\qquad

Economics 431

Quiz \#2

Amy and Beth are competing sellers. Their price competition can be described by the following game, which is derived from the demand curve $Q=6-p$, where p dollars per unit is the lowest price, and where the game's payoffs represent the sellers' daily profits, in thousands of dollars.

Beth's Price

		\$1	\$2	\$3	\$4
	\$1	2.50, 2.50	5.00, 0	5.00, 0	5.00, 0
Amy's Price	\$2	0, 5.00	4.00, 4.00	8.00, 0	8.00, 0
	\$3	0, 5.00	0, 8.00	4.50, 4.50	9.00, 0
	\$4	0, 5.00	0, 8.00	0, 9.00	4.00, 4.00

(a) Enumerate Amy's best response function:

If Beth chooses $\$ 1$, then Amy's best response is \qquad \$1 _.

If Beth chooses $\$ 2$, then Amy's best response is \qquad .
If Beth chooses $\$ 3$, then Amy's best response is \qquad _.

If Beth chooses $\$ 4$, then Amy's best response is \qquad \$3 .
(b) Does this game have a Nash equilibrium? \qquad
If so, describe one of the equilibria (what does each player choose?):
Each player chooses $\mathbf{\$ 1}$.

Describe how you know this is a Nash equilibrium:
It's a mutual best response.

