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parallel (TP) and CWM methods operating at different spatial and temporal scales. We
demonstrate the efficiency of our approach on two examples: a chemical reaction kinetic
system and a non-linear predator-prey system. Our results indicate that the tpCWM tech-
nique is capable of accelerating time-to-solution by 2-3-orders of magnitude and is ame-
nable to efficient parallel implementation.
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1. Introduction

The most challenging computational problems in simulating complex stochastic systems couple processes that span
several orders of magnitude in space and time. The computational difficulty arises from the fact that the representative gov-
erning equations typically apply only over a narrow range of spatiotemporal scales, thus making it necessary to represent
complex systems as the ensemble of multiple physics modules, termed here as multiscale/multiphysics (MSMP) coupling.
In many scientific and engineering disciplines, various levels of approximate representations ranging from atomistic to
mean-field approaches must be coupled across disparate scales in order to capture relevant physics.

Predictive simulations for such systems require algorithms that can efficiently integrate the underlying MSMP methods
across the scales in order to achieve prescribed accuracy under controlled computational cost. One of the most difficult mul-
tiscale problems has been concurrent coupling of systems with multiple time scales. Analysis of temporal evolution of these
systems requires that the simulation be carried out sequentially due to the inherent causal nature of time. The acceleration
of computation using parallel time algorithms in order to effectively harness recent computational advances and thus accel-
erate scientific discovery are of utmost importance.

The most challenging problems for time acceleration [23] involve initial value problems with both fast and slow time
scales. In the past, various time acceleration schemes have been employed for the simulation of MSMP problems. In partic-
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ular, multiple time stepping (MTS) methods [23,33,26] based on operator splitting methodology, e.g., RESPA [35,24,29], mol-
lified impulse methods [20,29], trigonometric methods [23,28,7], are common in molecular dynamics simulations. These
methods are based on using different time steps (slow and fast) to integrate the slow and fast forces, while preserving
the geometric properties of the initial value problem.

Many of these methods experience parametric resonance whenever the slow time step is half a multiple of the fastest
time period [20,5,34,6,32,4]. Consequently, coupling of these coarse and fine descriptions using the conventional MTS meth-
ods would necessarily force the coarse evolution to be computed by a time step size that is dependent on the fastest fre-
quency of the fine-scale description. This will in turn make the coarse evolution computationally intensive and hence the
method is not readily suitable for coupling multiphysics problems with vastly different time scales. The above methods have
been applied to systems where slow and fast time-scales occur within the same governing equations and there is no easy
way to extend them to the current MSMP problem where the coarse- and fine-scale governing equations are different.

In addition to MTS methods, various alternate approaches have also been used to couple multiple spatial and time scales
(see recent reviews Refs. [8,37,36,25,11] and the references therein). A general multiscale methodology based on wavelets
has been examined for both spatial [15,13,12,16] and temporal scales [14,30]. This approach takes advantage of the inherent
capabilities of wavelet analysis to represent objects in a multiscale fashion. The wavelet-based approach, termed the com-
pound wavelet matrix method (CWM), couples the coarse- and fine-scales by compounding the wavelet coefficients of
coarse- and fine-scale responses. In this sense, CWM is an effective method for correcting the coarse-trajectory over long
intervals with the fine-scale simulations obtained over short intervals.

The paper is organized as follows. Section 2 describes the model problem considered here. Section 3 describes tpCWM
methodology for coupling multiple time scales. Specifically, a methodology is presented for effectively combining the time
parallel (TP) method with the compound wavelet method (CWM) that is suitable for massive parallelization and coupling
time scales. Section 4 discusses the implementation details of tpCWM and demonstrates the proposed algorithm with
few numerical examples. Section 5 concludes the paper.

