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EXISTENCE AND UNIQUENESS OF MAXIMAL REDUCTIONS
UNDER ITERATED STRICT DOMINANCE

By MARTIN DUFWENBERG AND MARK STEGEMAN!

Iterated elimination of strictly dominated strategies is an order dependent procedure. It
can also generate spurious Nash equilibria, fail to converge in countable steps, or converge
to empty strategy sets. If best replies are well-defined, then spurious Nash equilibria cannot
appear; if strategy spaces are compact and payoff functions are uppersemicontinuous in
own strategies, then order does not matter; if strategy sets are compact and payoff functions
are continuous in all strategies, then a unique and nonempty maximal reduction exists.
These positive results extend neither to the better-reply secure games for which Reny has
established the existence of a Nash equilibrium, nor to games in which (under iterated
eliminations) any dominated strategy has an undominated dominator.

KeEYwORDS: Game theory, strict dominance, iterated elimination, order independence,
maximal reduction, existence.

1. INTRODUCTION

A BASIC RULE for predicting behavior in noncooperative games is that players
should not adopt strictly dominated strategies. Eliminating such strategies from
consideration may permit additional eliminations, and iterated elimination of
strictly dominated strategies (IESDS) leads to a fundamental solution concept:
the maximal reduction of a game. In some cases, the maximal reduction com-
prises a single strategy profile. For example, in a standard Cournot duopoly, after
eliminating outputs that exceed a monopolist’s output, small and large outputs
may be eliminated sequentially until, in the limit, only the Cournot-Nash equi-
librium remains (see Moulin (1984)).

Game theorists often assume, explicitly or implicitly, that play should be con-
fined to the maximal reduction of a game. Nevertheless, little is known about this
solution concept. This paper studies the conditions under which maximal reduc-
tions exist and are unique.

Because IESDS entails the shrinking of strategy sets, and shrinking sets always
reach a limit, the question of existence reduces to: is the limit nonempty and
does it own only undominated strategies? The answers are clearly yes for finite
games, but we show by example that infinite games need not have maximal
reductions. Uniqueness, on the other hand, concerns the speed and order of

' We thank Ehud Kalai for his encouragement and Fatma Aksal, Geir Asheim, Pierpaolo Battigalli,
Tilman Borgers, Itzhak Gilboa, Hans Haller, Andy McLennan, Stephen Morris, Eric van Damme,
Lin Zhou, two referees, and several seminar audiences for helpful comments and discussions. We are
especially grateful to Hannu Salonen, whose comments helped us to generalize the results to strategy
sets that are not metric spaces.
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reductions: do all paths lead, in the limit, to the same maximal reduction? The
answer is known to be yes for finite games, but we show, again by example, that
order may matter for infinite games. Some of the examples are simple, but the
finding may nevertheless appear surprising, as it seems to be widely believed that
IESDS is an order independent procedure.

Reny (1999) has recently proved the existence of Nash equilibrium for a large
class of games: those with finite player sets, compact and convex strategy sets, and
payoff functions that are bounded, quasi-concave in the player’s own strategy,
and satisfy a condition of better-reply security. We show that this class includes
games where order matters for IESDS.

More surprising, we also show that requiring that strategies be eliminated only
by undominated strategies (a variation on Jackson’s (1992) idea of “bounded-
ness”) does not solve the problem of order dependence. Specifically, we define
a game to be closed under dominance (CD) if any dominated strategy has an
undominated dominator, in any IESDS sequence. We prove that, in CD games,
several elimination procedures are equivalent and can exhibit order dependence
or other perverse properties.

To balance these negative findings, we establish several positive results con-
cerning IESDS. We consider games having arbitrary numbers of players and
strategy sets in arbitrary Hausdorff spaces, and we call such games compact and
continuous if the strategy sets are compact and the payoff functions continuous.
This class differs from Reny’s because it does not require convex strategy sets, a
finite (or even countable) player set, or quasi-concave payoffs; however, it does
require continuous payoffs. We show that any compact and continuous game
has a unique maximal reduction, which has nonempty strategy sets. For unique-
ness (order independence), weaker assumptions suffice: if a compact game with
payoffs uppersemicontinuous in own strategies has any maximal reduction with
nonempty strategy sets, then its maximal reduction is unique. Outside of these
classes of games, existence and uniqueness routinely fail.

We also identify a larger class of games, for which IESDS preserves the set of
Nash equilibria. For this property, it is sufficient that each player have a well-
defined best-response correspondence. The existence and uniqueness of maxi-
mally reduced games does not extend to this larger class.

Results concerning the order independence of IESDS in finite games have
been derived by Gilboa, Kalai, and Zemel (1990), Stegeman (1990), Borgers
(1993), and Osborne and Rubinstein (1994). We discuss their contributions and
draw connections to our results.

We proceed as follows. Section 2 provides examples for which maximal reduc-
tions do not exist or are empty or for which order matters, or for which IESDS may
generate spurious Nash equilibria. Section 3 states positive results concerning the
existence and uniqueness of nonempty maximal reductions of compact and con-
tinuous games. Section 4 describes conditions under which IESDS does not affect
the set of Nash equilibria. Section 5 defines games that are closed under domi-
nance and shows that such games can exhibit all of the pathologies of Section 2.
Section 6 discusses related literature, and Section 7 offers concluding remarks.
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2. WHERE ORDER MATTERS OR EXISTENCE FAILS

In our first example, the order of elimination matters, and most elimination
sequences introduce Nash equilibria that were not present in the original game.

