the sample is much larger; when the 
regression equation contains several predictors; and even when other regression models 
are used.  It is possible, for example, to write a likelihood function for a multiple linear 
regression model and search for its largest value.  Interestingly, in that case the maximum 
likelihood estimates would be identical to the estimates we would get by the method of 
least-squares regression (chapter 9).  In other words, the estimates from ordinary least-
square regression are actually maximum likelihood estimates!  Indeed, maximum 
likelihood estimation is intimately connected to almost every regression model. 
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Different likelihood functions for different kinds of regression models are developed 
along different mathematical trails, and often require heavy notations and complex 
equations.  (You will see another example in chapter 17.)  Nonetheless, they all share a 
common goal: to express the likelihood of observing the data as a function of unknown 
regression coefficients.  In generic notation:   L = f (β0, β1, β2,…, βn).  Then, we search for 
the set of values of these coefficients that will generate the largest value of L—the so-
called maximum likelihood estimates.  Not every likelihood function has a maximum, but 
when it does exist we can find the maximum likelihood estimates through an iterative 
process of trial and error. 

You have already seen that a log-derivation of the likelihood is reported on the SAS 
printout (-2 Log L).  For technical reasons (ease of computation), we often prefer to work 
with the log of the likelihood from the very beginning—that is, look for the maximum 
likelihood estimates of the following function: 
 

log–L = f (β0, β1, β2,…, βn) 
 
Of course, the set of coefficients that yield the largest value of the log-likelihood function 
will also yield the largest value of the likelihood function itself.  The scale does not matter. 
 
 
Overweight and sleep apnea: logistic regression models  
 
Earlier in this chapter we used tabular methods to compute odds ratios for the effect of 
weight on sleep apnea.  First, we studied the marginal association between APNEA and the 
binary exposure, OVERWEIGHT, in a 2x2 table.  Next, we assumed confounding by age, 
and deconfounded by stratifying on the binary variable, AGEBIN.  Finally, we studied the 
dose-response function using a 4x2 table: cross-classification of four categories of weight 
and two categories of apnea.   All of these odds ratios will be computed again from logistic 
regression models.   Flip back and fourth between the tables and the regression output to 
convince yourself that the odds ratios are identical. 
 
The first model takes the following form: 
 

Log odds (APNEA=1) = β0 + β1 OVERWEIGHT 
 
 
SAS code  
 
PROC LOGISTIC DESCENDING; 
 MODEL apnea = overweight; 
run; 
 
Selected SAS printout 
 
                              The LOGISTIC Procedure 
 
                               Model Information 
 
                  Data Set                      WORK.TWO 
                  Response Variable             apnea 
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                  Number of Response Levels     2 
                  Model                         binary logit 
 
 
                      Number of Observations Used        1074 
 
 
                                 Response Profile 
 
                        Ordered                  Total 
                          Value        apnea     Frequency 
 
                              1            1           166 
                              2            0           908 
 
                         Probability modeled is apnea=1. 
 
 
                     Analysis of Maximum Likelihood Estimates 
 
                                          Standard           
         Parameter     DF    Estimate       Error     
 
         Intercept      1     -2.0468      0.1037       
         overweight     1      1.6038      0.1941        
 
 
                               Odds Ratio Estimates 
 
                                Point          95% Wald 
                  Effect        Estimate      Confidence Limits 
 
                  overweight       4.972       3.399       7.273 
 
 
 log odds (APNEA=1) = –2.0468 + 1.6038 OVERWEIGHT 
 
 
The sample size (1,074 observations) on this output matches the grand total in the first 
2x2 table, and so does the count of people with apnea (166).  The coefficient of 
OVERWEIGHT is the log (OR) for the contrast between OVERWEIGHT=1 and 
OVERWEIGHT=0.  After exponentiating that coefficient, we get an odds ratio of 4.97, 
identical to the odds ratio from the 2x2 table.  Keep in mind that the standard error of 
the coefficient of OVERWEIGHT is the standard error of the log (OR), not the standard 
error of the OR. 
 
To compute the 95% confidence interval, start on the log scale and compute the lower 
and upper limit for the log(OR).  Then, exponentiate the results to return to the OR 
scale. 
 