2. Problem definition

We will consider a prototype multiphysics problem with the following two ingredients: (a) a coarse-scale description of
the system, and (b) a corresponding fine-scale stochastic description whose coarse-grained response is consistent with the
coarse-scale description at least to first order. Boltzmann Equation (BE) on the fine-scale and Navier-Stokes on the coarse-
scale are one such pair, and kinetic Monte Carlo at fine-scale and deterministic rate kinetics at coarse-scale are another pair.
Note that at each system level description, one may have multiple time and length scales or even multiple interacting phys-
ics modules that need to be coupled, in addition to the above multiphysics coupling.

Let the general stochastic and deterministic coupling multiphysics system be of the following form:

Ve =8(X.t.Yc), Ye(%,0) =Yo(X), x€B, te[0T] Q)
Yf = f(x7 t>Yf)7 Yf(x7 0) = yO(x)v Xec 87 te [07 T} (2)

In these equations, g describes the coarse-field and f describes the stochastic fine-field and they in turn determine the
coarse- and fine-level descriptions (y. and y;, respectively).

A complexity to this problem arises when the flow of the coarse-field g alone cannot predict the overall system long-time
behavior reliably because perturbations at the fine-scales influence the long-term behavior. However, computation of the
fine solution y; to capture the dynamics over the entire space- and/or time-domains of interest is clearly futile for the fore-
seeable future. In the following, we present a general parallel MSMP methodology that can operate on any pair of consistent
coarse- and fine-scale methods in order to effectively improve the coarse model predictions without solving for the fine solu-
tion over the entire temporal domain. In particular, we seek the solution of the following form:

Y(X, 1) = Plyc(X, 1), yp(X, )] 3)

where the map @ takes the solution of the coarse-field over the entire domain and the fine-field over a subset of the domain
to obtain a good approximation to y;. To make the best use of large computing resources, we seek algorithms that are ame-
nable to massive parallelization in space and time.

3. tpCWM method

This paper proposes a time parallel compound wavelet method (tpCWM) that combines the Parareal [27,2,9,1], time-par-
allel (TP) approach with the compound wavelet method (CWM). The TP method combines the fine-scale response obtained
over a short interval with the coarse-scale response, thereby correcting the coarse-trajectory over long intervals with fine-
features obtained over short intervals. The time scales are coupled by combining the wavelet coefficients of coarse and fine
responses at corresponding scales to form a compound wavelet operator that includes both coarse- and fine-scale features.
The main advantage of the tpCWM is that it can be integrated into a TP framework [1,21,19]. The simulations can be per-
formed in parallel over segments of time interval, and the coarse-trajectory is iteratively corrected by the fine-trajectory.
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In the following, we first present a brief discussion of Parareal [27,2,9,1], a time-parallel (TP) approach, into which the
CWM method is integrated. The TP method is a time parallel algorithm for the solution of general initial value problems

Ve = g(t,y,) (4)
yr =f(t.ys) (5)

with y = Y5 = Vo, Where y, describes the coarse response and y; describes the response obtained using a fine-scale model
that includes both coarse and fine features.

The TP method is used to integrate a single set of equations, say the fine description given by Eq. (5), in parallel. However,
the unique feature of this work for coupling multiphysics problems is that different governing equations (for example, coarse
and fine) are used to describe the relevant physics at different scales. In general, Egs. (4) and (5) are consistent with each
other in the sense that coarse-graining the fine description (Eq. (5)) agrees with the coarse description (Eq. (4)) at least to
the first order. This consistency allows us to devise an efficient TP algorithm whose coarse flow is guided by the coarse
set of equations.

Assuming that the computation of the coarse-trajectory is relatively inexpensive, the basic idea of TP method is to divide
the time interval into smaller sub-intervals and compute the fine-trajectory on each of the sub-intervals concurrently with
suitably chosen initial conditions. The fine solution on each of the sub-intervals is then used to iteratively correct the coarse-
trajectory over the entire time-domain.