ExXAMPLE 1: Consider a game with player set [ = {1,2}, strategy sets G, =
G, =10, 1], and symmetric payoff functions u;: G; x G; — R for i, j € [ and i # j,
defined by

u(x,y)=x ifx<l,
u(l,y)=0 ify<1,
u;(1,1)=1.

Every strategy except 1 is strictly dominated, and the strategy profile (1, 1) is
the game’s unique Nash equilibrium. Eliminating G;\{1, x} for some x < 1, for
i=1,2, leaves the following 2 x 2 game, which cannot be further reduced:

1 X
1,110,x

x| x,0|x,x

Since x is arbitrary, the example shows that IESDS is an order dependent pro-
cedure. The criterion of risk dominance selects the (x, x) equilibrium if x > 1/2,
though (x, x) was not even a Nash equilibrium in the original game.

Example 1 belongs to a large class of games for which Reny (1999) has recently
proved the existence of Nash equilibrium: games such that the player set is
finite, strategy sets are compact and convex, payoffs are quasi-concave in the own
player’s strategy, and a condition of better-reply security holds. The last condi-
tion requires that for any nonequilibrium strategy profile x* = (x7),., and every
payoff vector limit (u7);., resulting from strategy profiles approaching x*, some
player i has a strategy guaranteeing himself a payoff strictly above u} even if the
others deviate slightly from x*. The game in Example 1 is better-reply secure
because given any nonequilibrium profile x* we can pick a player i € {1, 2} such
that x <1 and an & > 0 such that i can secure payoff x} +¢& > u = x}. Moreover,
G; =[0,1] is compact and convex and u;(-, x;) is quasi-concave and bounded.
Hence, Reny’s conditions ensuring the existence of a Nash equilibrium are insuf-
ficient to ensure that IESDS is well-behaved.

Order dependence may have little practical significance in Example 1, because
a natural sequence of reductions eliminates all strategies less than 1 in the first
round, which immediately reduces the game to its original Nash equilibrium. In
more complicated games, however, the burden of finding all strictly dominated
strategies, in any given round of reduction, can be much greater. Order indepen-
dence, when it applies, eliminates the problem of coordinating on a particular
sequence of eliminations.
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Discontinuous payoffs lead to order dependence and spurious Nash equilibria
in Example 1, and Example 2 shows that they can also lead to maximal reductions
with empty strategy sets.

ExXAMPLE 2: Consider I ={1, 2}, strategy sets G, = G, =0, 1], and symmetric
payoff functions u;: G, x G; — R for i, j € I and i # j, defined by

u(x,y)=1-x if0<y/2<x,
u(x,y)=x else.

Any x € (0,1) strictly dominates x = 0, and eliminating strategies as fast as
possible produces this sequence of strategy sets: (0, 1], (0, 1/2], (0, 1/4], (0, 1/8],
et cetera, with the limiting strategy sets being empty. Furthermore, the corollary
to Theorem 1, in the sequel, implies that this is the unique maximal reduction
of the game.

The next example shows that discontinuous payoffs can cause yet another prob-
lem for IESDS: the nonexistence of a maximal reduction.

EXAMPLE 3 (Cournot competition with outside wager): Consider I = {1, 2,
3}, G, =G, =][0,1], G5 ={a, B}, u;: G, x G, x G; — R defined by u,(x, y, z) =
x(1—x—y),u,: G, x G, x G; — R defined by u,(x,y,z) =y(1—x—y), and
u;: G; x G, x G; — R such that

L£3()C, Y, O() < u3(x7 Y, :8) if (x5 y) 7é (1/37 1/3)7
us(1/3,1/3, @) > u;(1/3,1/3, B).

The interpretation is that 1 and 2 are competing firms, while 3 is a person who
does not influence the firms’ profits but who has an opportunity to wager on
the event that each firm chooses strategy 1/3. Note that (1/3, 1/3) is the Nash
equilibrium of the corresponding Cournot game without player 3 present. IESDS
reduces G, and G, to the common strategy set {1/3}, although this requires
an infinite sequence of elimination rounds (e.g., with the surviving strategy sets
described by the sequence [0, 1], [0, 1/2],[1/4,1/2],[1/4,3/8],[5/16,3/8],...).
For each of these rounds, it is not possible to eliminate a strategy for player 3.
The limit of this sequence is not a maximal reduction, because given the limiting
strategy sets {1/3}, player 3’s strategy B is strictly dominated. Therefore, there
exists no maximal reduction (in countable steps).?

Examples 1 through 3 show that discontinuous payoffs can lead to nonun-
niqueness, or emptiness, or nonexistence of maximal reductions. The next exam-
ple shows that unbounded strategy sets can create similar problems.® Here, as in
Example 1, order matters and IESDS can introduce spurious Nash equilibria.

2 Lipman (1994) discusses games that have similar properties. He shows that “common knowledge
of rationality is not, in general, equivalent to the limit as n — oo of order » mutual knowledge of
rationality.”