   Log OR     OR 
 
Lower limit:    1.6038 – 1.96 x 0.1941 = 1.2234  exp(1.2234) = 3.399 
Upper limit:   1.6038 + 1.96 x 0.1941 = 1.9842  exp(1.9842) = 7.273 
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You might have noticed that the confidence intervals are slightly different from those 
found in tabular methods.  That's because the standard error is not computed according 
to the Mantel-Haenszel formula.  More important, notice that the log odds ratio (1.6038) 
resides in the middle of the confidence interval, at the midpoint between 1.2234 and 
1.9842, but the odds ratio (4.97) does not.  The distance between 4.97 and 3.399 (the 
lower limit) is not equal to the distance between 4.97 and 7.273 (the upper limit), because 
the symmetry on the log scale disappears after exponentiation.  So, if you see a 
symmetrical confidence interval around the odds ratio (or around another ratio measure 
of effect), someone might have made a mistake. 
 
Analogous to stratification on age in tabular analysis, we will simply add AGEBIN as a 
covariate.  Again, in all regression models, adding covariates should deconfound the 
association of interest, assuming we have a causal diagram in mind, which supports the 
need to deconfound. 
 
The model takes the following form: 
 

Log odds (APNEA=1) = β0 + β1 OVERWEIGHT + β2 AGEBIN 
 
 
SAS code  
 
PROC LOGISTIC DESCENDING; 
 MODEL apnea = overweight agebin; 
run; 
 
Selected SAS printout 
 
                              The LOGISTIC Procedure 
 
                               Model Information 
 
                  Data Set                      WORK.TWO 
                  Response Variable             apnea 
                  Number of Response Levels     2 
                  Model                         binary logit 
 
 
                      Number of Observations Used        1074 
 
 
                                  Response Profile 
 
                         Ordered                 Total 
                           Value        apnea     Frequency 
 
                               1            1           166 
                               2            0           908 
 
                          Probability modeled is apnea=1. 
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                     Analysis of Maximum Likelihood Estimates 
 
                                         Standard         
         Parameter     DF    Estimate       Error     
 
         Intercept      1     -2.4266      0.1593      
         overweight     1      1.6555      0.1973       
         agebin         1      0.6340      0.1833       
 
 
                               Odds Ratio Estimates 
 
                              Point          95% Wald 
                  Effect        Estimate      Confidence Limits 
 
                  overweight       5.236       3.557       7.708 
                  agebin           1.885       1.316       2.700 
 
 

log odds (APNEA=1) = –2.4266 + 1.6555 OVERWEIGHT + 0.6340 AGEBIN  
 
 
Focus again on the coefficient of OVERWEIGHT (1.6555), and ignore the coefficient of 
AGEBIN.   After exponentiation, we get an estimate of the conditional odds ratio: 
exp(1.6555) = 5.236.  The confidence interval is [3.557, 7.708].  Below, I copied 
comparable results from tabular analysis, which you can find yourself by flipping to the 
beginning of this chapter.  Ignoring rounding-related differences, the numbers on the 
"logit" line are identical.  Indeed, the method used in tabular analysis is called "logit" 
because the point estimate and the standard error are computed just as they are 
computed in logistic regression. 
 
 
               Estimates of the Common Relative Risk (Row1/Row2) 
 
   Type of Study     Method                  Value     95% Confidence Limits 
   ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
   Case-Control      Mantel-Haenszel        5.2324       3.5541       7.7032 
     (Odds Ratio)    Logit                  5.2360       3.5572       7.7070 
 
 
 
To replicate the tabular dose-response analysis, we will model three dummy variables for 
the four weight categoris (Table 12–2.).  I decided to label the intercept β1 rather than β0 
to match the subscripts of coefficients and dummy variables. 
 

Log odds (APNEA=1) = β1 + β2 WEIGHT2 + β3 WEIGHT3+ β4 WEIGHT4 
 
 
 
SAS code  
 
PROC LOGISTIC DESCENDING; 

 24



Last revised Feb 9, 2009 

 MODEL apnea = weight2 weight3 weight4; 
run; 
 
 
Selected SAS printout 
 
                           The LOGISTIC Procedure 
 
                               Model Information 
 
                  Data Set                      WORK.TWO 
                  Response Variable             apnea 
                  Number of Response Levels     2 
                  Model                         binary logit 
 
 
                      Number of Observations Used        1074 
 
 
                                   Response Profile 
 
                        Ordered                 Total 
                          Value        apnea     Frequency 
 
                              1            1           166 
                              2            0           908 
 
                         Probability modeled is apnea=1. 
 
