
Chapter 10  
Estimating the Modified Mean Difference 

 
Sex group: an effect modifier? 
 
At the end of the last chapter we tried to estimate the effect of age on systolic blood 
pressure, assuming that the marginal association between the two variables contained the 
confounding effect of sex (Figure 9–9).  To deconfound, we regressed SBP on AGE and 
SEX, and found the following solution: 
 

Mean SBP = 79.8 + 0.7 x AGE + 1.7 x SEX 
 
As you know by now, the coefficient of age in this model (0.735 mmHg before rounding) 
is a conditional mean difference: a weighted average of the sex-specific coefficients.  
Although regression-based conditioning, unlike simple stratification, does not reveal the 
sex-specific estimates, we can find them by regressing SBP on AGE in each sex group, 
using the following code:  
 
SAS code 
 
PROC GLM; 
 MODEL sbp = age/SOLUTION;  
 BY sex; 
 run; 
 
Selected printout from the two regression models is shown below, side-by-side. 
 
Dependent Variable:  sbp SYSTOLIC BLOOD PRESSURE (mmHg) 
 

WOMEN        MEN 
 
Number of observations       468           532 
 
                                    Sum of              Sum of 
Source                   DF         Squares          DF     Squares 
 
Model                     1      47940.7502           1        15473.0107 
Error                   466     204860.3069               530       186029.8742        
 
Corrected Total         467     252801.0572               531       201502.8849 
 
 
                                   Standard        Standard 
Parameter           Estimate          Error        Estimate         Error 
 
Intercept        64.22615646              94.88851349 
age               0.99183335     0.09497783        0.51819630    0.07804773 



The simple average of the sex-specific coefficients of age is (0.992+0.518)/2=0.755, a little 
larger than the weighted average from the regression of systolic blood pressure on age 
and sex (0.735).  Since the weighted average of 0.735 resides closer to the estimate in men 
(0.518) than to the estimate in women (0.992), the men in the sample must have pulled 
the average toward their end more strongly than have the women.  To understand the 
reason for the inequity, compare the two standard errors (0.078 versus 0.095) behind the 
sex-specific coefficients: the men's estimate has emerged from an estimator that has a 
smaller standard error (a tighter sampling distribution), in part because men 
outnumbered women in the sample.  Their estimate rightly carried more weight. 

The equation "Mean SBP = 79.8 + 0.7 x AGE + 1.7 x SEX” is called a main effect model, a 
name that serves to distinguish it from an interaction model, which we'll encounter in the 
next section.  Again, the math of that model assumes that the sex-specific estimates of the 
mean difference have originated from a single parameter, and if so, the best estimate of 
that number must be a weighted average of the two estimates.  From the viewpoint of 
cause-and-effect (chapter 4), we assume homogeneity of the causal parameter across the 
strata of sex, and request the model to compute a single estimate for both men and 
women. 

To realize the last, key point, I explicitly derived the estimated effect of 1 year of aging 
in each sex group from the main effect model (Table 10−1).  As you see, it is the same 
estimate: 0.7. 

 
   Table 10−1.  Deriving the effect of 1 year of aging on systolic blood pressure in  
                        each sex group from the main effect model                  

          Mean SBP = 79.8 + 0.7 x AGE  + 1.7 x SEX 
Causal assignments (women)  
AGE=K+1 and SEX=0          Mean SBP = 79.8 + 0.7 x (K+1) + 1.7 x 0 
AGE=K     and SEX=0          Mean SBP = 79.8 + 0.7 x  K      + 1.7 x 0 
Effect of aging in women  
(mean difference in SBP) 

                                       
                                        0.7                              

  
Causal assignments (men)  
AGE=K+1 and SEX=1          Mean SBP = 79.8 + 0.7 x (K+1) + 1.7 x 1 
AGE=K     and SEX=1          Mean SBP = 79.8 + 0.7 x  K      + 1.7 x 1 
Effect of aging in men  
(mean difference in SBP) 

 
                                          0.7 

 
 
Regardless of whether sex group played the role of a confounder, the models we have fit 
so far—both of marginal associations and of conditional associations—are misleading if 
sex happens to modify the effect of age on systolic blood pressure.  If this is the case, we 
have been following the wrong path: the estimators are all biased because the causal 
parameter takes two values, not one (chapter 4).  Indeed, the sex-specific estimates cast 
some doubt on the wisdom behind our models: the estimated effect of age on systolic 
blood pressure in women (a mean difference of 0.99 mmHg per 1 year of aging) is about 
twice the estimated effect in men (0.52 mmHg).  Perhaps the two numbers estimate two 
values of the causal parameter (or, if you prefer, two causal parameters).  