3 Example 4, which appears in Stegeman (1990), is the first example of order dependence of IESDS
of which we are aware.
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EXAMPLE 4: Consider I = {1,2},G, = G, = R,, and payoff function
u;: Gy x G, — R for i, j e I, defined by u,(s;, s,) = (max{s;, 1 —s; —5,})/(1+s,).
The game is not symmetric, but the players have a common payoff function. The
payoff function is continuous and has range [0, 1]. If s, > 0, then player 1’s opti-
mal action is undefined, and it follows directly that the unique Nash equilibrium
of the game is (s, s,) = (0,0). One way to perform IESDS is as follows: elim-
inate every s; > 0 as it is strictly dominated by some s; > s;. Given that s, =0,
every s, > 0 is then strictly dominated by s, = 0. IESDS thus eliminates all except
Nash play. Another way to perform IESDS is: eliminate every s; > 0 except
s; = 1, leaving the strategy sets {0, 1} for player 1 and R, for player 2. No more
eliminations are possible and the residual game now has many Nash equilibria:
(s1,8,) =(0,0) and (s, 5,) = (1, y) for all y>1/2.

To support our claim that the problems with IESDS are fundamental, consider
the following, simplest possible, example of order dependence.

EXAMPLE 5: Consider a one-player game with strategy set G, = (0,1) and
payoff function u,: G; — R defined by u,(x) = x for all x € G,. Every strategy
is strictly dominated. For any x € G, eliminate in round one all strategies in the
set G,\{x}, and only x survives IESDS.

These examples suggest that the perverse outcomes of IESDS are associated
with the absence of a “best” dominating strategy. We show in Section 5, however,
that the absence of a best dominator plays no special role; the same anomalies
can appear in games having best dominators. In Section 3, we formulate and
prove the weaker conjecture that IESDS is well-behaved in games having con-
tinuous payoff functions and compact strategy sets.

3. WHEN MAXIMAL REDUCTIONS EXIST AND ARE UNIQUE

This section describes classes of games for which IESDS works well, in the
sense that maximal reductions exist or are unique. Preliminary definitions follow.

GAMES, PARINGS, AND STRICT DOMINANCE: A game is a triple G =
(1, (G))ier»> (U;);cr), where [ is the set of players. Assume #/I > 2, but the num-
ber of players is otherwise unrestricted (e.g., I may be uncountable). Player i’s
strategy set G; # & is a Hausdorff space (e.g., a metric space). The joint strategy
space []; G; is endowed with the product topology, the set of real numbers R is
endowed with the usual topology, and u;: [[; G; — R is the payoff of player i. We
call the game G: compact if G; is compact Vi € I; own-uppersemicontinuous if u;
is uppersemicontinuous in s; Vi € I;* continuous if u; is continuous in the product
topology Vi e I. A paring of G is a triple H = (I, (H,);¢;, (4});c;), where H; C G,

* A function f: § — R is uppersemicontinuous if {s € S| f(s) > r} is closed in S for all r € R; this
is implied by f continuous.
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and u; is the restriction of u; to [[; H;, Vi € I. As the notation suggests, we gen-
erally identify a game and its parings with the associated strategy sets. A paring is
nonempty if H;, # @Vi e I. Hence, a nonempty paring is a game. For any paring
H,let H_;=]];, H;. Let P(G) denote the set of all parings of G. Given a paring
Hof G,and x,ye G;: y >y, x if H ; # @ and u;(y,s_;) > u;(x,s_;,)Vs_; € H_,.
(The reordering of the arguments of u; simplifies notation, where no confusion is
possible.) The relation > embodies the notion of strict dominance given rivals’
options in paring H.

REDUCTION: Consider parings H, H' € P(G), such that H/ € H;Vi € I.
H — H' if, for each x € H\H/,3y € H; such that y >, x. H — H' is defined to
be fast if y >, x for some x,y € H; implies x ¢ H]. Clearly, H — H’ is fast for
some unique H'. We use the symbol —* as follows: H —* H' if there exists a
(finite or countably infinite) sequence of parings, A’ € P(G),t=0,1,2..., such
that A°=H, A' > A"Vt >0, and H =, A'VieI. H is a maximal (—*)-
reduction of G if G —* H and H — H' only for H' = H.

The following lemma is the key to our existence and uniqueness results.

LEMMA: If G —* H for some compact and own-uppersemicontinuous game G,
and y >y x for some x,y € G, and i € I, then 3z* € H; such that z f z* >y
xVzeG,.

PROOF: Given H as described, let A" € P(G),t=0,1,2..., be the implied
sequence of parings. Let Z = {z € G,|u;(z,s_;) > u;(y,s_;))Vs_, € H_;}. The
uppersemicontinuity of u; in z implies that {z € G;|u;(z,s_;) = u;(y,s_;)} is
closed for given s_;, implying that the intersection Z is closed and therefore com-
pact (because G, is compact). Clearly y € Z, and y >, x implies that H_; # @.
Define f: Z — R by f(z) = u;(z, s*;) for some fixed and arbitrary s*, € H_;. The
uppersemicontinuity of u; in z implies that f is uppersemicontinuous, which with
Z compact implies that f reaches a maximum at some z* € Z (e.g., Bourbaki
(1966, Theorem 1V, 6, 2, 3)). z* € Z and y > x imply z* > x. If z > z* for some
z € Gy, then u;(z,s_;) > u;(z*,s_;)Vs_; € H_,, implying z € Z and f(z) > f(z*),
a contradiction. Therefore, z ¥, z*Vz € G;, implying z ¥ ,, z*Vz e G;,, YVt >0
(because H_; € A" ), implying z* € A!Vt > 0, implying z* € H,. Q.E.D.

