Econ 481, 482 prerequisite tools: review notes

Econ 339/Econ 276 tools

Let \(X \) be a normally distributed random variable such that \(E(X) = u_x \) and \(E(X - u_x)^2 = \sigma_x^2 \) (variance).

Let \(X_1, ..., X_T \) denote a random sample of size \(T \).

Estimator of the mean of \(X \): \(\hat{u}_x = \bar{X} = \frac{\sum_{t=1}^{T} X_t}{T} \).

Unbiased estimator: \(E(\bar{X}) = u_x \)

Estimator of the variance: \(\hat{\sigma}_x^2 = \frac{\sum_{t=1}^{T} (X_t - \bar{X})^2}{T - 1} \)

Standard error of \(\bar{X} \): \(\sigma_{\bar{X}} = \frac{\sigma_x}{\sqrt{T}} \)

Estimated standard error of \(\bar{X} \): \(\hat{\sigma}_{\bar{X}} = \frac{\hat{\sigma}_x}{\sqrt{T}} \)

\(t \) statistic: \(\frac{\bar{X}}{\sigma_{\bar{X}}} \sim t_{T-1} \)

Hypothesis testing: \(H_0: u_x = c, \quad H_1: u_x \neq c \)

\(\left| \frac{\bar{X} - c}{\sigma_{\bar{X}}} \right| > t_{0.975}^{T-1} \Rightarrow \text{reject } H_0 \text{ at the 5% level of significance for a two-tailed test} \)
Math tools for Econ 361

\(\ln(zx) = \ln(z) + \ln(x) \) and \(\ln \left(\frac{z}{x} \right) = \ln(z) - \ln(x) \)

\(\ln(x^b) = b \ln(x) \)

Let \(y = ax^n \), then \(\frac{dy}{dx} = nax^{n-1} \)

Let \(y = a \), then \(\frac{dy}{dx} = 0 \)

Let \(y = a\ln(x) \), then \(\frac{dy}{dx} = \frac{a}{x} \)

Let \(y = zx \), then \(\frac{dy}{dx} = z + x \left(\frac{dz}{dx} \right) \)

Let \(y = ax^n z^b \), then
\[
\frac{dy}{dx} = \frac{\partial y}{\partial x} \frac{dx}{dx} + \frac{\partial y}{\partial z} \frac{dz}{dx}
\]
\[= nax^{n-1} z^b dx + bax^n z^{b-1} dz \]

Let \(y = ae^{bx} \), then \(\frac{dy}{dx} = bae^{bx} \)

Econ 361 tools

Total revenue: \(TR = PQ \)

Average revenue: \(AR = \frac{TR}{Q} = P \)

Marginal revenue: \(MR = \frac{d(TR)}{dQ} = P + Q \left(\frac{dP}{dQ} \right) \)

Point elasticity of demand: \(\eta_{qp} = \left(\frac{dQ}{dP} \right) \left(\frac{P}{Q} \right) \)
Arc elasticity of demand: \(\eta_{qp} = \left(\frac{\Delta Q}{\Delta P} \right) \left(\frac{P_1 + P_2}{Q_1 + Q_2} \right) \), where \(\Delta Q = Q_2 - Q_1 \) and \(\Delta P = P_2 - P_1 \).

Total Cost: \(TC = C(Q) \)

Average Cost: \(AC = \frac{TC}{Q} \)

Marginal Cost: \(MC = \frac{d(TC)}{dQ} \)

Production function: \(Q = F(K, L) \)

Average products of capital and labor: \(AP_k = \frac{Q}{K}, \ AP_l = \frac{Q}{L} \)

Marginal products of capital and labor: \(MP_k = \frac{\partial Q}{\partial K}, \ MP_l = \frac{\partial Q}{\partial L} \)

Marginal rate of technical substitution: \(MRTS_{kl} = -\frac{dK}{dL} = \frac{MP_l}{MP_k} \)

Elasticity of substitution: \(\sigma_{kl} = \frac{\% \Delta (K/L)}{\% \Delta (w/r)} \), where \(w \) is the wage rate and \(r \) is the rental rate on capital.

Utility function: \(U = G(x, y) \)

Marginal utilities of \(x \) and \(y \): \(MU_x = \frac{\partial U}{\partial x}, \ MU_y = \frac{\partial U}{\partial y} \)

Marginal rate of substitution: \(MRS_{yx} = -\frac{dy}{dx} = \frac{MU_x}{MU_y} \)

Utility function for \(n \) goods: \(U = G(x_1, ..., x_n) \)

Budget constraint: \(y = p_1x_1 + \ldots + p_nx_n = \sum_{i=1}^{n} p_ix_i \)
Demand function for good 1: \(x_1 = d_1(p_1, ..., p_n, y) \)

Pure income effect on the demand for good 1: \(\frac{\partial x_1}{\partial y} < 0 \)

Slutsky equation for good 1:

\[
\frac{\partial x_1}{\partial p_1} = \left(\frac{\partial x_1}{\partial p_1} \right)_{\bar{u}} - x_1^* \frac{\partial x_1}{\partial y}
\]

where \(\frac{\partial x_1}{\partial p_1} \gg 0 \) is the slope of the ordinary (uncompensated) demand curve,
\(\left(\frac{\partial x_1}{\partial p_1} \right)_{\bar{u}} < 0 \) is the substitution effect (slope of the compensated demand curve), and
\(-x_1^* \frac{\partial x_1}{\partial y} \ll 0 \) is the income effect of the price change.