Stratified regression, as shown in the last printout, could help us to explore effect 
modification, but the method quickly fails when a little complexity is added; for example, 



when the effect modifier contains many strata or happens to be a continuous variable 
itself.  It would, therefore, be helpful to find a way to estimate heterogeneous effects from 
a single regression model.  In the next section, we will study the general method in its 
simplest form—with one binary exposure (E) and one binary effect modifier (M).  Later, 
we'll return to the example of age, a continuous variable, and sex.  
 
 
The regression viewpoint of effect-modification (interaction)  
 
In chapter 5, we explored both interaction and effect modification in the context of 2x2 
tables and realized that the two ideas are tightly linked mathematically: one can be 
derived from the other by simple arithmetic.  In this section we will discover the 
mathematical expression of these ideas when effects are estimated by a linear regression 
model.  Since our measure of effect is the mean difference, interaction and effect 
modification will necessarily be computed on an additive scale, but much of the theory 
applies to ratio measures of effect and to other kinds of regression models (logistic, 
Poisson, Cox). 

Let E be a binary exposure (1,0), such as alcohol drinking status (drinking or 
abstaining), and let M be another binary variable (1,0), such as smoking status (smoking 
or not smoking).  Let Y be their effect---a continuous dependent variable such as systolic 
blood pressure.  As we saw earlier, if we wish to condition the association of E with Y on M 
(having deconfounding in mind), we will typically regress Y on M and E simultaneously: 

 
Mean Y = β0 + β1 M + β2 E                                   (Equation 10–1) 
 
If conditioning on M has followed the deconfounding rules of a causal diagram, the 
coefficient of E (β2) estimates the effect of E on Y (assuming no other confounders).  
Specifically, β2 is the mean difference in Y for the causal contrast between E=1 and E=0. 

 
If, however, we are entertaining the idea that M is an effect modifier, rather than a 
confounder, we should add to the main effect model another independent variable called 
an "interaction term": 

 
Mean Y = β0 + β1 M + β2 E + β3 (M x E)                       (Equation 10–2) 
 
In this interaction model, Y is regressed on three variables: on M, on E, and on a new 
variable which is the product of M and E.  Sometimes the analytical software requires you 
to create that product variable in a data step (Z=M*E); other times, you may explicitly fit 
the model with a product term (type in "M*E").  Note that regardless of any technical 
specification, MxE is a variable, just like M and E.  Table 10–1 shows all possible values of 
these three variables: 
 

     Table 10–1.  Possible values of M, E, and M x E 
M E M x E 
0 0 0 x 0 = 0 
0 1 0 x 1 = 0 
1 0 1 x 0 = 0 
1 1 1 x 1 = 1 



In our minds the multiplication of two variables might resonate with the causal idea of 
interaction, but intuition is not good enough.  How do we know that such a model allows 
us to examine an interaction between E and M?  Moreover, if you prefer to talk about 
effect modification by M (as I do), how does this model allow the effect of E to vary 
according to the values of M (or vice versa)? 

Let's examine first the idea of interaction, which alludes to "the joint effect of M and 
E".  What does our model say about that effect? 
 
To find out we should contrast the pair of causal assignments "M=1 and E=1" with the pair 
"M=0 and E=0".  Specifically, we should calculate the mean of Y for each pair of causal 
assignment (by entering the values of M and E into the regression equation), and then, 
compute the mean difference (Table 10–2).   
 
Table 10–2.  The joint effect of E and M from an interaction model 
Causal assignments Mean Y = β0 + β1 M   + β2 E    + β3 (M x E) 
M=1 and E=1 Mean Y = β0 + β1 x 1 + β2 x 1 + β3 x (1 x 1) = β0 + β1 + β2 + β3

M=0 and E=0 Mean Y = β0 + β1 x 0 + β2 x 0 + β3 x (0 x 0) = β0  
Joint Effect  
(mean difference in Y) 

                                                                                
                                                                               β1 + β2 + β3

 
Our "interaction model" has led us to conclude that the joint effect of M and E (the 

mean difference) is β1 + β2 + β3, but how do we interpret each coefficient?  What, for 
example, does β1 mean in that model? 