THEOREM 1: (a) If a game G is compact and own-uppersemicontinuous, then
any nonempty maximal (—*)-reduction of G is the unique maximal (—*)-reduction
of G. (b) If a game G is compact and continuous, then G has a unique maximal
(—=*)-reduction M; furthermore, M is nonempty, compact, and continuous.

5 An alternative definition of a maximal (—*)-reduction H would require, in addition, that H
be nonempty. That language has an unnatural aspect: if a reduction to empty strategy sets is not
maximal, then what is? More important, we want the claim that the “maximal reduction is unique”
to imply that there does not exist an alternative reduction sequence that ends in an empty strategy
set. Of course, there generally exist alternative reduction sequences that are so slow that they fail to
converge to any maximal reduction.
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PROOF: Part (a). Let M and M’ be maximal (—*)-reductions of G, M
nonempty. Given G —* M’, let A' € P(G),t=0,1,2..., be the implied finite
or infinite sequence of parings. Suppose that M; ¢ M/ for some i. Then M; ¢ A!
¥t > T, for some T such that A7*" is well-defined. Let T take the largest value
such that M, € ATVie I. Choose i € I and x € M;\A]*'. Then x € AT\ A/,
implying 3y € A7 such that y >+ x, which with @ # M, C AT Vi € I implies
y >y X. The lemma implies 3z* € M, such that z* >, x, contradicting that M is
a maximal (—*)-reduction. Therefore, M; € M/Vi € I, which implies that M’ is
nonempty. Similarly, M] € M;Vi e I, implying M = M'.

Part (b). First, observe a trivial corollary of the lemma, for H = G: (i) If y > x
for some x, y € G;, then 3z* € G, such that z / z* >, xVz € G;. Second, recall
the standard fact for Hausdorff spaces: (ii) if By 2 B, 2 B,... where B, # & is
compact for all ¢, then (), B, is nonempty and compact. We now establish (iii):
if G is compact and continuous and G — H is fast, then H is compact and
nonempty. Considering only the nontrivial case, choose i such that H; # G;. Then
y >¢ x for some x, y € G;, and (i) implies H; # &. It remains to show that H; is
compact. Choose x € H;, and let Z = {s € G|u;(x, s_;) < u;(s)}.% Clearly Z # .
Define the temporary function f: G — G by f(s) = (x,s_;). The elementary
properties of the product topology imply that f is continuous, which with the
continuity of u; implies that u;(x, s_;) = u,;(f(s)) is continuous in s. Therefore, Z
is closed. Since the projection function pr;: G — G; is continuous, Z* = pr,;(Z)
is a nonempty closed subset of G;, with x € Z*. Consider arbitrary w € G;. For
any x € H,, if w¢ Z*%, then u,;(x,s_;) > u;(w,s_;) for all s_; € G_;, implying
X > w, implying w ¢ H;. Therefore, H; C (1, Z*, the intersection across x € H;.
If w¢ H,, then x >; w for some x € G,, and (i) then implies the existence of
x* € G, such that x* > w, implying w ¢ Z*', implying w ¢ (), Z*. Therefore,
H;, >N, Z* implying H; =, Z*, but since Z* is closed for all x, H; is also closed
and therefore compact.

Let C(¢),t=0,1,..., denote the unique sequence of subgames of G such
that C(0) = G and C(¢t) —» C(¢+1) is fast, for all # > 0. Result (iii) implies by
induction that C(¢) is compact and nonempty V¢, and result (ii) then implies that
paring M with strategy sets M, =), C(t), is compact, continuous, and nonempty.
To show that M is a maximal (—*)-reduction of G, it remains to show that
nothing in M is strictly dominated. Consider any player i and any x,y € M,.
Let X ={s_; € G_;|lu;(y,s_;) <u;(x,s_;)}. If XNC(r)_, =2 for any ¢ such that
C(1) # M, then y >, x, contradicting x € M;. Therefore X NC(7)_; # &, and
the compactness of X and of C(¢)_; (from (iii)) implies that X N C(¢)_; is com-
pact for all ¢ such that C(¢) # M, implying from (ii) that X N M_; is nonempty,
implying that y #,, x. Q.E.D.

The following corollary provides a stronger and cleaner version of the order
independence result, for two-player games.

% We owe set Z to Hannu Salonen.
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COROLLARY 1: If a two-player game G is compact and own-uppersemicontin-
uous, then G has at most one maximal reduction.

PROOF: Let M and M’ be distinct maximal (—*)-reductions of G. Then
M, M,, M{, and M, cannot all be empty. Without loss of generality, assume
M, # @. Then player 2’s best replies to the elements of M, can never be elimi-
nated, implying that M is nonempty, implying from Theorem 1(a) that M is the
unique maximal (—*)-reduction of G, a contradiction. Q.E.D.

Theorem 1(b) says that a compact and continuous game can always be com-
pletely reduced by IESDS and that the procedure is order independent for such
games. The theorem covers finite games, their mixed extensions, and important
applications such as the Cournot game. IESDS sometimes requires a countably
infinite sequence of elimination rounds, as in the Cournot game, but for compact
and continuous games this always suffices.