 
                     Analysis of Maximum Likelihood Estimates 
 
                                            Standard           
          Parameter    DF    Estimate       Error     
 
          Intercept     1     -3.2228      0.3225        
          weight2       1      0.6399      0.4090        
          weight3       1      1.3226      0.3740       
          weight4       1      2.5112      0.3434       
 
 
                               Odds Ratio Estimates 
 
                                  Point          95% Wald 
                    Effect     Estimate      Confidence Limits 
 
                    weight2       1.896       0.851       4.227 
                    weight3       3.753       1.803       7.812 
                    weight4      12.319       6.285      24.147 
 
 

log odds (APNEA=1) = –3.2228 + 0.6399 WEIGHT2 + 1.3226 WEIGHT3 + 2.5112 WEIGHT4   
 
 
The intercept estimates the log odds of sleep apnea for the reference group (<70 kg), 
whereas each coefficient of a dummy variable estimate the log (OR) for the causal 
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contrast between that category and the reference.  After exponentiating the coefficients, 
we get the following odds ratios (rounded): 1.90, 3.75, and 12.32.  Please check that 
identical numbers were computed earlier from a 4x2 table. 

It is just as easy to display the dose-response function from the regression model as it 
was from tabular methods.  Plug in the values of the dummy variables for each category of 
weight and compute the predicted log odds of sleep apnea (Table 12–9). 
 
 
   Table 12–9.  Computing the dose-response function from the regression model 
 

Weight 
category 
(kg) 
 

Values of 
dummy 
variables 

 
Log odds (APNEA=1) =  
–3.2228 + 0.6399 WEIGHT2 + 1.3226 WEIGHT3 + 2.5112 WEIGHT4  
 

 
< 70 

WEIGHT2=0  
WEIGHT3=0  
WEIGHT4=0 

 
–3.2228 + 0.6399 x 0 + 1.3226 x 0 + 2.5112 x 0   =   –3.223 

 
70-79 

WEIGHT2=1 
WEIGHT3=0 
WEIGHT4=0 

 
–3.2228 + 0.6399 x 1 + 1.3226 x 0 + 2.5112 x 0   =   –2.583 

 
80-89 

WEIGHT2=0 
WEIGHT3=1 
WEIGHT4=0 

 
–3.2228 + 0.6399 x 0 + 1.3226 x 1 + 2.5112 x 0   =   –1.900 

 
≥ 90 

WEIGHT2=0 
WEIGHT3=0 
WEIGHT4=1 

                    
–3.2228 + 0.6399 x 0 + 1.3226 x 0 + 2.5112 x 1   =   –0.712                  

 
 
Compare the results to those we computed by tabular analysis (Table 12–5).  They are 
identical.  Therefore, there is no need to display the function again.  It was already shown 
in Figure 12–2. 
 
 
More on deconfounding by logistic regression 
 
So far we saw no advantage of using logistic regression over tabular analysis, and no clear 
reason to substitute complex maximum likelihood estimation for contingency tables.   
Assume, however, that we wish to deconfound the marginal association between 
OVERWEIGHT and APNEA from the age effect, yet retain the continuous form of the age 
variable.  Tabular analysis cannot handle that situation but the task is trivial in logistic 
regression as it was in linear regression.  Simply place the continuous variable, AGE, next 
to the variable OVERWEIGHT on the right hand side of the model:   
 

Log odds (APNEA=1) = β0 + β1 OVERWEIGHT + β2 AGE 
 
 
Similarly, if you wish to model the four weight categories by three dummy variables and 
deconfound at the same time, add AGE to the model: 
 

Log odds (APNEA=1) = β1 + β2 WEIGHT2 + β3 WEIGHT3+ β4 WEIGHT4 + β5 AGE 
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Just like in linear regression, you may simultaneously model several confounders, both 
continuous and categorical, and obtain conditional odds ratios for the weight effect.  To 
illustrate, here is SAS code and selected printout from regression of the log odds of apnea 
on WEIGHT2, WEIGHT3, WEIGHT4, AGE, and SEX. 
 