It is not too difficult to show that β1 estimates the effect of M (the causal contrast 
between M=1 and M=0) when E=0.  Similarly and reciprocally, β2 estimates the effect of E 
(the causal contrast between E=1 and E=0) when M=0.  Tables10–3 and 10–4, below, show 
the formal proofs. 
 
Table 10–3.  The effect of M (when E=0) from an interaction model  
Causal assignments Mean Y = β0 + β1 M   + β2 E    + β3 (M x E) 
M=1 (and E=0) Mean Y = β0 + β1 x 1 + β2 x 0 + β3 x (1 x 0) = β0 + β1

M=0 (and E=0) Mean Y = β0 + β1 x 0 + β2 x 0 + β3 x (0 x 0) = β0

Effect of M  
(mean difference in Y) 

                                                        
                                                                               β1

 
Table 10–4.  The effect of E (when M=0) from an interaction model  
Causal assignments Mean Y = β0 + β1 M   + β2 E    + β3 (M x E) 
E=1 (and M=0) Mean Y = β0 + β1 x 0 + β2 x 1 + β3 x (0 x 1) = β0 + β2

E=0 (and M=0) Mean Y = β0 + β1 x 0 + β2 x 0 + β3 x (0 x 0) = β0

Effect of E  
(mean difference in Y) 

                                                        
                                                                               β2

 
These effects of M and E (β1, β2, respectively) are often called "separate effects" or 
"independent effects", terms that appeal to our intuition when the zero value of each 
binary variable makes up a "natural" reference.  For instance, if M is smoking status 
(smoking, non-smoking) and E is alcohol-drinking status (drinking, non-drinking), we 
will naturally define the separate effect of drinking on blood pressure as its effect in the 
absence of smoking.  Nonetheless, as soon as we replace smoking status with a variable 



such as sex group, the term "separate effect" loses its rhetorical force.   What should be 
called the separate effect of alcohol drinking when M is sex: its effect in men or its effect 
in women?  Perhaps neither.   

Setting that difficulty aside, you might be inclined to state an expectation about the 
joint effect of M and E.  Intuitively, you probably expect it to be the sum of their so-called 
separate effects---that is, β1 + β2.  Our regression model tells us, however, that the joint 
effect should be β1 + β2 + β3.  The model allows the joint effect to be greater or smaller 
than the sum of the separate effects, depending on whether β3 were positive or negative.  
If β3 > 0, we will claim synergistic interaction (more than we expected from summing the 
"separate effects"), and if β3 < 0 we will claim antagonistic interaction (less than we 
expected).  Theoretically, β3 could be precisely zero, but that never happens in regression; 
at most its magnitude might be trivially small.  (If your mind is wandering right now in the 
direction of null hypothesis testing of β3=0, please read chapter 8 again.) 
 

* 
 

So far we exclusively examined the model in the language of interaction.  One line of 
algebra, however, will radically change our perspective from interaction to effect-
modification, and eliminate the need to discuss deterministic ideas such as "separate 
effects", synergistic interaction, and antagonistic interaction (sometimes called "sub-
additivity".) 
 
Notice that our "interaction model" Mean Y = β0 + β1 M + β2 E + β3 (M x E) 
 
may also be written as:   Mean Y = β0 + β1 M + (β2 + β3 M) E    
 
Examining the second form, we should realize an interesting property of the model.  The 
effect of E, the multiplier in front of E, is not just a constant coefficient anymore as we 
were used to see in a main effect model.  The "coefficient" has turned into a function of 
M.  It is "β2 + β3 M”.  No longer can we provide a single answer to the question "What is the 
effect of E on Y?" because there are two answers: 
 
When M=0, the effect of E on Y (the mean difference) is β2 + β3 x 0  = β2  (as we saw). 
When M=1, the effect of E on Y (the mean difference) is β2 + β3 x 1  = β2 + β3
 
Read out loud the last two sentences and you will find yourself claiming effect 
modification by M.  The effect of E on Y—the mean difference in Y—varies according to 
the values of M.  It is not homogenous across the strata of M. 
 
When examined earlier from the viewpoint of interaction, β3 estimated the departure 
from the sum of the so-called separate effects.  It was the difference between our model-
based joint effect (β1 + β2 + β3) and the "expected" joined effect (β1 + β2).  In the language 
of effect modification, β3 plays a different role, estimating the departure from 
homogeneity of effect.  It is the difference between the effect of E when M=1 (which is    
β2 + β3) and the effect of E when M=0 (which is β2).  β3 tells us how much larger, or how 
much smaller, is one effect than the other.   
 