If, instead, payoffs are merely uppersemicontinuous in own strategies, then
Theorem 1(a) shows that order still does not matter for any game that has a
nonempty maximal reduction, but Examples 2 and 3 show that maximal reduc-
tions may be empty or nonexistent.” If the assumptions are weakened further,
then Examples 1, 4, and 5 show that order may matter.

We need the Hausdorff property only to establish fact (ii) in the proof of
Theorem 1(b), which we use to show that any maximal reduction of a compact
and continuous game has nonempty strategy sets. All other results in the paper
(including the order independence result of Theorem 1(a)) hold for strategy sets
in general topological spaces.

Theorem 1 admits an infinite number of players, and in this case the assump-
tion that payoff functions are continuous may be stronger than intuition suggests.
We close this section with an example that illustrates how easy it is to violate
continuity with infinitely many players.

EXAMPLE 6: Consider a game with (finite or countably infinite) player set
I={0,1,...}. Let Gy ={a,B,y} and G; = {a, B} for all j > 0. Assume that
player 0’s payoffs satisfy

ug(a,x_) =0 Vx_,eG_,
up(B,x_o) =1 Vx_yeG_,
uy(y,x_p) =2 if 3j > 0 with x; = a,
u(y,xo)=0 ifVj>0x;,=4,

and that the payoffs of any player j > 0 satisfy

ui(a,x_j)=2 %f X =a,
ui(a,x_;))=0 ifx; ; #a,
u(B,x_;))=1 Vx_;eG_;.

7 An earlier version of Theorem 1(a) assumed that the payoff function is continuous in own strate-
gies. We are grateful to Pierpaolo Battigalli for suggesting the generalization to uppersemicontinuity.
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Fast IESDS eliminates x, = « in round 1, and for each round ¢ > 1 strategy «
is eliminated for player ¢ — 1. If [ is finite, then Theorem 1 applies and #1 + 1
rounds of fast eliminations produce the maximally reduced game such that each
player has the strategy set {$}. If, however, I is not finite, then a countably
infinite number of elimination rounds converges to the strategy sets H, = {3, v}
and H; = {B} for all j > 0. This is not a maximal reduction, because player
0’s strategy v is strictly dominated. Hence compactness or continuity must be
violated. The problem is that player 0’s payoff function is no longer continuous
in the product topology.

4. NASH EQUILIBRIA

We now prove that IESDS preserves the set of Nash equilibria in any game
such that each player possesses a best response to each opposing strategy profile.
This class of games strictly contains the class of compact and continuous games,
and existence and uniqueness of maximal reductions do not extend to this larger
class. Examples 3 and 6 have well-defined best replies but no maximal reduction,
and Example 7 (below) has well-defined best-replies but order matters.

Recall that a Nash equilibrium is a strategy profile x = (x;),.; such that Vi e
I, Vy € Giui(x;, x_;) = ui(y, x_;).

THEOREM 2: Assume, for any x € G, that there exists z* € G such that
u(zt,x_;)) > u(z;,x_;) forall ze Gand i e I. If M is a (—*)-reduction of G,
then games G and M have the same Nash equilibria.

PROOF: Let A' € P(G),t=0,1,2,..., be the implied sequence of parings
(which need not be unique). Suppose that x,x; € G;, is a Nash equilibrium
in game G. Then, by induction on ¢, x; is never eliminated in the sequence
A'Viel, implying x € M. Since M; C G;Vie I, x is also a Nash equilibrium
in game M. Going the other way, suppose that x € M is a Nash equilibrium
in game M. Choose z* as assumed. Since x € M, z¥ is never eliminated in the
sequence A'Vi e I, implying z* € M. The choice of x and z* imply u,(x, x_;) >
u(zr,x_;) > ui(z;,x_;)Vz; € G;Vi € I, implying that x is a Nash equilibrium in
game G. Q.E.D.

COROLLARY 2: If G is compact and own-uppersemicontinuous, and it has a
maximal (—*)-reduction M comprising singleton strategy sets, then M describes the
unique Nash equilibrium of game G.

PrROOF: If G is compact and own-uppersemicontinuous, then best replies
are well-defined (by the standard result cited in the proof of the lemma) and
Theorem 2 implies that G and M have the same Nash equilibria. The unique
strategy profile admitted by game M is also its unique Nash equilibrium. Q.E.D.

Theorem 2 shows that at least one player must have ill-defined best responses
in games where IESDS introduces spurious Nash equilibria. For instance, in
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Example 1 neither player has a best response if his opponent chooses a strategy
from the set [0,1).

The following example shows that well-defined best replies are insufficient to
ensure order independence.

ExampPLE 7: Let I ={1,2}, G, ={a, B}VU][0,1), G, = {v, 6}, and payoffs be
as indicated in the following matrix where x € [0, 1):

v 0
al|1,0/0,0

B10,0|1,0
x| x,0|x0

Each player has well-defined best responses. All strategies in [0,1) are strictly
dominated for player 1, but elimination of [0,1)\{x} for some arbitrary x € [0, 1)
leaves exactly the above matrix, which cannot be further reduced.

5. GAMES CLOSED UNDER DOMINANCE

In the easiest examples of IESDS pathologies (including all that we have pre-
sented to this point), some strategies are eliminated only by strategies that are
themselves dominated. One might conjecture, therefore, that IESDS performs
well in games such that any dominated strategy has an undominated dominator,
as IESDS is applied. In this section we show that this conjecture is false: all of
the pathologies of IESDS that we have discussed can appear in such games.