Let Q = [0, T] denote the time interval which is divided into N sub-intervals Q, = [T, T;.1) of size AT, = T,.1 — T, such
that 0 =Ty < Ty < ---Ty_1 < Ty = T. For simplicity, let AT = AT,, for all 0 < n < N — 1. The TP method then considers the
coarse and fine evolution equations separately on each of the sub-intervals Q, = [T, Tn;1)

yf = g(t’yc)v with Yo =Yn (6)
vy =f(ty;), withyg, =y, (7)
with initial conditions y, such that (y,,...,yy_;) for 0 < n < N at each of the nodes T, of the time-domain forms a trial con-
figuration. This trial configuration is then iteratively refined until (y,, . ..,yy) is sufficiently close to the trajectory that would

be obtained if fine-scale description (Eq. (5)) were to be solved directly.
Let G,r define the coarse propagator of Eq. (4). In the TP method, the initial trial configuration (y3,...,y% ;) is generated
using the coarse propagator

Y2, =Gar(y?) forO<n<N-1 "

where the superscript denotes the iteration count. By construction, we have y?(n ) = y?,, for all n. Following this, subsequent
iterates k of the trial configuration are obtained by the following algorithm

e Propagate fine-scale solution in parallel over each time sub-interval Q, = (T, Tn,1) using the fine propagator F of Eq. (5)
such that

Vi1, = FV3) 9)

where yj’f(n ) denotes the fine solution at T, .
o Compute error A, =¥, — V¥, forall 0 <n<N.
e Update the trial configuration in serial

Yl = Vi) + Avy = Gar(YE™) + F(¥5) — Gar(¥F) (10)

where yt ! ;) = Gar(yi).

A clear advantage of TP framework is that all the terms A’; .1 for 0 < n < N can be performed in parallel. A fine-scale accu-

rate solution to the coarse-trajectory (Eq. (4)) is obtained by defining an iterative procedure that successively corrects the
coarse-trajectory based on the error defined at each node T,. as A = y}‘(n )= y’c‘(n .1)- The coarse-trajectory converges onto
fine-trajectory as long as the errors A’,j .1 computed over successive iterates k > 0 converge rapidly to zero as the iteration
process continues. Very rapid convergence is indeed the case as will be shown in the sequence. This is mainly due to the
combined input from both the fine and coarse methods in correcting the error at each iteration within the TP framework.

Assuming that G and F are Lipschitz continuous and G is of the order m, the error &k = y¥ — y;(T,) between the coarse-
and fine-scale solution at T, can be estimated as [3]; similar error analysis has been performed in [27,2,9].

n
k]l = vk, = ¥y(T)l < CAT™ (L) (1 + o)) (11)
For n = N and k = O(1), we thus obtain
ekl = Iyéy = ¥r(T)] < CT(AT)™ (1 + |y,)) (12)

Hence the iterative scheme in Eq. (15) replaces a coarse discretization of order m with a discretization of order km after k — 1
iterations, which involves k coarse solutions and k — 1 fine solutions that can be calculated in parallel.
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Although TP achieves significant computational gains [18], it still requires the fine solution to be computed over each
time segment of size AT. The high frequencies involved in the fine-scale model description may limit the time step size
ot of the fine-scale problem to such an extent that even the solution of the fine-scale problem over a AT time segment be-
comes computationally prohibitive. The TP method is currently not general enough and improvements are needed for certain
class of problems. For example, for second-order hyperbolic problems improved time-parallel frameworks are necessary as
shown in [9,10,3].

In tpCWM, we use the CWM operating within the TP framework to alleviate this problem. That is, the fine-scale trajectory
is simulated for ¢z, < AT over each of the sub-intervals and then this fine solution is used to correct the coarse-trajectory
using CWM. Algorithm 1 summarizes the CWM method for coupling a fine-scale solution simulated over a shorter time
interval with a coarse-scale solution simulated over a much longer time interval.

