
Economics 501B Final Exam Fall 2017
Solutions

1. For each of the following propositions, state whether the proposition is true or false. If true,

provide a proof (or at least indicate how a proof could be constructed). If false, provide a coun-

terexample and verify that it is a valid counterexample.

(a) If each consumer’s utility function is

(a1) continuous,

(a2) quasiconcave (i.e., upper-contour sets are convex), and

(a3) weakly increasing (i.e., if x̃k = xk for each good k, then u(x̃) = u(x)),

then any Walrasian equilibrium allocation is Pareto optimal.

(b) If every consumer has a lexicographic preference, then there is no Walrasian equilibrium.

Solution: Both propositions are false. Here are counterexamples to each proposition:

(a) There are two consumers, one of whom has a thick indifference curve:

uA(x, y) =


xy, if xy 5 16

16, if 16 5 xy 5 36

xy − 20, if xy = 36

and uB(x, y) = xy.

Each consumer’s endowment is (̊xi, ẙi) = (5, 5). The unique Walrasian equilibrium is px = py with

no trade: each consumer chooses to consume her initial bundle, (5, 5). This allocation is not Pareto

optimal: the allocation
(
(xA, yA), (xB, yB)

)
=
(
(4, 4), (6, 6)

)
is a Pareto improvement, because it

yields (uA, uB) = (16, 36) while (̊uA, ůB) = (16, 25).

(b) There are two consumers and two goods. Consumer A prefers the x-good and Consumer B

prefers the y-good (see Figure 1):

(x′, y′) %A (x, y) ⇔
[
x′ > x or [x′ = x & y′ = y]

]
(x′, y′) %B (x, y) ⇔

[
y′ > y or [y′ = y & x′ = x]

]
The equilibrium prices satisfy px/py = ẙA/x̊B. Consumer A will sell all his y-good to buy the

x-good, and Consumer B will sell all his x-good to buy the y-good, so the equilibrium allocation

is
(
(xA, yA), (xB, yB)

)
=
(
(̊x, 0), (0, ẙ)

)
. Note that this is on each consumer’s budget constraint.



2. When we have a parametric family of optimization problems P (θ) for parameter values θ in

some set Θ of possible parameter values, we’re usually interested in the solution function (or the

solution correspondence) for the set {P (θ) | θ ∈ Θ}, and we’re often interested in the value function

as well. An application of this idea arises in the concept of Pareto optimality. The simplest case

is a “two by two exchange economy,” where there are only two goods and only two consumers,

production is not possible and there are no externalities — and where we use the Edgeworth

box diagram to graphically depict some of our economic concepts. Assume that both consumers’

preferences are representable by continuous, strictly increasing, strictly concave utility functions.

Give a careful explanation of how the following concepts are related to one another in such an

“Edgeworth box” economy: the optimization problems P (θ) and what economic parameters are

playing the role of theta; the solution function or correspondence; the Pareto allocations; the graph

of the Pareto allocations in the box; the value function; and the utility frontier (also called the

Pareto frontier). Why do we refer to the value function and never to the value correspondence?

Solution: The Pareto allocations in this economy are the solutions of the P-Max problem P (u2):

max
x∈R4

+

u1(x11, x
1
2) subject to

x11 + x21 5 x̊1

x12 + x22 5 x̊2

u2(x21, x
2
2) = u2 ,

for the various values of u2 ∈ R.

The parameter that plays the role of θ is u2, the target utility level for Consumer 2. For each

value of u2 (i.e., each value of θ), the solution x̂ =
(
(x̂11, x̂

1
2), (x̂

2
1, x̂

2
2)
)

of the problem P (u2) is the

Pareto allocation in which Consumer 2’s utility level is u2. Therefore the solution function x̂(u2)

tells us the Pareto allocation as a function of u2, and the range of the solution function is the set

of all Pareto allocations, which is the locus of indifference-curve tangencies in the Edgeworth box.

(The solution function is indeed a function — i.e., a singleton-valued correspondence — because

each utility function is strictly concave.) The value function v(θ) (i.e., v(u2)) tells us Person 1’s

utility level u1 at the Pareto allocation in which Person 2’s utility level is u2, so the graph of the

value function u1 = v(u2) is the utility frontier.

