The Solution Function and the Value Function for a Maximization Problem

Consider the maximization problem

$$
\begin{equation*}
\max _{x \in X} f(x ; \theta) \text { subject to } G(x ; \theta) \leqq 0 \tag{P}
\end{equation*}
$$

for values of θ in some set Θ. Note that we're maximizing over x and not over $\theta: x$ is a variable in the problem (typically a vector or n-tuple of variables) and θ is a parameter (typically a vector or m tuple of parameters). The parameters may appear in the objective function and/or the constraints, if there are any constraints. We associate the following two functions with the maximization problem (\mathbf{P}), where we're assuming that for each $\theta \in \Theta$ the problem (\mathbf{P}) has a unique solution:
the solution function: $x(\theta)$ is the x that's the solution of (\mathbf{P}) the value function: $v(\theta):=f(x(\theta), \theta)$.

The solution function $x: \Theta \rightarrow X$ gives the solution x as a function of the parameters; the value function $v: \Theta \rightarrow \mathbb{R}$ gives the value of the objective function as a function of the parameters.

Example 1: The consumer maximization problem (CMP) in demand theory,

$$
\max _{\mathbf{x} \in \mathbb{R}_{+}^{\ell}} u(\mathbf{x}) \text { subject to } \mathbf{p} \cdot \mathbf{x} \leqq w
$$

Here θ is the $(\ell+1)$-tuple ($\mathbf{p} ; w)$ consisting of the price-list \mathbf{p} and the consumer's wealth w.
The solution function is the consumer's demand function $\mathbf{x}(\mathbf{p} ; w)$.
The value function is the consumer's indirect utility function $v(\mathbf{p} ; w)=u(\mathbf{x}(\mathbf{p} ; w))$.

Example 2: The expenditure-minimization problem (EMP) in demand theory,

$$
\min _{\mathbf{x} \in \mathbb{R}_{+}^{\ell}} E(\mathbf{x} ; \mathbf{p})=\mathbf{p} \cdot \mathbf{x} \text { subject to } u(\mathbf{x}) \geqq \bar{u}
$$

Here θ is the $(\ell+1)$-tuple $(\mathbf{p} ; \bar{u})$ consisting of the price-list \mathbf{p} and the consumer's target level of utility, \bar{u}.

The solution function is the consumer's Hicksian (compensated) demand function $h(\mathbf{p}, \bar{u})$. The value function is the consumer's expenditure function $e(\mathbf{p}, \bar{u})=E(h(\mathbf{p}, \bar{u}), \mathbf{p})$.

Example 3: The firm's cost-minimization (i.e., expenditure-minimization) problem,

$$
\min _{\mathbf{x} \in \mathbb{R}_{+}^{\ell}} E(\mathbf{x} ; \mathbf{w})=\mathbf{w} \cdot \mathbf{x} \text { subject to } F(\mathbf{x}) \geqq y
$$

Here F is the firm's production function; \mathbf{x} is the ℓ-tuple of input levels that will be employed; $E(\mathbf{x} ; \mathbf{w})$ is the resulting expenditure the firm will incur; and θ is the $(\ell+1)$-tuple $(y ; \mathbf{w})$ consisting of the proposed level of output, y, and the ℓ-tuple \mathbf{w} of input prices.

The solution function is the firm's input demand function $\mathbf{x}(y ; \mathbf{w})$.
The value function is the firm's cost function $C(y ; \mathbf{w})=E(\mathbf{x}(y ; \mathbf{w}) ; \mathbf{w})$.

Example 4: The Pareto problem (P-Max),

$$
\max _{\mathbf{x} \in \mathcal{F}} u^{1}\left(\mathbf{x}^{1}\right) \text { subject to } u^{2}\left(\mathbf{x}^{2}\right) \geqq u_{2}, \ldots, u^{n}\left(\mathbf{x}^{n}\right) \geqq u_{n}
$$

where \mathcal{F} is the feasible set $\left\{\mathbf{x} \in \mathbb{R}_{+}^{n \ell} \mid \sum_{1}^{n} \mathrm{x}^{i} \leqq \mathrm{x}\right\}$. (Note that we're using superscripts for utility functions and subscripts for utility levels.) Here θ is the ($n-1$)-tuple of utility levels u_{2}, \ldots, u_{n}.

The solution function is $\mathbf{x}\left(u_{2}, \ldots, u_{n}\right)$, which gives the Pareto allocation as a function of the utility levels u_{2}, \ldots, u_{n}.
The value function is $u^{1}\left(\mathbf{x}\left(u_{2}, \ldots, u_{n}\right)\right)$, which gives the maximum attainable utility level u_{1} as a function of the utility levels u_{2}, \ldots, u_{n}.

The value function therefore describes the utility frontier for the economy $\left(\left(u^{i}\right)_{1}^{n}, \stackrel{\circ}{\mathbf{x}}\right)$, as depicted in the diagram below for the case $n=2$.