In Algorithm 1, W and W' denote the wavelet and inverse wavelet transforms respectively, and  q refers to the Heav-
iside function defined as

Hiap(s) = {

Here, a, represents the coarsest scale (largest scale) of the system resolved by the coarse method; c is the smallest scale re-
solved by the fine method and b is chosen based on the dominant scales resolved by the coarse and fine (by comparing the
energy at the different wavelet scales). For more details we refer to [17,30]. Finally, the steps in Algorithm 1 define the CWM
operator.

1 ifa<s<b

13
0 otherwise (13)

Algorithm 1. Compound Wavelet Method Operator CWM(y.(t), y;(t))
1: Given: y (t) and y;(t) with t € [T, T, + AT] and T € [Ty, Ty + tfie], Where tge < AT
: Compute wavelet transforms: y»¥ = W[y, (t)] and y}’" = W[y (7)]
: Apply window filter: y¢°" = Hp)[y¢'] and YV = Hp o [y}"]
: Compute compounding: yeww = Y& & yfoW
: Compute inverse wavelet transform: CWM(y.(t),y;(t)) = W' [Ycwwm)

u oA W N

The above procedure is a general procedure that can be applied to any multiphysics problem where coarse- and fine-solu-
tion descriptions exist. It should be noted the above methodology (Algorithm 1) is valid only for those cases in which fine-
scale is (statistically) stationary. However, one can devise dynamic CWM (dCWM) algorithm [30] that can handle non-sta-
tionary cases by dynamically combining the fine and coarse-scale simulation methods over successive sub-intervals assum-
ing that the response is quasi-stationary over each of these sub-intervals.

In tpCWM, the time parallel algorithm discussed before is modified as follows:

e Propagate fine-scale solution in parallel over a fraction of the time sub-interval ©Q, = (T, T, + tsne) using the fine propa-
gator F of Eq. (5) and perform the CWM operation given in Algorithm 1 such that

Yfne1) = CWM(E(Y}; tine), Gar (V) (14)

where y}‘m ) denotes the compounded solution at T,;.
o Compute error Ay, =yk . —y¥, ., forallo<n<N.
e Update the trial configuration in serial

Vi = Yein + At = Gar(y™) + CWM(F(YS; tne). Gar (V) — Gar (V) (15)

where y(iLy) = Gar(y;').

In summary, for tpCWM, Eq. (15) becomes
Vilt = Gar(yy'") + [CWM(E(Y}; tine), Gar (V1)) — Gar(¥y)] (16)

wherein CWM(F(Y¥; tane), Gar(¥¥)) is the wavelet compounded response of fine and coarse-scale responses as obtained
using Algorithm 1. That is, the tpCWM solution proceeds by instantiating the fine-scale simulation at the beginning of
each of the time increments AT of the coarse method, called nodes as shown in the schematic in Fig. 1. During each
TP iteration, this fine-scale solution is then performed over a time interval tm,. < AT. Over each time interval AT, the
fine-scale solution over tg, is then compounded with the coarse solution over AT using Algorithm 1. At the end of each
iteration, the difference between the compounded solution and the coarse solution is then used to correct the coarse solu-
tion of the next TP iteration. This procedure is continued over many TP iterates until the convergence of the solution is
attained.

It should be noted that since tpCWM is an implementation of CWM within the TP framework, it inherits the computa-
tional advantages of the TP method. The tpCWM is amenable to massive parallel implementation as each of the coarse time
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Fig. 1. Schematic of the TP and CWM methods. (a) The TP method. The fine method instantiates at several temporal “nodes” typically for a period At that
covers time until the next node. (b) The temporal CWM. The fine method is employed for a fraction of the coarse method for each of the temporal nodes. (c)
The CWM reconstruction updates the mean field. (d) The CWM reconstruction updates the temporal fluctuations.