The value function has to be single-valued: if for a given θ there were two solutions that gave

different values of the objective function, then the solution with the smaller value would not

actually be a solution.
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3. Amy and Bev both have flower gardens. Their gardens are positioned in such a way that Amy

can see Bev’s garden as well as her own, and Amy therefore derives “utility” both from Bev’s

garden and her own garden. But Bev can’t see Amy’s garden, so she derives utility only from her

own garden. Their preferences are represented by the utility functions

uA(xA, yA, xB) = yA + 12xA − 1
2
x2A + 6xB − 1

2
x2B and

uB(xB, yB) = yB + 8xB − 1
2
x2B ,

where yi is i’s consumption of dollars and xi is the size of i’s garden, in square meters. The cost

of a garden is four dollars per square meter, and each woman is endowed with 100 dollars.

(a) Write down a maximization problem for which the solutions are the Pareto allocations.

(b) Derive the first-order conditions that characterize the solution(s) of the problem in (a).

(c) Determine the Pareto optimal allocations.

(d) Determine the utility (i.e., Pareto) frontier.

(e) Express the first-order conditions in terms of marginal rates of substitution, and suggest prices

and per-unit taxes or subsidies that would yield a Pareto allocation as an equilbrium if Amy and

Bev are both price-takers, even if there is no way for Amy to purchase flowers for Bev’s garden.

Solution:

(a) max
x∈R4

+

uA(xA, yA, xB) subject to uB(xB, yB) = uB and 4xA + 4xB + yA + yB 5 ẙ = 200.

(b) First-order marginal conditions: ∃λB, σ = 0 such that

xA : 12− xA 5 4σ

yA : 1 5 σ

xB : 6− xB 5 4σ − λB(8− xB)

yB : 0 5 σ − λB
and in each case the inequality is an equation if the corresponding variable is positive. The

remaining conditions are that the two constraint inequalities are satisfied, and that the first is an

equation if λB > 0 and the second is an equation if σ > 0.

(c) If all four variables are positive we have

λB = σ = 1

12− xA = 4, therefore xA = 8

(6− xB) + (8− xB) = 4, therefore 2xB = 14− 4 = 10, i.e., xB = 5 .

yA + yB = 200− (4)(13) = 148 .

In fact, since yA, yB > 0 =⇒ λB = σ = 1, this ensures that xA = 12−4 > 0 and 2xB = 14−4 > 0,

so these are all the Pareto allocations in which yA, yB > 0. If either yA = 0 or yB = 0, see below.
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(d) At the Pareto allocations in (c) we have

uA = yA + 12xA − 1
2
x2A + 6xB − 1

2
x2B = yA + 96− 32 + 30− 12.5 = yA + 81.5 and

uB = yB + 8xB − 1
2
x2B = yB + 40− 12.5 = yB + 27.5.

Therefore uA + uB = yA + yB + 109.

The cost of xA + xB = 8 + 5 = 13 is (4)(13) = 52, so yA + yB = 200− 52 = 148,

so we have uA + uB = 148 + 109 = 257.

So the utility frontier is uA + uB = 257.

But that’s for Pareto allocations in which yA, yB > 0. What if either yA = 0 or yB = 0? Here

things get slightly more complicated — I hadn’t noticed this issue when I wrote this question,

unfortunately.

First notice that if either yA = 0 or yB = 0, the allocation in (c) is still a Pareto allocation, but

now it’s not the only Pareto allocation. Next notice that to have yA = 0 on the utility frontier

uA + uB = 257 is to have uA = 81.5 and therefore uB 5 175.5. And to have yB = 0 is to

have uB = 27.5, and therefore uA 5 229.5. So between the points (uA, uB) = (81.5, 175.5) and

(uA, uB) = (229.5, 27.5) the utility frontier is as above, uA + uB = 257. See Figure 2.

If you simply obtained uA + uB = 257 for the utility frontier, that’s fine. For the remainder of the

utility frontier, and the remaining Pareto allocations, see the appendix I’ve added at the end of

these solutions.

(e) Note that MRSA = 12−xA, MRSB = 8−xB, and MRSA
B = 6−xB, where MRSA

B denotes the

marginal rate of substitution of Consumer A for the good xB. So the first-order marginal conditions

at interior allocations, from (c), are MRSA = MC and MRSB +MRSA
B = MC. MC = 4, so we

have 12 − xA = 4 and (8 − xB) + (6 − xB) = 4, so the interior Pareto allocations are at xA = 8

and xB = 5. Note that at xB = 5 we have MRSA
B = 1.