To make this claim precise, we will say that game G is closed under domi-
nance (CD) if G —* H in finite steps and y >, x for some x,y € H; and i € [
imply: the existence of z* € H; such that z ¥, z* >4 x for all z € H;. In words,
at any point in any valid sequence of deletions, any strictly dominated strategy
x has an undominated dominator z*. More games satisfy this condition than
one might expect: the lemma implies immediately that all compact and own-
uppersemicontinuous games are CD. Therefore, Examples 2, 3, and 6 are all
CD, and yet all of these games have empty or nonexistent maximal reductions.
Because CD is a bit weaker than the implication of the lemma, order can also
matter in CD games. The following example, which modifies the Cournot game
of Example 3, shows that IESDS can be order-dependent and produce spurious
Nash equilibria in CD games.

EXAMPLE 8: Consider I ={1,2}, G;=G,=[0,1\{1/3},and u;: G; xG; > R
for i, j, e I and i # j, defined by

u(x,y)=x(1—x—y) if yeQ,
u(x,y)=x(1-x-1/3) ify¢aQ,

where Q denotes the set of rational numbers. This game differs from the bench-
mark Cournot game (with u;(x, y) = x(1 —x—y) for all (x,y) € [0, 1]?) in two
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respects: an opponent’s irrational strategy (meaning, an irrational number) acts
like the Nash strategy 1/3, but the strategy 1/3 is itself unavailable. Note that the
game has neither compact strategy sets nor continuous payoffs. Nevertheless, the
following proposition and proof, which follow closely the statement and proof of
the lemma in Section 3, show that the game is CD.

PROPOSITION: The game of Example 8 is closed under dominance.

PrROOF: Let G be the game in Example 8. We show that if G —* H in finite
steps and y > x for some x,y € H; and i € I, then 3z* € H; such that z
z* =y xVz € G,. Without loss of generality, let i = 1. Given H as described, let
A'e P(G),t=0,1,2,...,T, be the implied sequence of parings, with H = AT,
For either player in G = A°, the set of available best responses to the ele-
ments of G, = G, is [0, 1/2]N Q\{1/3}. Since (in any game) a strategy that is a
best response to some vector of strategy choices by the other players cannot be
strictly dominated, one infers in the case of G, in turn, that [0, 1/2]N Q\{1/3} €
AL [1/4,172]1n@\{1/3} € A7, [1/4,3/8]nQ\{1/3} < Af-, co., for j=1,2 (ct.
Example 3). After T steps, it follows that H,NQ = A’ NQ # @. Let Z =
{z €[0,1]] u;(z, w) = uy(y, w)Vw € H,}. Clearly y € Z, and the continuity of
u,(z, w) in z implies that Z is closed and therefore compact. Define f: Z — R
by f(z) = u;(z, w*) for some fixed w* € H, N Q. Because w* # 1/3, the func-
tion f reaches a maximum at some z* € G,. z* € ZN G, and y >, x imply
z* >y x. If z > z* for some z € Gy, then u,(z, w) > u,(z*, w) Vw € H,, implying
ze€ Z and f(z) > f(z*), a contradiction. Therefore, z ¥, z*Vz € G,, implying
z2¥ 4 2°Vze G, ¥Vt =0,1,...,T, implying z* € 4},Vt=0,1,...,T, imply-
ing z* € Hy. Q.E.D.

We now show that applying IESDS to the game in Example 8 can produce
a variety of maximal reductions, which can include empty strategy sets. The
sequence of strategy sets surviving fast reduction is : [0, 1]\{1/3}, [0, 1/2]\{1/3},
[1/4,1/2\{1/3}, ... (cf. Example 3). In the limit no strategy survives IESDS.
Alternatively, consider the same sequence of reduced games, except that for each
player i some arbitrary irrational strategy x; is never eliminated. This too is a
valid sequence of eliminations (the presence of player i’s strategy x; interferes
with none of player i’s eliminations and merely replicates player i’s other irra-
tional strategies from the viewpoint of player j), and player i’s maximally reduced
strategy set is {x;}. Since x; is arbitrary, order matters, and IESDS supports any
pair of irrational strategies as a spurious Nash equilibrium. We conclude that the
problems of IESDS in infinite games are deeper than the possible nonexistence
of “best” dominating strategies.

This finding sheds light on a proposal by Jackson (1992). Jackson observes
that, in some games, playing a weakly dominated strategy is more sensible than
it at first appears. Our examples show that Jackson’s point extends to strict dom-
inance: in Example 1, playing a strictly dominated strategy seems defensible; in
Example 35, it is inevitable! To avoid such anomalies and make implementation
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in weakly undominated strategies more convincing, Jackson suggests that mech-
anism designers employ “bounded mechanisms,” game forms in which any dom-
inated strategy is dominated by a strategy that is itself undominated.® Similarly,
one could restrict the use of IESDS to CD games, and this could make the max-
imally reduced game a more appealing solution concept. Our present point is
merely that this restriction does not solve certain problems that are attached to
IESDS.

Another way to implement Jackson’s suggestion is to restrict the elimination
procedure itself (rather than the class of games to which it is applied), allowing
the elimination only of strategies that have undominated dominators. In CD
games, this procedure is obviously equivalent to the standard procedure and
consequently solves none of its shortcomings.