Notice that when the coefficient of E (β2) is positive, the following may be stated: 



  
If β3 > 0 (described earlier as synergistic interaction), the effect of E on Y when M=1 is 
greater than its effect when M=0 (because β2 + β3 > β2) 
 
If β3 < 0 (described earlier as antagonistic interaction), the effect of E on Y when M=1 is 
smaller than its effect when M=0 (because β2 + β3 < β2.) 
 
In chapter 5 we also discovered that effect modification is a reciprocal idea because the 
labels "exposure" and "effect modifier" were arbitrary and could have been switched.  
Since equation 10--2 is symmetrical with respect to E and M, the reciprocal property holds, 
as shown below: 
 
Instead of expressing the model as  Mean Y = β0 + β1 M + (β2 + β3 M) E    
 
We can also express it as   Mean Y = β0 + β2 E  + (β1 + β3 E) M 
 
So the effect of M on Y has turned into a function of E.  Variable E modifies the effect of 
M on Y. 
 
To conclude this section, let's turn back to equation 10--1 (the main effect model) and 
compare it to equation 10--2 (the interaction model).  In equation 10--1, we fit a model 
with no interaction term because we had deconfounding in mind and had assumed that M 
does not modify the effect of E on Y.  But notice that equation 10--1 can also be written in 
the format of equation 10--2 provided that we force the coefficient of M x E to be zero 
(β3=0): we can rewrite the main effect model 
 
Mean Y = β0 + β1 M + β2 E    
 
as a pseudo-interaction model    
 
Mean Y = β0 + β1 M + β2 E + 0 (M x E)  
             = β0 + β1 M + (β2 + 0 x M) E.   
 
But that pseudo-interaction model implies no effect modification by M!  For both M=1 and 
M=0, the estimated effect of E on Y is the same: β2 + 0 x M = β2. 
 
To sum up, the main effect model treats M as a confounder and denies the possibility of 
effect modification by M, implicitly forcing a coefficient of zero for the interaction term,  
M x E.  Indeed, as we realized in chapters 5 and 6, effect modification and confounding 
never converge.  Once we decide that a variable modifies the effect of another variable, 
we can no longer treat either variable as a confounder of the other.  And vice versa: once 
we decide that a variable confounds the causal relation of interest, we can no longer treat 
it as a modifier of that relation.  (Our decision, of course, may be wrong.)  Finally, in 
regression as in tabular analysis the distance between interaction and effect modification 
is just one line of algebra, but your choice between the two ideas is not arbitrary; it is a 
choice between the two trails of causal inquiry.  For a deterministic scientist, causes 
interact with each other and join hands to complete a sufficient cause of the effect, 
whereas for an indeterministic scientist, causal variables modify each other's effect by 
altering the background causal propensity (chapters 3-5). 



Effect-modification by sex group 
 
To illustrate the math of the previous section, I dichotomized age at 65, and created a 
binary exposure variable AGEBIN (age, binary) that takes the values 0 and 1 for the 
"young" and the "old", respectively.  Then, I fit the following interaction model: 
 
Mean SBP = β0 + β1 SEX + β2 AGEBIN + β3 (SEX x AGEBIN)                     (Equation 10–3) 
 
 
SAS code  
 
PROC GLM; 
 MODEL sbp = sex agebin sex*agebin/SOLUTION; 
 run; 
 
 
 
Selected SAS printout 
 
                               The GLM Procedure 
 
Dependent Variable: sbp   SYSTOLIC BLOOD PRESSURE (mmHg) 
 
                                      Sum of 
Source                     DF        Squares     
 
Model                       3     45179.8130      
 
Error                     996    410428.5430        
 
Corrected Total           999    455608.3560 
 
 
                                     Standard 
      Parameter          Estimate           Error     
 
      Intercept       117.9548495            
      sex               5.4051505      1.65884687      
      agebin           18.1812452      1.95358849       
      sex*agebin      -10.2718486      2.63937319      
 
The regression equation is therefore: 
 
Mean SBP = 118.0 + 5.4 x SEX + 18.2 x AGEBIN – 10.3 x (SEX x AGEBIN)  
 
Or alternatively,  
 
Mean SBP = 118.0 + 5.4 x SEX + (18.2 – 10.3 x SEX) x AGEBIN  
 

      The age effect 



From the viewpoint of effect modification, the model forces heterogeneity of the age 
effect by sex group (Tables 10–5 and 10–6). 
 