SAS code  
 
PROC LOGISTIC DESCENDING; 
 MODEL apnea = weight2 weight3 weight4 age sex; 
run; 
 
 
Selected SAS printout 
 
 
                              The LOGISTIC Procedure 
 
                               Model Information 
 
                  Data Set                      WORK.TWO 
                  Response Variable             apnea 
                  Number of Response Levels     2 
                  Model                         binary logit 
 
 
                      Number of Observations Used        1074 
 
 
                                  Response Profile 
 
                         Ordered                  Total 
                           Value        apnea     Frequency 
 
                               1            1           166 
                               2            0           908 
 
                          Probability modeled is apnea=1. 
 
                     Analysis of Maximum Likelihood Estimates 
 
                                             Standard           
          Parameter    DF    Estimate       Error     
 
          Intercept     1     -6.4293      1.0801        
          weight2       1      0.4586      0.4200        
          weight3       1      1.0427      0.3956        
          weight4       1      2.1959      0.3736       
          age           1      0.0503      0.0162        
          sex           1      0.5296      0.2126        
 
 
                               Odds Ratio Estimates 
 
                                   Point          95% Wald 
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                    Effect     Estimate      Confidence Limits 
 
                    weight2       1.582       0.694       3.603 
                    weight3       2.837       1.306       6.160 
                    weight4       8.988       4.322      18.695 
                    age           1.052       1.019       1.086 
                    sex           1.698       1.119       2.576 
 
 
Assuming that the rules of a causal diagram dictate deconfounding from the effects of age 
and sex, we obtained deconfounded estimates of the effect of weight groups on sleep 
apnea.  The causal contrasts between three ascending weight groups and the reference 
(<70kg) translates into odds ratios of 1.6, 2.8, and 9.0 (after rounding), all of which are 
smaller than the marginal odds ratios, which were 1.9, 3.7, and 12.3. 
 
 
Linear and quadratic dose-response functions 
 
Tabular methods have forced us to categorize the weight variable.  By contrast, in logistic 
regresssion, just as in linear regression, we may also model the continuous WEIGHT 
variable and even a quadratic function, regressing the log odds of sleep apnea on WEIGHT 
and WEIGHT2.  (Covariates may always be added, of course, if deconfounding is needed.)  
Let's take a closer look at two logistic regression models that allow for the continuous 
variable WEIGHT: linear and quadratic. 
 
Model 1: Log odds (APNEA=1) = β0 + β1 WEIGHT 
 
Model 2: Log odds (APNEA=1) = β0 + β1 WEIGHT + β2 WEIGHT2

 
Model (1) is imposing a straight line relation between weight and the log odds of sleep 
apnea, analogous to a straight line relation between age and mean blood pressure 
(chapter 9).  Again, the coefficient, β1, is the slope of the regression line—regression of 
the log odds of sleep apnea on weight.   

As you may recall, when we fit the linear regression model "Mean SBP = β0 + β1 AGE”, 
we implicitly assumed that the effect of one year of aging on mean blood pressure is 
constant (identical) for all causal contrasts of 1 year difference, such as [40, 41], [45.5, 
46.5], and [68, 69].  In the context of logistic regression, the causal assumption behind 
model (1) dictates a constant difference in the log odds, rather a constant difference in 
the mean.  By fitting model (1) we assume that the effect of gaining 1kg of weight confers 
the same difference in the log odds of sleep apnea, regardless of the baseline weight: 
gaining 1 kg on top of 45kg would change the log odds of apnea as much as gaining 1kg 
on top of 77kg, or on top of any other baseline weight.  Notice, however, that a constant 
difference in the log odds also implies a constant log odds ratio [because log(a)–log(b) = 
log (a/b).]  But "log(OR)=constant" implies "OR=constant", too!   To sum up, model (1) 
rests on the causal assumption that a causal contrast between two weights that differ by 
1kg has the same effect on sleep apnea, regardless of which weights are compared.  The 
magnitude of that effect is a constant odds ratio whose value is exp(β1).  Not a trivial 
assumption at all. 
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SAS code  
 
PROC LOGISTIC DESCENDING; 
 MODEL apnea = weight; 
run; 
 
 
Selected SAS printout 
 
                              The LOGISTIC Procedure 
 
                               Model Information 
 
                  Data Set                      WORK.TWO 
                  Response Variable             apnea 
                  Number of Response Levels     2 
                  Model                         binary logit 
 
 
                      Number of Observations Used        1074 
 
 
                                  Response Profile 
 
                         Ordered                   Total 
                           Value        apnea     Frequency 
 
                               1            1           166 
                               2            0           908 
 
                          Probability modeled is apnea=1. 
 
