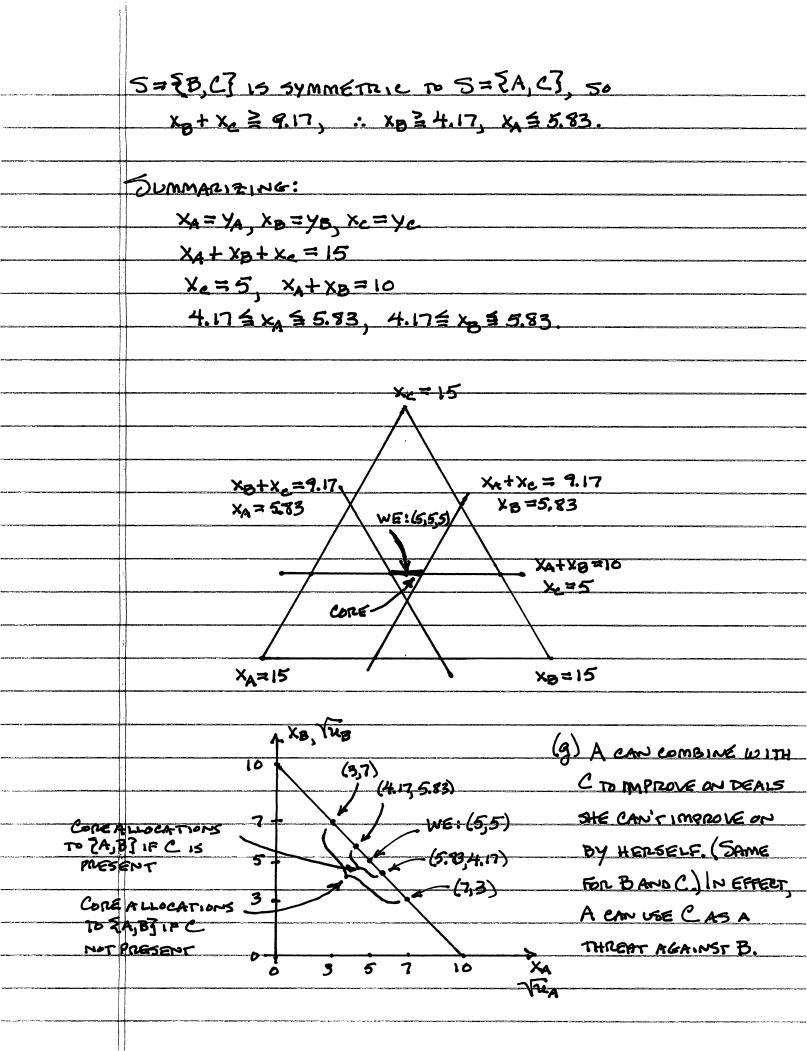
Economics 501B Midterm Exam Solutions Fall 2017


1. We will give an indirect proof by proving the contrapositive statement: If $(\widehat{\mathbf{x}}^i)_N$ is not a Pareto allocation then there is some $h \in N$ for which $(\widehat{\mathbf{x}}^i)_N$ is not a solution of P-Max[h]. Assume that $(\widehat{\mathbf{x}}^i)_N$ is feasible — *i.e.*, $\sum_{i \in N} \widehat{\mathbf{x}}^i \leq \mathring{\mathbf{x}}$ — but is not a Pareto allocation. Then there is a Pareto improvement on $(\widehat{\mathbf{x}}^i)_N$ — a feasible allocation $(\widetilde{\mathbf{x}}^i)_N$ that satisfies

(1) $\forall i \in N : u^i(\widetilde{\mathbf{x}}^i) \ge u^i(\widehat{\mathbf{x}}^i)$ and (2) $\exists h \in N : u^h(\widetilde{\mathbf{x}}^h) > u^h(\widehat{\mathbf{x}}^h).$

Because $(\tilde{\mathbf{x}}^i)_N$ is feasible and satisfies (1), it satisfies all the constraints of every one of the problems P-Max[h]. Therefore (2) implies that there is an $h \in N$ such that $(\hat{\mathbf{x}}^i)_N$ is not a solution of P-Max[h].

(2)
$$u^{1}(x,y) = xy (i=A,B)$$
 $m(5^{i} = \frac{y_{i}}{x_{i}}$
 $(x_{A},y_{A}) = (1,3)$, $(x_{B},y_{B}) = (q,1)$; $u_{A} = u_{B} = q$.
 $(x_{A},y_{A}) = (1,3)$, $(x_{B},y_{B}) = (q,1)$; $u_{A} = u_{A} = q$.
 $(x_{A},y_{A}) = (1,3)$, $(x_{B},y_{B}) = (q,1)$; $u_{A} = u_{A} = q$.
 $(x_{B},y_{A}) = mrs^{2}$, $i=q$, $u_{A} = y_{B} = \frac{10-y_{A}}{10-x_{A}}$, $i=q$, $u_{A} = y_{A}$
 $\therefore 10y_{A} - x_{A}y_{A} = 10x_{A} - x_{A}y_{A}$; $i=q$, $10y_{A} = 10x_{A}$, $i=q$, $x_{A} = y_{A}$
 $\therefore x_{A} = y_{A}$, $x_{B} = y_{B}$, $x_{A} + y_{B} = 10$; $u_{A} = x_{A}^{2}$, $u_{B} = x_{B}^{2}$.
(b) $U^{a} Description (a) = (a) = x_{A}y_{A} = 10$, $y_{A} + y_{B} = 10$; $u_{A} = 25$.
(b) $U^{a} Description (a) = (a) =$