 
Table 10–5.  Effect of AGEBIN in women 
Causal assignments Mean SBP = 118.0 + 5.4 SEX  + 18.2 AGEBIN – 10.3 (SEX x AGEBIN) 
AGEBIN=1 (and SEX=0) Mean SBP = 118.0 + 5.4 x 0     + 18.2 x 1          –  10.3 (0 x 1) 
AGEBIN=0 (and SEX=0) Mean SBP = 118.0 + 5.4 x 0     + 18.2 x 0          –  10.3 (0 x 0) 
Effect of AGEBIN  
(mean difference in Y) 

                                                        
                                                 18.2                  

 
 
Table 10–6.  Effect of AGEBIN in men 
Causal assignments Mean SBP = 118.0 + 5.4 SEX  + 18.2 AGEBIN – 10.3 (SEX x AGEBIN) 
AGEBIN=1 (and SEX=1) Mean SBP = 118.0 + 5.4 x 1     + 18.2 x 1          –  10.3 (1 x 1) 
AGEBIN=0 (and SEX=1) Mean SBP = 118.0 + 5.4 x 1     + 18.2 x 0          –  10.3 (1 x 0) 
Effect of AGEBIN  
(mean difference in Y) 

                                                        
                                                 18.2              –  10.3       =  7.9                

 
In women, the mean difference in systolic blood pressure between "old" and "young" is 
18.2 mmHg, whereas in men that difference is 10.3 mmHg smaller: 18.2–10.3 = 7.9 
mmHg.  Recalling the reciprocal property of effect modification, we may also state 
heterogeneity of the sex effect by age:   
 
Mean SBP = 118.0 + 18.2 x AGEBIN + (5.4 – 10.3 x AGEBIN) x SEX  
 

                 The sex effect 
 
In "young" people (AGEBIN=0) the mean difference between men and women is 5.4 
mmHg (men's blood pressure is higher), whereas in "old" people (AGEBIN=1), it is      
5.4 – 10.3 = –4.9 mmHg (women's blood pressure is higher).  Notice that the sex effect 
not only changes quantitatively with aging, but it also changes direction, a phenomenon 
called qualitative effect modification. 
 
Focusing again on the age effect, we find one standard error on the printout (1.95 for the 
coefficient of AGEBIN in women); the other may be computed with additional 
programming code and some effort.  We can get, however, both standard errors by 
specifying the interaction model differently in SAS.  The alternative code (shown below) 
also saves us the trouble of summing two coefficients to estimate the effect in men.  What 
we'll find on the printout is precisely what we need: two sex-specific mean differences and 
their standard errors. 
 
 
Alternative SAS code 
 
PROC GLM; 
 CLASS sex; 
 MODEL sbp = sex agebin(sex)/SOLUTION; 
 run;  



Selected SAS printout 
 
                              The GLM Procedure 
 
                           Class Level Information 
 
                        Class         Levels    Values 
 
                        sex                2    0 1 
 
 
Dependent Variable: sbp   SYSTOLIC BLOOD PRESSURE (mmHg) 
 
                                      Sum of 
Source                     DF        Squares     
 
Model                       3     45179.8130      
Error                     996    410428.5430       
Corrected Total           999    455608.3560 
 
                                            Standard 
    Parameter             Estimate             Error    
 
    Intercept          123.3600000             
    sex         0       -5.4051505               
    sex         1        0.0000000                      
    agebin(sex) 0       18.1812452        1.95358849       
    agebin(sex) 1        7.9093966        1.77476275       
 
 
Notwithstanding some technical differences (a different intercept on the printout, which 
may be ignored, and a different kind of parameter estimates), this model is identical to 
the previous one.  Both models display the same distributions of the sum of squares and 
both correspond to equation 10–3.  What we don’t find on the last printout is the 
coefficient of "SEX x AGEBIN”, the estimated heterogeneity of effect, but we can easily 
compute it: 7.9 (the effect in men) – 18.2 (the effect in women) = –10.3 mmHg.   

Finally, notice that there is no point in trying to express our results in the language of 
interaction and expected joined effects, because there is no natural reference for the 
"independent effect of aging" and perhaps not even for the "independent effect of sex 
group".  As I mentioned before, the deterministic idea of interaction sounds appealing 
when smoking interacts with drinking, but not when age group interacts with sex group. 