                     Analysis of Maximum Likelihood Estimates 
 
                                        Standard          
          Parameter    DF    Estimate       Error     
 
          Intercept     1     -7.0318      0.5342       
          weight        1      0.0607     0.00571       
 
 
                               Odds Ratio Estimates 
 
                                 Point          95% Wald 
                    Effect    Estimate      Confidence Limits 
 
                    weight       1.063       1.051       1.075 
 
 
 log odds (APNEA=1) = –7.0318 + 0.0607 WEIGHT  
 
 
Again, the coefficient of WEIGHT estimates the difference in the log odds of sleep apnea 
per 1kg weight gain, which is also the log(OR) for sleep apnea per 1kg weight gain.  After 
exponentiation (e0.0607), we find that the estimated odds ratio is 1.06.  Given the linear 
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model, that number describes the effect of any causal contrast that differs by 1kg:  [54, 
55], [63.2, 64.2], [98, 99], and so on.    

 
A side note, which I often find helpful:  In math, the following approximation of ex holds 
when x is small: ex ≈ 1+x.  Therefore, before formal computation you can easily guess the 
odds ratio you would get after exponentiating a small coefficient: e0.0607≈ 1 + 0.0607 = 
1.0607. 
 
To compute the 95% confidence limits around the odds ratio, you have to start on the log 
scale.   First, compute the confidence limits around the log odds ratio: 
 
95% confidence limits for the log(OR): 0.0607 + 1.96 x 0.00571 = [0.0495, 0.0719] 
 
Then, exponentiate the results: 
 
95% confidence limits for the OR: [exp(0.0495), exp(0.0719)] = [1.051, 1.075] 
 
These numbers are found at the bottom of the printout. 
 
Sometimes, a one-unit increment on the exposure scale may be too small to convey a 
meaningful causal contrast.  Suppose, for example, that we wish to compute the odds 
ratio for sleep apnea (and the 95% confidence interval) for 10kg weight gain, rather than 
1kg weight gain.  A similar challenge was presented in chapter 11, when we computed 
geometric mean ratios, and the solution is similar, too.  Start on the log(OR) scale.  If the 
estimated difference in the log odds (namely, the log odds ratio) is 0.0607 per 1kg weight 
gain, then the estimated difference per 10kg weight gain should be 0.0607 x 10 = 0.607. 
Last, return to the odds ratio scale: the estimated odds ratio is exp(0.607) = 1.83 
 
Or in general: if the coefficient of a continuous exposure in a logistic regression mode is 
β1, then:    β1  = log(OR) per 1 unit exposure increment 

β1 x Δ = log(OR) per Δ unit exposure increment 
Exp (β1 x Δ) = OR per Δ unit exposure increment 

 
 
To compute a 95% confidence interval, start again on the log scale.   
 
The 95% CI for any Δ is computed according to the following formula: 
 

(β1 x Δ) + 1.96 x SE (β1 x Δ) 
 
A rule of arithmetic for standard errors tells us that SE (β1 x Δ) = SE (β1) x Δ.  Therefore, 
the 95% CI may also be written as 
 

(β1 x Δ) + 1.96 x SE (β1) x Δ 
 
For example, for Δ=10 kg, the 95% CI for the log(OR) 
 

0.0607 x 10 + 1.96 x 0.00571 x 10 = [0.4951, 0.7189] 
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Last, exponentiate the results to get the 95% CI for the OR: 
 
   [exp(0.4951), exp(0.7189)] = [1.64, 5.23] 
 
To summarize, for a causal contrast of 10kg weight gain, the estimated odds ratio for sleep 
apnea is 1.83, and the 95% confidence limit ratio is 5.23/1.64 = 3.2.  Assuming that a 
straight line indeed captures the true dose-response function.  That line is depicted in 
Figure 12–3.  
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Figure 12–3.  Log-linear dose-response function for the effect of weight on sleep apnea 
 
Are we willing to make the assumption of a constant odds ratio per 1kg weight gain or 
should we continue to explore the dose-response function?  The step function (Figure 
12–2) does not unequivocally support a straight line.  At a minimum, we might examine a 
quadratic function as well. 
 
