I. Labor supply effects of a no exemption NIT plan (R = 0)

A. Program parameters: \(G, t, Y_e = \frac{G}{t} \)

1. \(\text{NIT} = G - tY \) for \(Y \leq Y_e \)

2. New budget line: \(Y = \text{NIT} + wh + I \)
 \[= G - t(wh + I) + wh + I \]
 \[= G + (1-t)(wh + I) \]
 \[= G + (1-t)I + (1-t)wh \]

3. Break-even hours of work at wage \(w \): \(h_e = \frac{Y_e - I}{w} \)

4. Changes in nonlabor income and wages for someone on the program
 a. \(\Delta I = G + (1-t)I - I \) or

 \[
 \Delta I = G - tI
 \]

 b. \(\Delta w = (1-t)w - w \) or

 \[
 \Delta w = -tw
 \]

5. Approximate change in hours of work for someone who opts for the program.
 a. The ordinary (uncompensated) labor supply function: \(h = h(w,I) \)
 b. The change in hours is given by

 \[
 dh = \frac{\partial h}{\partial w} dw + \frac{\partial h}{\partial I} dI
 \]
 \[= -tw \frac{\partial h}{\partial w} + (G - tI) \frac{\partial h}{\partial I}, \text{ for } dw = -tw \text{ and } dI = G - tI \]
 \[= -tw \left[S + h_0 \frac{\partial h}{\partial I} \right] + (G - tI) \frac{\partial h}{\partial I} \text{ (since } \frac{\partial h}{\partial w} = S + h_0 \frac{\partial h}{\partial I} \text{)} \]
 \[= -twS - twh_0 \frac{\partial h}{\partial I} + (G - tI) \frac{\partial h}{\partial I} \]

 where \(-twS \) is the substitution effect of the wage change,

 \(-twh_0 \frac{\partial h}{\partial I} \) is the income effect of the wage change, and

 \((G - tI) \frac{\partial h}{\partial I} \) is the pure income effect of the program.
c. Let h_0 and h_1 represent labor supply before and after the program, respectively.

 (1) If the individual does not opt for the program, set $dh = 0$ so that $h_1 = h_0$.

 (2) If the individual opts for the program

 and $dh + h_0 \geq T$, set $h_1 = T$;

 or if $dh + h_0 \leq 0$, set $h_1 = 0$;

 otherwise $h_1 = dh + h_0$.

6. Discrete or actual change in hours of work for someone who opts for the program.

 a. $h_0 = h(W, I)$ and $\tilde{h} = h((1-t)w, G+(1-t)I)$.

 b. $\Delta h = \tilde{h} - h_0$

 = $h((1-t)w, G+(1-t)I) - h(w, I)$.

 (1) If the individual does not opt for the program,

 $\Delta h = 0$ and $h_1 = h_0$.

 (2) If the individual opts for the program

 and $\tilde{h} \geq T$, set $h_1 = T$;

 or if $\tilde{h} \leq 0$, set $h_1 = 0$;

 otherwise $h_1 = \tilde{h}$.

7. Computation of income changes for one who opts for the program.

 a. $\Delta Y = Y_1 - Y_0$

 where $Y_1 = G + (1-t)(wh_1 + I)$ (after)

 and $Y_0 = wh_0 + I$ (before).

 b. $NIT = G - t(wh_1 + I)$.
B. Suppose $h_e > T$

1. The individual would definitely opt for the program.

2. $Y_e = \frac{G}{t} > wT + I$

3. $G + (1-t)I > I$ and $G + (1-t)(wT + I) > wT + I$
C. Suppose $0 < h_e \leq T$

1. $0 < h_0 < h_e$

 a. The individual would definitely opt for the program.

 b. Hours of work greater than h_e could have been selected before and were not, therefore the individual would be better off somewhere along the new budget line up to h_e.

2. Suppose $h_e \leq h_0 \leq T$

 a. One cannot tell whether or not the individual will opt for the program without knowledge of the individual's utility function.

 b. If $U(Y_0, h_0) \geq U(Y_1, h_1)$, then the individual would not opt for the program.

 c. If $U(Y_0, h_0) < U(Y_1, h_1)$, then the individual would opt for the program.
D. Suppose $h_e \leq 0$

1. The individual will *not* opt for the program.

2. $G + (1-t)I \leq T$.

3. $Y_e = \frac{G}{t} \leq I$.
Numerical Example of the NIT Impact on Labor Supply

Let $G = 4800/yr$, $t = \frac{1}{2}$, $R = 0$, then $Y_e = \frac{G}{t} = \frac{4800}{\frac{1}{2}} = 9600/yr$.

If $Y < 9600$, then

$\text{NIT} = 4800 - \frac{1}{2} Y$, and

$Y_T = 4800 + \frac{1}{2} Y$.

Consider the case of an individual with the following circumstances:

$w = 4.00/\text{hr}$, $h_0 = 2000 \text{ hrs./yr}$, and $I = 0$.

Therefore $Y = 4h \Rightarrow Y_0 = (4)(2000) = 8000$

$h_o = \frac{Y_o - I}{w}$

$= \frac{9600 - 0}{4}$

$= 2400 \text{ hrs/yr}$.

Since $h_0 = 2000 < 2400$, the individual would definitely opt for the program.

$\Delta I = G + (1-t)I - I$

$= G - tI$

$= 4800 - \left(\frac{1}{2}\right)(0)$

$\boxed{\Delta I = 4800}$

$\Delta w = -tw$

$= -\left(\frac{1}{2}\right)(4)$

$\boxed{\Delta w = -2}$
Suppose the labor supply function is given by the following Ashenfelter-Heckman type:

\[\Delta h = 33.5 \Delta w - 0.035(h^* \Delta w + \Delta I) \]

\[= 33.5 \Delta w - 0.035 h^* \Delta w - 0.035 \Delta I \]

\[= (33.5)(-2) - (0.035)(2000)(-2) - (0.035)(4800) \] (letting \(h^* = h_0 = 2000 \))

\[= -67 + 140 - 168 \]

(S.E. of \(\Delta w \)) \hspace{1cm} (I.E. of \(\Delta w \)) \hspace{1cm} (pure I.E. of \(\Delta I \))

\[\Delta h = -95 \text{ hrs} \]