If Amy can’t affect xB directly, the price system could subsidize Bev by an amount s = $1 per

unit. This would lower her net price from $4 per unit to $3 per unit, leading her to choose xB to

satisfy MRSB = p − $1, i.e., 8 − xB = 3, i.e., xB = 5 (assuming that p = MC = $4). Of course

this depends critically on Bev being a price-taker, both for the price per unit and the subsidy per

unit. While this is unrealistic when there are only two people in the market, it’s a more reasonable

assumption when there are “enough” people in the market.
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4. Two Manhattan pretzel vendors must decide where to locate their pretzel carts along a given

block of Fifth Avenue, represented by the unit interval I = [0, 1] ⊆ R — i.e., each vendor chooses

a location xi ∈ [0, 1]. The profit of each vendor i depends continuously on both vendors’ locations

— i.e., the profit functions πi : I × I → R are continuous for i = 1, 2. Furthermore, each πi is

concave (but not strictly concave) in xi.

Define an equilibrium in this situation to be a joint action x̂ = (x̂1, x̂2) ∈ I2 that satisfies both

∀x1 ∈ I : π1(x̂) = π1(x1, x̂2) and ∀x2 ∈ I : π2(x̂) = π2(x̂1, x2).

In other words, an equilibrium consists of a location for each vendor, with the property that each

one’s location is best for him given the other’s location.

Prove that an equilibrium exists. If you’re unable to prove this for the case in which each πi is

merely concave, assume they’re both strictly concave in xi and prove the result in that case.

Solution:

We’ll show that Vendor 1’s reaction correspondence µ1 : I →→ I is nonempty-valued, convex-

valued, and closed. The same argument will apply to Vendor 2’s reaction correspondence µ2.

Let ϕ : I →→ I be the feasible-set correspondence ϕ(x2) = I, which is constant and therefore

continuous, and is also nonempty-, compact-, and convex-valued. Let µ1 : I → I be the reaction

correspondence, µ1(x2) = argmaxϕ(x2)π1(x1, x2). Since π1 is continuous, all the conditions of the

Maximum Theorem are satisfied, therefore µ1 is a closed correspondence. Moreover, for each

x2 ∈ I, the set µ1(x2) of maximizers of π1(x1, x2) is a convex set because π1 is concave in the

variable x1 (this was Problem #3 on the Econ 519 exam), and is compact because µ1(x2) is closed

and the target space I is bounded, so that µ1(x2) is bounded.

Now define a “transition correspondence” f : I × I →→ I × I as follows:

∀(x1, x2) ∈ I2 : f(x1, x2) = µ1(x2)× µ2(x1).

The set I2 = I × I is nonempty, compact, and convex, and the correspondence f is nonempty-

valued, convex-valued (each set f(x1, x2) is the product of two convex sets), and closed (as the

Cartesian product of closed correspondences). Therefore the Kakutani Fixed Point Theorem en-

sures that f has a fixed point, x̂ = (x̂1, x̂2) — a point at which x̂1 ∈ µ1(x̂2) and x̂2 ∈ µ2(x̂1), i.e.,

a Nash equilibrium. �

If you assumed that each πi is strictly concave, see the solution to Problem #5 on the Econ 519

final exam.
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5. In a two-period, one-good model where S is the set of possible states, one of which will occur

after period zero and prior to period one, let p ∈ RS be a state-contingent price-list; let D be an

S ×K securities-returns matrix; and let q = pD ∈ RK . The following proposition appears in our

lecture notes (where S denotes the number of states as well as the set of states):

Proposition: Let

A = {(z0, z) ∈ R1+S | z0 + p · z = 0} and

B = {(z0, z) ∈ R1+S | ∃y ∈ RK : z0 + q · y = 0 and z = Dy}.

If rank D = S, then A = B.

(a) The (1 + S)-tuples (z0, z) represent net consumption bundles and the K-tuples y represent

holdings of securities. Describe what the proposition tells us in economic terms, and describe the

role the proposition plays in establishing the relation between an Arrow-Debreu contingent-claims-

markets equilibrium and an equilibrium in Arrow’s model of securities and spot markets.