Since I dichotomized age only for pedagogical reasons, it's time to return to our 
original models.  We may explore effect modification by sex group for any of the three 
dose-response functions of age and blood pressure: linear, quadratic and step function.  
In each case, all that we have to do is to create product terms: to "multiply" each age 
variable by SEX.  The next three sections show the math and its application to the blood 
pressure data.  
 



 
 
 
Sex group modifies the age effect: the linear function 
 
For AGE, a continuous variable, the interaction model is almost identical.  We just 
substitute AGE for AGEBIN. 
 

Mean SBP = β1 + β2 AGE + β3 SEX + β4 AGE x SEX 
 

           = β1 + β3 SEX + (β2 + β4 SEX) AGE  
 
As the last expression shows, the mean difference per 1 year of aging is a function of sex 
group: (β2 + β4 SEX).  Explicitly, it is β2 in women and β2 + β4 in men. 
 
SAS code 
 
PROC GLM; 
 MODEL sbp = age sex age*sex/SOLUTION; 
 run; 
 
Selected SAS printout 
                               The GLM Procedure 
 
Dependent Variable: sbp   SYSTOLIC BLOOD PRESSURE (mmHg) 
                                          
       Parameter         Estimate               
 
       Intercept      64.22615646           
       age             0.99183335 (β2)        
       sex            30.66235703           
       age*sex        -0.47363705 (β4)   
 
Notice that the results are identical to those of stratified regression (the first printout in 
this chapter): 0.99 mmHg per 1 year of aging in women and 0.52 mmHg (0.99–0.47) in 
men.  Again, alternative SAS code (below) will provide the sex-specific estimates directly, 
as well as the two standard errors. 
 
SAS code 
 
PROC GLM; 
 CLASS sex; 
 MODEL sbp = sex age(sex)/SOLUTION; 
 run; 
 
 
 
 



Selected SAS printout                               
 

The GLM Procedure 
 
Dependent Variable: sbp   SYSTOLIC BLOOD PRESSURE (mmHg) 
 
                                           Standard 
     Parameter           Estimate             Error    
 
     Intercept        94.88851349        
     sex       0     -30.66235703        
     sex       1       0.00000000         
     age(sex)  0       0.99183335        0.08973957       
     age(sex)  1       0.51819630        0.08252862      
   
The printout shows the sex-specific estimates and the standard errors.  No computation is 
needed.  Ignore the other estimates. 
 
 
Sex group modifies the age effect: the “step” function 
 
When a step function connects age to systolic blood pressure, the interaction model 
should contain the set of dummy variables of age, the sex variable, and as many product 
terms as there are dummy variables (because each age variable should be multiplied by 
SEX). 
 

Mean SBP = β1 + β2 AGE2 + β3 AGE3 + β4 AGE4 + β5 SEX + 
                                  β6 AGE2 x SEX + β7 AGE3 x SEX + β8 AGE4 x SEX 
 

= β1 + β5 SEX + (β2 + β6 SEX) AGE2 + (β3 + β7 SEX) AGE3 + (β4 + β8 SEX) AGE4 
 
The expressions in bold print show the effect of each age variable on blood pressure, 
which varies by sex.  Specifically: 
 
• “β2 + β6 SEX” is the mean difference in systolic blood pressure between the second and 

first age groups.  Explicitly, the mean difference is β2 in women and β2 + β6 in men. 
 
• “β3 + β7 SEX” is the mean difference in systolic blood pressure between the third and 

first age groups.  Explicitly, the mean difference is β3 in women and β3 + β7 in men. 
 
• “β4 + β8 SEX” is the mean difference in systolic blood pressure between the fourth and 

first age groups.  Explicitly the mean difference is β4 in women and β4 + β8 in men. 
 