intervals AT can be done in a trivially parallel fashion. Since the fine-scale solution is performed only over a short time inter-
val ts, compared to AT in TP, tpCWM has an additional computational speedup of } where f = tg—”; over that can be
achieved using the TP method. It is noted that this acceleration is achieved solely due to the use of Compound Wavelet Meth-
od (CWM), and can be obtained even when CWM is combined with a sequential integrator. In the following, we demonstrate
the efficiency of tpCWM method using two coupled multiphysics numerical examples. Our experience with these numerical
results indicates that convergence to the solution is obtained in 3-4 TP iterations, and the interaction of the fine and coarse-

scale responses during the TP iteration process promotes this fast convergence of the method.
4. Numerical results
4.1. Application 1: Oscillatory chemical reaction system

We first consider a stochastic chemical reaction problem in which the coarse propagator is a solution of a set of deter-
ministic, ordinary differential equations (e.g. rate equations), and the fine propagator is a solution of a corresponding sto-
chastic method (e.g. kinetic Monte Carlo, KMC) [22]. The benchmark solution is the fine propagator (KMC), run over the
entire time interval.

Let a, b denote two time-dependent concentrations of the two reactive species. At steady-state, the concentrations are
o, by, and deviations from steady-state are denoted as A = a — ap, B = b — by, respectively. Let us consider the reaction rate
ODE equations of the following form:

% Z—f: K21A + KB (17)
Analytical solution of (17) for ki1 = K2 =0, —Ky; = K12 = Kk = 0.001 s, and initial values Ay = 0 and By = 10,000, yields
oscillatory solutions for A, and B, as A(t) = By sin(xt) [31]. The coarse model uses a deterministic algorithm for solving the
ODE system (17). The first-order Euler scheme yields, with A denoting finite difference

AA = kBAt, AB = —KAAt (18)

= KnA+ Ki2B,

Although it is well known that first-order Euler scheme suffers from stability limits and is prone to significant error in accu-
racy, we choose to use large time increments for the coarse method in order to examine how the tpCWM method converges
to the correct solution as the number of iterations increase within the TP framework.
We adopt the KMC algorithm as the fine propagator for the kinetic evolution (17) of the species concentration deviations
from the steady-state. Let t;, t; denote the times required for a unit change in the value of A, and B and are expressed as:
1 1

t1:——ln(1—R1), fzz—m

KA In(1-R,) (19)

where, R; and R, are independent uniformly distributed random numbers between zero and unity. At every KMC iteration
step, the minimum of t;, t; is the time increment associated with the selected unit change event. We will use the KMC solu-
tion over the entire interval as the benchmark.
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Fig. 2 presents numerical results obtained using the tpCWM method. These results are obtained using n, = 60 number of
TP nodes for integrating the coarse solution in the TP framework, i.e., n, = -L. The results presented in Fig. 2 indicate that
convergence to the correct solution is obtained in 3 TP iterations. This represents a speedup of 20 (r = ';—P where n; is the
number of iterations), which is in addition to the gain through factor f. The total theoretical speedup in a tpCWM framework
can thus be expressed as 2 Fig. 3 shows the relative error (measured by the L, norm normalized with respect to the error at
the first iteration) of the concentration of species A with the number of iterations. As mentioned earlier, the error introduced
by the Euler scheme for integrating the coarse response increases systematically with time. Consequently, we ran the sim-
ulations for very long times and noted that the tpCWM still converged to the correct solution in 3 iterations. The stochastic
nature of KMC simulations introduces the small L, error (oscillatory in L, ) even after a large number of iterations. This is due
to the stochasticity of the individual realizations of the KMC and this stochastic noise floor is within the limits of the solution
obtained using KMC alone. We have verified that with a deterministic solver (not shown here) the error converges mono-
tonically to a small number with the number of iterations.