6. RELATED WORK

Stegeman (1990) proves Theorem 1 for the case of finite games. Other papers
have proven order independence for finite games, using slightly different concepts
of dominance. This section discusses these alternatives and draws connections to
the present work.

6.1. GKZ Reductions

Gilboa, Kalai, and Zemel (1990) (GKZ) consider a variety of elimination pro-
cedures and provide sufficient conditions for order independence. Among the
procedures is a form of IESDS, and GKZ prove that for finite games this proce-
dure is order invariant.” GKZ base their result, however, on a notion of reduction
that bounds the rate of elimination, unlike the standard (— )-reduction we have
considered so far. We shall use the symbol = for GKZ’s reduction. The differ-
ence between a (=)-reduction and a (— )-reduction is that the former requires
that for any strategy x that is eliminated there exists a strategy y that strictly
dominates x and is not eliminated. This restriction on the set of allowable reduc-
tions may be viewed as an intermediate response to the problem of dominated
dominators. Rather than require that the dominator be undominated (along the
lines of Jackson (1992)), GKZ require merely that the dominator not be elimi-
nated. This complicates the reduction procedure by requiring that eliminations be
assessed as a set rather than strategy-by-strategy, and it proves to be an unneces-
sary loss of generality. In the finite games that GKZ study, GKZ’s bound on the
rate of elimination obviously cannot prevent convergence to a maximal reduc-
tion, and our Theorem 1 implies that any such maximal reduction must be the
unique reduction that obtains under ordinary IESDS.

This finding can be generalized. GKZ consider IESDS only for a finite number
of elimination rounds, but in games with infinite strategy spaces it is natural to

8 Salonen (1996, Corollary 1) gives general conditions under which a game must have this property.
% Gilboa, Kalai, and Zemel (1993) study the computational complexity of this and some other
elimination procedures for finite games.
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allow an infinite sequence of elimination rounds. Given this modification, we
prove that for all games closed under dominance, the outcome of IESDS is the
same regardless of whether (=)-reductions or (— )-reductions are used. This
includes games in which IESDS performs well (e.g., Theorem 1) and games in
which it performs badly (e.g., Example 8). Some new definitions are needed:

GKZ REDUCTION: Consider parings H, H' € P(G), such that H; € H;Vie l.
H = H' if, for each x € H;\H], 3y € H] such that y >, x. We use the symbol
=* as follows: H = *H'’ if there exists a (finite or countably infinite) sequence
of parings, A’ € P(G),t=0,1,2,..., such that A°=H, A' = A*'V¢ >0, and
H =N,AiViel. H is a maximal (=*)-reduction of G ift G =*H and H = H'
only for H' = H.

H = H' and H =* H' imply, respectively, H —- H' and H —* H'. The fol-
lowing theorem shows that the converse holds for CD games, implying that
(=)-reductions and (— )-reductions produce identical maximal reductions in CD
games.

THEOREM 3: If a game G is closed under dominance, then G —* H if and only
if G=*H.

PROOF: G =* H immediately implies G —* H. Going the other way, suppose
G —-*H, and let A" € P(G),t=0,1,2..., be the implied sequence of parings.
It is sufficient to show that A" = A" for any two consecutive elements of this
sequence. Consider such A" and A4”. If A= A", then A" = A" trivially. If not,
then choose i € I and x € A\A!. A — A" implies Iy € A} such that y >, x.
Because G is closed under dominance, 3z* € A4; such that z )£ ,, z* >, xVz € A4,
and A" — A" then implies z* € A]. Hence, x € A}\ A7, any i € I, implies 3z* € A
such that z* > , x. Therefore, A’ = A". Q.E.D.

COROLLARY 3: If G is compact and continuous, then G has a unique maximal
(=*)-reduction, which coincides with its unique maximal (—*)-reduction.

PrROOF: The lemma implies that G is closed under dominance, and the claim
follows from Theorems 1 and 3. Q.E.D.

Theorem 3 shows that GKZ’s restriction, like requiring dominators to be
undominated, has no impact on maximal reductions in CD games. Therefore,
it solves none of the problems of IESDS in CD games. In other games, (—)-
reductions and (=)-reductions can produce different maximal reductions. For
instance, in Example 5, the problematic (—)-reduction would not be permit-
ted as a (=)-reduction. Nevertheless, IESDS based on (= )-reductions does not
escape the problem of order dependence. To see this, consider the following infi-
nite sequence of (= )-reduced strategy sets in Example 5: (0, 1), [x, 1], {x}U[1—
(1-x)/2,1),{x}U[l—-(1-x)/3,1),{x}U[l—=(1—-x)/4,1),.... For any choice
of x € (0, 1), the limit of the intersections of these sets, {x}, is the strategy set
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corresponding to a maximal (=*)-reduction. Order matters. Similarly one may
show that, for IESDS based on (=)-reductions, order matters in the games of
Examples 1 and 4.1

6.2. Mixed Strategy Dominance

In our framework a (pure) strategy is strictly dominated in a finite game if
there exists a (pure) strategy that generates a higher payoff against any oppo-
nent strategy profile. In contrast, some textbooks define a (pure) strategy to be
strictly dominated in a finite game if there exists a mixed strategy that gener-
ates a higher expected payoff against any opponent strategy profile. Osborne and
Rubinstein (1994) (OR) prove that the corresponding formulation of IESDS is
order independent in finite games; a strategy survives if and only if it is ratio-
nalizable.!! They credit this result to David Pearce, because it builds on Pearce’s
(1984) Lemma 3.