SAS code 
 
PROC GLM; 
 MODEL sbp = age2 age3 age4 sex  
             age2*sex age3*sex age4*sex /SOLUTION; 
 run; 



 
Selected SAS printout 
 
 
                               The GLM Procedure 
 
Dependent Variable: sbp   SYSTOLIC BLOOD PRESSURE (mmHg) 
 
       Parameter         Estimate          
 
       Intercept      113.2562500       
       age2            10.1070594 (β2)    
       age3            19.8755682 (β3)      
       age4            28.4810381 (β4)       
       sex              6.4693598       
       age2*sex        -2.0900220 (β6)       
       age3*sex       -10.4904184 (β7)       
       age4*sex       -12.3282695 (β8)      
 
 
Again, to get all of the sex-specific estimates and all of the standard errors directly, we 
could use the alternative code below: 
 
SAS code 
 
PROC GLM; 
 CLASS sex; 
 MODEL sbp = sex age2(sex) age3(sex) age4(sex) /SOLUTION; 
 run; 
 
 
 
Selected SAS printout 
 
                                           Standard 
     Parameter           Estimate             Error     
 
     Intercept        119.7256098       
     sex       0       -6.4693598        
     sex       1        0.0000000         
     age2(sex) 0       10.1070594        2.30756135        
     age2(sex) 1        8.0170373        2.30809831       
     age3(sex) 0       19.8755682        2.46496412        
     age3(sex) 1        9.3851497        2.21851578        
     age4(sex) 0       28.4810381        3.03124552       
     age4(sex) 1       16.1527686        2.78699217       
 
The printout shows six sex-specific estimates (bold print) and six standard errors.  (Ignore 
again the intercept and the coefficient of SEX.) 



 
 
Sex group modifies the age effect: the quadratic function 
 
Since the quadratic model contains two age variables (AGE and AGE2), both should be 
multiplied by SEX.   
  
Mean SBP = β1 + β2 AGE + β3 AGE2 + β4 SEX + β5 AGE x SEX + β6 AGE2 x SEX 

 
Here, however, we cannot compute the age effect by grouping terms (for reasons that 
require some knowledge of calculus.)  The safest method would be to enter the values of 
the causal assignments of interest, compute two predicted means, and then subtract one 
predicted mean from the other to get the estimated mean difference.  Since the quadratic 
function already contains the idea of effect modification by the exposure itself (chapter 
9), the mean difference will vary by both age and sex. 
 
 
SAS code 
 
PROC GLM; 
 MODEL sbp = age age*age sex age*sex age*age*sex/SOLUTION; 
 run; 
 
 
Selected SAS printout 
 
                               The GLM Procedure 
 
Dependent Variable: sbp   SYSTOLIC BLOOD PRESSURE (mmHg) 
 
      Parameter           Estimate            
 
      Intercept        64.20942108      
      age               0.99238737 (β2)      
      age*age          -0.00000446 (β3)      
      sex               8.20730762 (β4)     
      age*sex           0.26943363 (β5)      
      age*age*sex      -0.00597460 (β6)      
 
We will stop at this level of complexity, which is complicated enough, and not worry about 
the standard errors or about using an alternative code with a "class statement". 
 
 



A single interaction model (versus stratification on the modifier)  
 
You may wonder why not simply use stratified regression (sex-specific models) instead of 
complex models that contain interaction terms.  Indeed, the results of stratified 
regression would have been identical in all of the examples above.  The two methods, 
however, might generate different results when the model contains other covariates.  If we 
had to condition on GENOTYPE, for example, while estimating the sex-specific mean 
difference for the age effect, the following two SAS codes might produce different 
estimates: 
 
Stratified regression: 
 

PROC GLM; 
  MODEL sbp = age genotype /SOLUTION; 
  BY sex 
  run; 
 
Interaction model: 
 

PROC GLM; 
  MODEL sbp = age sex age*sex genotype/SOLUTION; 
  run; 
 
So which method should you choose if you have to account for confounders while 
estimating heterogeneity of effects: stratum-specific models or a single model that 
contains interaction term(s)? 

You will find both approaches in the literature.  I prefer an interaction model to 
stratified regression (for a reason that has nothing to do with statistical testing of a null 
hypothesis about the coefficients of interaction terms.)  When we search for modification 
of the age effect by sex while conditioning on genotype, the estimated effect of age in 
each sex group behaves like a weighted average across the strata of the genotype.  If the 
genotype distribution in women differs from its distribution in men, the sex-specific 
estimates (of the age effect) from stratified regression will be based on different sets of 
weights.  In contrast, sex-specific estimates from an interaction model will rely on the 
genotype distribution in the entire sample—on the same set of weights.  (This paragraph 
may require a second reading.) 

Obviously, stratified regression is not possible when the postulated modifier is a 
continuous variable.  For example, if we reverse our interest in sex and age, wishing to 
estimate the effect of sex in the "strata" of age, we cannot stratify on age (unless we 
categorize the variable).  Nonetheless, the various interaction models we have already fit 
also provide estimates of the sex effect for any specified age—because effect modification 
is a reciprocal property.  To illustrate the computation, let's look again at the interaction 
model between AGE (the continuous variable) and SEX. 
 
