The Solution Function and the Value Function for a Maximization Problem

Consider the maximization problem

$$\max_{x \in X} f(x; \theta) \text{ subject to } G(x; \theta) \leq \mathbf{0}$$
(P)

for values of θ in some set Θ . Note that we're maximizing over x and not over θ : x is a variable in the problem (typically a vector or *n*-tuple of variables) and θ is a parameter (typically a vector or *m*tuple of parameters). The parameters may appear in the objective function and/or the constraints, if there are any constraints. We associate the following two functions with the maximization problem (**P**), where we're assuming that for each $\theta \in \Theta$ the problem (**P**) has a unique solution:

> the solution function: $x(\theta)$ is the x that's the solution of (**P**) the value function: $v(\theta) := f(x(\theta), \theta)$.

The solution function $x : \Theta \to X$ gives the solution x as a function of the parameters; the value function $v : \Theta \to \mathbb{R}$ gives the value of the objective function as a function of the parameters.

Example 1: The consumer maximization problem (CMP) in demand theory,

$$\max_{\mathbf{x}\in\mathbb{R}_+^\ell} u(\mathbf{x}) \text{ subject to } \mathbf{p}\cdot\mathbf{x} \leq w$$

Here θ is the $(\ell + 1)$ -tuple $(\mathbf{p}; w)$ consisting of the price-list \mathbf{p} and the consumer's wealth w.

The solution function is the consumer's demand function $\mathbf{x}(\mathbf{p}; w)$.

The value function is the consumer's indirect utility function $v(\mathbf{p}; w) = u(\mathbf{x}(\mathbf{p}; w))$.

Example 2: The expenditure-minimization problem (EMP) in demand theory,

$$\min_{\mathbf{x}\in\mathbb{R}^{\ell}_{+}} E(\mathbf{x};\mathbf{p}) = \mathbf{p}\cdot\mathbf{x} \text{ subject to } u(\mathbf{x}) \geqq \overline{u}.$$

Here θ is the $(\ell + 1)$ -tuple $(\mathbf{p}; \overline{u})$ consisting of the price-list \mathbf{p} and the consumer's target level of utility, \overline{u} .

The solution function is the consumer's Hicksian (compensated) demand function $h(\mathbf{p}, \overline{u})$. The value function is the consumer's expenditure function $e(\mathbf{p}, \overline{u}) = E(h(\mathbf{p}, \overline{u}), \mathbf{p})$. **Example 3:** The firm's cost-minimization (*i.e.*, expenditure-minimization) problem,

$$\min_{\mathbf{x} \in \mathbb{R}_+^\ell} E(\mathbf{x}; \mathbf{w}) = \mathbf{w} \cdot \mathbf{x} \text{ subject to } F(\mathbf{x}) \geqq y.$$

Here F is the firm's production function; \mathbf{x} is the ℓ -tuple of input levels that will be employed; $E(\mathbf{x}; \mathbf{w})$ is the resulting expenditure the firm will incur; and θ is the $(\ell + 1)$ -tuple $(y; \mathbf{w})$ consisting of the proposed level of output, y, and the ℓ -tuple \mathbf{w} of input prices.

The solution function is the firm's input demand function $\mathbf{x}(y; \mathbf{w})$.

The value function is the firm's cost function $C(y; \mathbf{w}) = E(\mathbf{x}(y; \mathbf{w}); \mathbf{w})$.

Example 4: The Pareto problem (P-Max),

$$\max_{\mathbf{x}\in\mathcal{F}} u^1(\mathbf{x}^1) \text{ subject to } u^2(\mathbf{x}^2) \ge u_2, \ldots, u^n(\mathbf{x}^n) \ge u_n.$$

where \mathcal{F} is the feasible set $\{\mathbf{x} \in \mathbb{R}^{n\ell}_+ \mid \sum_{1}^{n} \mathbf{x}^i \leq \mathbf{x}\}$. (Note that we're using superscripts for utility *functions* and subscripts for utility *levels*.) Here θ is the (n-1)-tuple of utility levels u_2, \ldots, u_n .

The solution function is $\mathbf{x}(u_2, \ldots, u_n)$, which gives the Pareto allocation as a function of the utility levels u_2, \ldots, u_n .

The value function is $u^1(\mathbf{x}(u_2, \ldots, u_n))$, which gives the maximum attainable utility level u_1 as a function of the utility levels u_2, \ldots, u_n .

The value function therefore describes the utility frontier for the economy $((u^i)_1^n, \mathbf{\dot{x}})$, as depicted in the diagram below for the case n = 2.