Our formulation of IESDS is more conservative than OR’s, as our last example
indicates:

EXAMPLE 9:
) e

a|1,110,0
B10,1|1,0
v10,0(0,0

In this finite game all strategies survive IESDS as defined here, while only «
and & survive by OR’s definition. We can, however, generate OR’s reduction
by applying IESDS to the game’s mixed extension. Our Theorem 1 shows, as a
corollary, that IESDS is well-behaved when applied to the mixed extensions of
finite games.

6.3. Bérgers Dominance

Borgers (1993) defines another version of dominance, which, like OR’s version,
expands the set of what is dominated. A strategy x is B-dominated, meaning dom-
inated in the sense of Borgers, if it is weakly dominated when opponents’ play
is restricted to arbitrary nonempty subsets of their strategy sets. If one requires

101f one returns to GKZ’s original definition, which requires maximal (=*)-reductions to end in a
finite number of steps, then it is not possible to get multiple maximal (=*)-reductions in our examples
of order dependence, because none of those games has a maximal (=*)-reduction in finite steps. For
this reason, and examples such as the Cournot game, the restriction to finite steps seems too strong.

1 See their Proposition 61.2 and the subsequent comment on p. 62. For this result, OR expand the
set of rationalizable strategies to include best responses to opponents’ correlated play, unlike in the
original notion of rationalizability (Bernheim (1984), Pearce (1984)), which requires beliefs to have
a product structure and leads to sharper predictions in games having more than two players.
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dominating strategies to be pure, then B-dominance is sufficient for weak domi-
nance and necessary for strict dominance; in this case, Borgers (1989) shows that
iterated B-dominance is order-independent in finite games. Alternatively, if dom-
inating strategies can be mixed, then Borgers (1989) shows that B-dominance is
equivalent to strict dominance, that is, to dominance as defined by OR, and OR
show that the procedure is order-independent in finite games.

The idea behind B-dominance is that if players’ preferences over game out-
comes are ordinal rather than cardinal, then it is appropriate to call a strat-
egy “rational” if it maximizes expected utility given some subjective beliefs over
opponents’ play and some von Neumann-Morgenstern utility function that is con-
sistent with those ordinal preferences. Borgers shows that a strategy is rational
by this criterion if and only if it is not B-dominated, with dominating strategies
required to be pure. It would be interesting (but beyond the scope of this paper)
to discover whether this equivalence extends beyond finite games, and if so, what
conditions are sufficient to ensure that B-dominance is order-independent. It is
clear, at least, that B-dominance often produces different maximal reductions
than does the standard strict dominance relationship studied in this paper, in
both finite and infinite games.

7. CONCLUDING REMARKS

Many textbooks do not recommend iterated elimination of weakly dominated
strategies (IEWDS) as a solution concept, and one reason is that order matters
for that procedure in some games. We have shown that the same criticism applies
to IESDS. In Examples 1, 4, 5, and 8, IESDS is order-dependent and introduces
spurious Nash equilibria. Such perverse outcomes can arise from discontinuous
payoffs or from strategy sets that fail to be closed or bounded, and they can
occur in games that are closed under dominance.

For IEWDS, the possibility of order dependence has prompted researchers to
search for classes of games for which order independence holds, on the presump-
tion that IEWDS may be appropriate for such games (see, for example, Gretlein
(1983) and Marx and Swinkels (1997)). Our positive results provide analogous
consolation concerning the usefulness of IESDS. Our Theorem 2 shows that
well-defined best replies are sufficient to eliminate the problem of spurious Nash
equilibria seen in Examples 1, 4, 5, and 8. Example 7 shows that more is needed
to ensure order independence; Theorem 1(a) shows that, if strategy sets are com-
pact and payoffs are uppersemicontinuous in own strategies, then the maximal
reduction is unique whenever a nonempty maximal reduction exists. To ensure
the existence of such a reduction, several examples have shown that yet more is
required. Examples 2, 3, and 6 satisfy the assumptions of Theorem 1(a); yet in
Examples 3 and 6 no maximal reduction exists (in Example 3 because the strat-
egy set is infinite, and in Example 6 because the player set is infinite) and in
Example 2 the unique maximal reduction has empty strategy sets. To rule out
all of these possibilities, Theorem 1(b) shows that it is enough to assume that
payoffs are continuous in opponents’ as well as own strategies. If strategy sets
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are compact and payoffs are continuous, then IESDS always produces a unique
maximal reduction that is nonempty and introduces no spurious Nash equilibria.

The existence and uniqueness of maximal reductions is important even when
players are unsophisticated. The standard justification for IESDS, in one-shot
games, is that it is common knowledge that the players will perform the required
computations. In a repeated setting, however, much less sophisticated players
may learn (or evolve) not to play strictly dominated strategies. The sequential
disappearance of such strategies may eventually confine play to the maximally
reduced game, and this convergence may be more robust than convergence to a
Nash equilibrium.

The proper definition and role of iterated strict dominance is unclear for games
that are not compact and continuous. Example 5 shows that there are games for
which the concept is intrinsically unsound. The identification of general classes
of games for which IESDS is an attractive procedure, outside of the compact and
continuous class, remains an open problem.
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