SAS code 
 
PROC GLM; 
 MODEL sbp = age sex age*sex/SOLUTION; 
 run; 



Selected SAS printout 
                               The GLM Procedure 
 
Dependent Variable: sbp   SYSTOLIC BLOOD PRESSURE (mmHg) 
                                          
       Parameter         Estimate               
 
       Intercept      64.22615646           
       age             0.99183335         
       sex            30.66235703           
       age*sex        -0.47363705   
 
The regression equation is therefore: 
 
Mean SBP  = 64.2 + 0.99 x AGE + 30.7 x SEX – 0.47 x (AGE x SEX)  
       = 64.2 + 0.99 x AGE + (30.7 – 0.47 x AGE) SEX  
 
The expression in bold print is the effect of sex, which is a function of age.  For instance, 
at age 50, the estimated mean difference in systolic blood pressure ("men minus women") 
is 7.2 mmHg (30.7–0.47x50), whereas at age 60 it is only 2.5 mmHg (30.7–0.47x60). 

You may similarly reorganize other interaction models to compute the effect of sex on 
blood pressure.  In each case, you just have to place the variable SEX outside a 
parenthetical expression by which it will be multiplied.  That multiplier in front of SEX 
will be a function of age, estimating the mean difference in blood pressure between men 
and women for any specified age. 
 
 
The modified probability difference 
 
At the end of chapter 9, we used linear regression to estimate probability differences of 
hypertension.  The very same model (linear probability) may also be used to explore 
effect modification of the probability difference.   
 
SAS code 
 
PROC GLM; 
 MODEL htn = age sex age*sex/SOLUTION; 
 
Selected SAS printout 
 
                               The GLM Procedure 
 
Dependent Variable: htn  HYPERTENSION STATUS 
 
       Parameter         Estimate                
 
       Intercept     -.6251373904       
       age           0.0137632442       
       sex           0.3115557943       
       age*sex       -.0049497992       



 
 
The regression equation is 
 
Pr (HTN=1)  =  –0.625 + 0.014 x AGE + 0.312 x SEX – 0.005 x (AGE x SEX)  
        =   –0.625 + 0.014 x AGE + (0.312 – 0.005 x AGE) SEX  
 
And the expression in bold print is the estimated probability difference between men and 
women—forced to be a function of age.  For example, at age 50, the probability 
difference of hypertension is 0.062 (=0.312–0.005x50), or 6.2 percentage points higher 
for men, whereas at age 60 that difference is 1.2 percentage points.  By solving the 
equation "0.312–0.005xAGE=0" we can even estimate the age at which sex equity is 
reached.  According to this model the sex effect is zero at age 62.4.  Beyond that age, the 
probability of hypertension is actually lower in men than in women and the absolute 
difference gradually increases. 
 
If you wish to estimate the probability difference per 1 year of aging as a function of sex, 
regroup the terms, and place AGE (rather than SEX) outside a parenthetical expression: 
 
Pr (HTN=1)  =  –0.625 + 0.014 x AGE + 0.312 x SEX – 0.005 x (AGE x SEX) 

       =   –0.625 + 0.312 x SEX + (0.014 – 0.005 x SEX) AGE 
 
Then, the probability difference per 1 year of aging is 0.014 in women (1.4 percentage 
points) and 0.009 in men (0.9 percentage point).  The model indicates that the effect of 
aging on hypertension is larger in women than in men, similar to the effect of aging on 
mean systolic blood pressure (see the first printout in this chapter).  Notice that we have 
been exploring effect modification on the additive scale, because our measure of effect 
was the probability difference, not the probability ratio. 
 
 
A word about ANCOVA 
 
ANCOVA (analysis of covariance) is an extension of ANOVA (analysis of variance), which 
was mentioned in the previous chapter.  What's the difference?  In ANCOVA, covariates 
are added to the model to deconfound or to explore effect modification, so the main 
feature of the output is something called "adjusted means": predicted means of the 
dependent variable at some values of the covariates (usually at their means).  But just like 
ANOVA, the story is no more than linear regression of the dependent variable on dummy 
variables (and covariates). 

You don’t really need ANCOVA models to estimate the conditional mean difference 
or the modified mean difference.  All of these models can be expressed in the language of 
linear regression. 
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