ADD $u^{c}(x,y) = xy$, $(x_{c}, y_{c}) = (5,5)$, $u_{c} = 25$. (d) PARETO: MIGA = MRSB= MRSC : X:= Y: (i=ABc) AND $\Sigma x_i = x = 15$, $\Sigma y_i = y = 15$. : Tup + Tup + Tup = 15. (e) UALRASIAN EQUIL'M: $P_X = P_Y$; $(x_i, y_i) = (5, 5)$, i = A, B, C. : $u_{A} = u_{B} = u_{c} = 25.$ (F) Core: 5= N (PARETO): X; = Y; (Vi) FROM (d); . Jug + Jug + Jug = 15. 5= [i]: un = 2/n = 9, : Tun = 3, : XA, YA = 3 UB≧~20=9, :. ~23, :. ×3, y0≥3 Uc≥ uc=25, : Vuc≥5, : xc, yc≥5. 5= {A,B}: 5 CAN ATTAIN TUA + TUB = 10, FROM (C) OR (4). : LORE MUST HAVE YUA + JUB = 10, XA + XB = 10 COMBINING THE CONDITIONS FOR 5= N, {C], AND {A, B}: $x_A + x_B + x_c = 15$ i.e., $\overline{u_A} + \overline{u_B} + \overline{u_C} = 15$ X2= 5 AND XA+XB= 10 Tuc= 5, TUA+TUB= 10 : \ue=5, \up+ \us=10. · Xe=5, XA+XB=10 $5 = \{A, C\}: (x, y)_{5} = (1, q) + (5, 5) = (6, 14).$ UFs: \u_A+ \u_e = \(6)(14) = \84 = 9.17. CORE REQUIRES Xi=Yi, 50 Un=Xn, Ue= 2 ; Xn= Vun, Xc= The : XA+XC=9.17; : XA=4.17 (SINGE XC=5); : XB= 5.83. (NOTE THAT (4.17) = 17.4, (5.83) = 34.0.)

(3) (a) THE INITIAL ALLOCATION IS ATHE UNIQUE WEA, AT PRIMES THAT SATISFY PX = MRS (9,16) = 16 = 4 Ry Ry Ry (b) THE BUNDLE TO PRE ALLOCATED, (18,32), HASN'T CHANGED FROM (a), SO THE PARETO ALLOCATIONS HAVEN'T CHANGED. IN PARTICULAR, WE STILL HAVE MRSA = MRSB = 3 AT THAT ALLOCATION, AND XA + XB = X AND YA + YB = Y, 50 IT IS PARETO OPTIMAL THE ALLOCATION IS NOT A WEA FOR THE INITIAL ALLOCATION (0,32), (18,0)): AT PRICES (P, P)=(4,3) WE HAVE ALTERNATIVELY, BUDGET -BALANCE REQUIRES - AY = PX $P_{X}\bar{X}_{A} + P_{Y}\bar{Y}_{A} = (A)(0) + (3)(32) = 96$ in, Py = 16 + 4 AX Py 1x x3 + 12, y3 = (4)(18)+(3)(0) = 72 FAILS. BUT $P_{x}x_{i} + P_{y}y_{i} = (4)(9) + (3)(6) = 36 + 48 = 84, i = A, B,$ SO CONSUMERS' BUDGER DUN'T BALANCE (AND THE SAME K FOR ANY MULTIPLE OF (BX, By)=(4,3)). TER Any other Prices PX, Py WE HAVE Py # MIS'(9,16), So (9,16) DOBR'T MAXIMIZE EITHER CONSUMER'S UTILITY FUNCTION. (C) THE IN, MAL ALLOCATION MUST 32 SATISFY $4x_{1}+3y_{1}=(4)(9)+(3)(16)$ = 36+#8 = 844 (i=A,B) 16 AND XA+XB=18, YA+YB=32; i.e., MUST LIE ON THE LINE IN THE DIAGRAM. 0

(d)
$$q_i = f_i(a_i) = 2z_i(j=1,2)$$

 $u^i(x_{i_1}y_{i_1}) = \sqrt{x_i} + \sqrt{y_i}, (x_{i_1}y_{i_1}) = (q_{1}x), max^i = \sqrt{y_i}, (i=A_iB).$
The Free Use Face information to use a near that a lust form of Paceto erroration, to use a near that a lust form of Paceto erroration, to use an use in that a lust form of Paceto erroration, to use an use in the set i