SAS code  
 
PROC LOGISTIC DESCENDING; 
 MODEL apnea = weight weight*weight; 
run; 
 
Selected SAS printout 
 

The LOGISTIC Procedure 
 
                                Model Information 
 
                  Data Set                      WORK.TWO 
                 Response Variable             apnea 
                  Number of Response Levels     2 
                  Model                         binary logit 
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                      Number of Observations Used        1074 
 
                Response Profile 
 
                        Ordered                    Total 
                          Value        apnea     Frequency 
 
                              1            1           166 
                              2            0           908 
 
                         Probability modeled is apnea=1. 
 
                    Analysis of Maximum Likelihood Estimates 
 
                                           Standard         
      Parameter         DF    Estimate      Error     
 
       Intercept         1     -8.8478      2.3641        
      weight            1      0.1007      0.0507        
       weight*weight     1    -0.00021    0.000268         
 
 
 
 log odds (APNEA=1) = –8.8478 + 0.1007 WEIGHT + (–0.00021) WEIGHT2 
 
 
 
The regression line, depicted in Figure 12–4, shows some departure from a straight line 
over the observed range of weight (compare Figure12–4 to Figure 12–3).  Therefore, the 
quadratic function seems to support the curvature suggested by the step function (Figure 
12–2).  Keep in mind, however, that all three dose-response functions do not account for 
any confounders.  Both the shape and the inference might change after adding 
confounders to the models. 
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Figure 12–4.  Log-quadratic dose-response function for the effect of weight on 
sleep apnea 
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How do we compute estimates of the odds ratio from a quadratic dose-response function? 
 
Just like in linear regression with a quadratic term (chapter 9), the coefficients of WEIGHT 
and WEIGHT2 are not interpretable individually.  But if we work on the log-odds scale, we 
can easily replicate the steps we followed in chapter 9 (Table 9–7.)   Table 12–10 shows an 
example for the causal contrast [50kg, 60kg]. 
 
Table 12–10.  Computing the effect of a causal contrast between the weights of 60kg and 
50kg, based on the quadratic function  
 

Causal assignment 
 

Values of weight 
variables 

log odds (APNEA=1) =  
               –8.8478 + 0.1007 WEIGHT – 0.00021 WEIGHT2  
 

 
WEIGHT = 60 

 
WEIGHT  =     60 
WEIGHT2 = 3600 

 
log odds (APNEA=1) =  
               –8.8478 + 0.1007 x 60 – 0.00021 x 3600 = –3.5618   
 

 
WEIGHT = 50 

 
WEIGHT  =     50 
WEIGHT2 = 2500 
 

 
log odds (APNEA=1) =  
               –8.8478 + 0.1007 x 50 – 0.00021 x 2500 = –4.3378 

Effect   
(difference between 
two log odds) 

                     
                                            log odds ratio:                   0.776 

                                                    Odd ratio: exp(0.776) = 2.17 
 
 
Based on the quadratic dose-response function, the estimated odds ratio for this causal 
contrast is 2.17.  The estimate we computed from the linear function was smaller: 1.83 for 
any causal contrast of 10kg difference, including [50kg, 60kg].  Unlike the linear 
function, the quadratic function prescribes a different odds ratio for each contrast of 10kg 
difference.  For example, the odds ratio for the contrast [58kg, 68kg] differs from the 
odds ratio for the contrast [80kg, 90kg], and neither is equal to 2.17.  Notice, again, that 
the model claims a special kind of effect modification—weight modifies the effect of 
weight—but this time we assume effect modification on the multiplicative scale, not the 
additive scale.  The odds ratio for sleep apnea per Δ weight gain is not constant.  It 
depends on the starting weight. 
 
To sum up, logistic regression models are constructed and interpreted along the 
principles of linear regression—with one important difference: the dependent variable is 
log odds (Y=1) rather than the mean of Y.  As a result, the coefficients are interpreted as 
log odds ratios and their exponential form turns out to be odds ratios.  The analogy 
carries to effect modification, as well (chapter 13). 
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