
Continuous Functions in Metric Spaces

Throughout this section let (X, dX) and (Y, dY ) be metric spaces.

Definition: Let x ∈ X. A function f : X → Y is continuous at x if for every sequence {xn}
that converges to x, the sequence {f(xn)} converges to f(x).

Definition: A function f : X → Y is continuous if it is continuous at every point in X.

Theorem: A function f : X → Y is continuous at x if and only if for every ε > 0 there is a

δ > 0 such that dX(x, x) < δ ⇒ dY (f(x), f(x)) < ε — i.e.,

∀ε > 0 : ∃δ > 0 : x ∈ B(x, δ)⇒ f(x) ∈ B(f(x), ε). (∗)

Proof:

(⇒:) Let ε > 0. Suppose, by way of contradiction, that there is no δ > 0 such that

dX(x, x) < δ ⇒ dY (f(x), f(x)) < ε — i.e.,

∀δ > 0 : ∃x ∈ B(x, δ) for which f(x) 6∈ B(f(x), ε).

Then, in particular, for every n ∈ N, let 1
n

play the role of δ above: there is an xn ∈ B(x, 1
n
)

for which f(xn) 6∈ B(f(x), ε). We therefore have a sequence {xn} in X that converges to x

but the sequence {f(xn)} does not converge to f(x), contradicting our assumption that f is

continuous.

(⇐:) Assume that (∗) holds, and let {xn} be a sequence that converges to x. In order to

show that {f(xn)} converges to f(x), let ε > 0. According to (∗), there is a δ > 0 for which

x ∈ B(x, δ)⇒ f(x) ∈ B(f(x), ε).

Since {xn} → x, we can choose n ∈ N such that n > n⇒ xn ∈ B(x, δ). But then

n > n⇒ f(xn) ∈ B(f(x), ε);

i.e., {f(xn)} converges to f(x), and f is therefore continuous at x.

Remark: For functions f from Rn to Rm this theorem says that f is continuous at x ∈ Rn

if and only if for every ε > 0 there is a δ > 0 such that ‖x− x‖ < δ ⇒ ‖f(x)− f(x)‖ < ε.

Theorem: A function f : X → Y is continuous if and only if for every open set V in Y the

inverse image f−1(V ) is an open set in X.

Proof: Exercise.



An elementary consequence of the preceding theorem is its analogue in terms of closed sets:

Theorem: A function f : X → Y is continuous if and only if for every closed set S in Y the

inverse image f−1(S) is a closed set in X.

This gives us four equivalent definitions of a continuous function f from X to Y :

If for every sequence {xn} that converges to x, the sequence {f(xn)} converges to f(x).

If for every x ∈ X : ∀ε > 0 : ∃δ > 0 : x ∈ B(x, δ)⇒ f(x) ∈ B(f(x), ε).

If the inverse image of any open set in Y is an open set in X.

If the inverse image of any closed set in Y is a closed set in X.

Remark: We’ve already seen applications of these ideas to preferences and utility functions,

and to the possibility of representing a preference by a utility function.

Remark: When the target space Y is actually a normed vector space, it’s natural to de-

fine the sum and scalar multiple of continuous functions pointwise — i.e., the functions

f + g : X → Y and αf : X → Y are defined by ∀x ∈ X : (f + g)(x) = f(x) + g(x) and

∀x ∈ X : (αf)(x) = αf(x). Then the set C(X;Y ) of all continuous functions on X into Y ,

with these definitions of addition and scalar multiplication, is a vector space.

Proof: Exercise. This requires showing that C(X;Y ) is “closed under vector addition

and scalar multiplication.” This does not mean that C(X;Y ) is a closed set, but rather that

if f and g are in C(X;Y ) and α ∈ R, then f + g and αf are in C(X;Y ) — i.e., that the

sum of continuous functions is a continuous function, and that a multiple of a continuous

function is a continuous function.

For real-valued functions (i.e., if Y = R), we can also define the product fg and (if

∀x ∈ X : f(x) 6= 0) the reciprocal 1/f of functions pointwise, and we can show that if f

and g are continuous then so are fg and 1/f .

Remark: If X, Y , and Z are metric spaces, and if f : X → Y and g : Y → Z are continuous,

then the composition f ◦ g : X → Z is continuous.

In Euclidean space (i.e., Rn with any norm) we say that a set is compact if it’s both

closed and bounded. One of the most important properties of continuous functions is that

they “preserve” compactness — i.e., if X is a compact subset of Rn and if f : X → Rm

is a continuous function, then the image of X, f(X), is a compact set in Rm. This is the

Weierstrass Theorem. In fact, the Weierstrass Theorem holds in general metric spaces:
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Weierstrass Theorem: If X is compact and f : X → Y is continuous, then f(X) is a

compact subset of Y .

Corollary: If f : X → R is a continuous real-valued function on a compact set, then f

attains a maximum and a minimum on X.

Instead of proving the Weierstrass Theorem here, we defer the proof until after we’ve devel-

oped our next important concept, the Bolzano-Weierstrass (B-W) Property. There are two

good reasons for waiting until then to do the proof: (1) we need the B-W Property in order

to generalize the notion of a compact set to general metric spaces, and (2) the theorem’s

proof is much easier using the B-W Property in the general setting than if we were to do it

using the closed-and-bounded definition of compactness in Euclidean space.
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