4.2. Application 2: Lotka—Volterra system

In this section the Lotka-Volterra system, which finds applications in coupled autocatalytic chemical reactions as well as
in predator-prey dynamical system [22], is studied using the tpCWM method. Let us assume that prey species Y; reproduce
by feeding on foodstuff X with a rate constant «. The predator species Y, reproduce by feeding on Y; with a rate constant f,
and the eventual demise of Y, (Z) is given by a rate constant y. The Lotka-Volterra problem for such a system is described by

X+Y, 52y,

Y i+Y, i>2Y2
Y, -2z

(20)

and possesses some remarkable non-linear dynamical properties [22]. The corresponding rate equations, studied by Volterra
[22] are

% = oXY; — BY1Y>
dyt (21)
d—f = BY1Y; —)Ys

Both the stochastic solution of the Lotka system (20) and deterministic solution of the Volterra equations (21) are studied in
detail in Gillespie [22], where the relevant algorithms are also described. There is no analytical solution to the non-linear
equations (21), yet an accurate numerical solution is feasible and is termed here as “exact”. It can be obtained by using high-
er order integration schemes such as Runge-Kutta with relatively small time increments (see Fig. 4). The numerical values
used are X = 10, = 0.01, y = 10, and the initial species concentrations of Y; and Y, are equal to 500 units [22]. We use

20000 20000
- (b) ,
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10000 /\ //_.---~..‘\ 10000 /\
. s Y.
A £ . %,
- 10000 Nt : / )

-10000 \tees

N \ N4
-20000 \ -20000 \
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
time — sec time — sec
10265 —
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20000 ( ;)0260 -
7626 7630 /7 \
10000 X ! oo\
174 \
= \ 7 N
\ 7 .
-10000 NS =
N \
-20000 \
0 2000 4000 6000 8000 10000
time — sec

Fig. 2. A-concentration versus time solutions, tpCWM (solid line), coarse with time increment equal to 175 s (dashed line) and benchmark (dot line), for
n, = 60, at iterations 1 (a), 2 (b), 3 (c). The CWM for a particular time interval is shown in (c) (inset) depicting the relevant fluctuations.
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Fig. 4. (a) tpCWM solution (dotted line) at the fourth iteration for n, = 50, f = 1/16 and its comparison to the coarse (dashed line) and “exact” (solid line)
solutions. The coarse solution used in forming the tpCWM was for AT = 0.015. (b) Parametric plot of Y, versus Y; from the tpCWM for the same time period
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Fig. 5. Relative error as a function of the number of iterations. (a) For n, = 50, f =1/16, AT = 0.015. (b) For n, = 35, f =1/16, AT =0.03.

the first-order Euler scheme as a coarse propagator even though it is clear that Euler scheme is not the appropriate integra-
tion scheme to integrate Eq. (21). The Euler scheme diverges very quickly for large time increments. However, in the tpCWM
framework, the solution still converges to the exact solution since the coarse propagator solution is corrected by the fine-
scale solution obtained using KMC in Eq. (20).

Fig. 4 shows the tpCWM solution for the fourth iteration step for the case where n, = 50, AT = 0.015, and f = 1/16, and
the relevant convergence of tpCWM is presented in Fig. 5(a). The gain due to CWM can be simply evaluated as the product of
1/f and the number of iterations until convergence. We test the convergence of the method further by using AT = 0.03 and
n, = 35; results for this case are shown in Fig. 5(b).

Computational savings in tpCWM increase with increasing r and decreasing f. Three orders of magnitude in savings can be
achieved by r in the range of 20 and f of the order of 1/64.

5. Conclusions

This paper presented a tpCWM method for coupling multiphysics problems. Specifically, we presented an approach for
combining the compound wavelet method (CWM) suitable for coupling multiple time scales, with the Parareal time parallel
(TP) framework. Our results indicate that the combination of TP and CWM enables significant computational speedup for
coupling multiscale/multiphysics problems. Major advantages of tpCWM over the TP method are the realization of addi-
tional computational savings during each iteration step in addition to the parallel scalability with the increasing number
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of processors. The CWM corrects the coarse solution with the fine-scale solution by enabling an efficient interaction of the
fine and coarse methods over the entire time interval instead of just at their common temporal nodes.
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