(b) Provide a proof of the proposition.

Solution:

(a) The sets A and B are the sets of net consumption bundles (“net trades”) a consumer can obtain

in either the Arrow-Debreu market structure (the set A) or the Arrow securities market structure

(the set B). If the two sets are equal (i.e., the same set), then the consumption bundles available

to the consumer are exactly the same in the two situations, so she will choose the same bundle in

each situation. Therefore, since each consumer’s choice of consumption bundle will be the same

in A as in B, the prices p will be equilibrium prices in the A-D markets if and only if q = pD

are equilibrium prices in the Arrow markets, and the equilibrium consumptions will be the same

in each market structure. The condition that’s sufficient to guarantee this, that rank D = S, is

that among the K securities there are S linearly independent securities — i.e., S securities whose

returns vectors are linearly independent and therefore span the space RS.

(b) Note that if z = Dy then p ·z = p · (Dy) = (pD) ·y = q ·y. We show that A ⊆ B and B ⊆ A.

(i) Let (z0, z) ∈ A. Since rank D = S, there is a y ∈ RK that satisfies z = Dy. Since z0 +p ·z = 0

(because (z0, z) ∈ A) and p · z = q · y (because z = Dy), we have z0 + q · y = 0, and therefore

(z0, z) ∈ B.

(ii) Let (z0, z) ∈ B. Then, according to the definition of B, there is a y ∈ RK that satisfies both

z0 + q · y = 0 and z = Dy. Therefore p · z = q · y, and it follows that z0 +p · z = 0, and therefore

(z0, z) ∈ A. �
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Appendix for Problem #3

We want to determine the Pareto allocations in which either yA = 0 or yB = 0.

First consider the case yA > 0 and yB = 0. In this case it will be Pareto optimal to simply

maximize uA(·) subject to the constraint 4xA +4xB +yA = 200, because there is no way to transfer

any dollars (the y-good) from B to A to compensate A for accepting any other allocation (because

yB = 0). Therefore we will have xA = 8 and xB = 2, the cost of which is (4)(10) = 40, so we have

yA = 200− 40 = 160. This yields

uA(8, 160, 2) = 160 + (12)(8)− 1
2
(8)2 + (6)(2)− 1

2
(2)2 = 160 + 96− 32 + 12− 2 = 234

uB(2, 0) = 0 + (8)(2)− 1
2
(2)2 = 16− 2 = 14.

The utility frontier therefore includes the additional point (uA, uB) = (234, 14). See Figure 2.

Note that the FOMC are satisfied with σ = 1 and λB = 0, so this is also the solution of our P-Max

problem for any target uB 5 14: the utility-target-level constraint is not binding at the solution,

at which uB = 14.

Now consider the case yA = 0 and yB > 0. In this case it will be Pareto optimal to simply

maximize uB(·) subject to the constraint 4xB + yB = 200, because there is no way to transfer any

dollars (the y-good) from A to B to compensate B for accepting any other allocation (because

yA = 0). Therefore we will have xA = 0 and xB = 4, the cost of which is (4)(4) = 16, so we have

yB = 200− 16 = 184. This yields

uA(0, 0, 4) = 0 + (6)(4)− 1
2
(4)2 = 24− 8 = 16

uB(4, 184) = 184 + (8)(4)− 1
2
(4)2 = 184 + 32− 8 = 208.

The utility frontier therefore includes the additional point (uA, uB) = (16, 208). This is also

depicted in Figure 2.

Note that in this case the FOMC are not satisfied at this solution. But we know that any Pareto

allocation must be the solution of the P-Max problem in which the utility-level-target is the value

of uB at the solution. What’s going wrong?

The answer is that the constraint set is a singleton, a constraint-qualification violation, and there-

fore this is a case in which the maximum need not satisfy the Kuhn-Tucker Conditions.

However, the allocation must also be the solution of the P-Max problem in which we maximize

uB(·) subject to a utility-level constraint on uA. If you do this, you’ll find that the FOMC are

satisfied with σ = 1 and λA = 0, for any uA 5 16.
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Figure 1: Edgeworth Box for #1(b)

Figure 2: Utility Frontier for #3(d)
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