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We investigate the phenomenon of imaging of elastic waves with flat lenses constituted of negatively refracting materials. We derive an
analytical solution for the acoustic field produced by a point source near a flat lens composed of a homogeneous acoustic metamaterial
(i.e. negative density and negative moduli) using the Green’s function formalism of the Interface Response Theory. We then consider
phononic crystals as a way of realizing negative refraction with materials possessing positive densities and moduli. The finite difference
time domain (FDTD) simulation method is employed to investigate the properties of negative refraction and focusing of ultrasonic waves
in a flat lens composed of a two-dimensional phononic crystal consisting of a triangular array of steel rods immersed in methanol. The flat
lens is embedded in water. Focusing of the ultrasonic field emitted by a point source is analyzed with particular attention paid to the lateral
resolution of the lens,i.e., the resolution along the direction parallel to the lens’ surface. The FDTD image is compared to experimental
measurements of the pressure amplitude field created by a similar source and lens. Agreements and differences between the calculated and
measured images as well as resolutions are reported and discussed. The flow of energy in the phononic crystal lens is calculated and matched
to a simple ray tracing analysis of negative refraction in a homogeneous negatively refracting medium.

Keywords:Ultrasonic waves; phononic crystals; negative refraction.

Hemos investigado el fenómeno de imagen de ondas elásticas con lentes planos constituidos de materiales refractivos negativos. Derivamos
una solucíon anaĺıtica para el campo acústico producido por una fuente puntual cercana a una lente plana compuesta de un metamaterial
aćustico homoǵeneo (es decir, un material con densidad y módulo negativos) usando el formalismo de la función de Green de la Teorı́a
de Respuesta Interfacial. Después consideramos cristales fonónicos como una forma de obtener refracción negativa con materiales que
poseen densidades y módulos positivos. El ḿetodo de simulación de diferencias finitas en el dominio del tiempo (FDTD) es utilizado
para investigar las propiedades de refracción negativa y enfocamiento de ondas ultrasónicas en una lente plana compuesta de un cristal
fonónico bidimensional consistente de un arreglo triangular de barras de acero inmersas en metanol. La lente plana está inmersa en agua. El
enfocamiento del campo ultrasónico emitido por una fuente puntual es analizado con atención particular a la resolución lateral de la lente, es
decir, la resolucíon en la direccíon paralela a la superficie de la lente. La imagen obtenida con el FDTD es comparada con las mediciones
experimentales del campo de presiones creado por una fuente similar y una lente. Se reportan y discuten los acuerdos y las diferencias entre
las imágenes calculadas y medidas ası́ como las resoluciones. El flujo de energı́a en una lente de cristal fonónico es calculado y analizado
como rayos de refracción negativa en un medio homogéneo refractivo negativo.

Descriptores:Ondas ultraśonicas; cristales fońonicos; refraccíon negativa.

PACS: 43.20.F1; 43.40.Fz

1. Introduction

Negative refraction in doubly negative electromagnetic meta-
materials, introduced in the 1960’s [1], continues to receive
a great deal of attention. In particular, these metamaterials
are compelling in view of the possibility of using negative
refraction to design flat lenses that can beat the diffraction
limit (so-called superlenses) [2,3]. The concept of metamate-
rials exhibiting negative refraction was generalized recently
to acoustic waves [4]. Negative refraction in acoustic meta-
materials may arise when their effective mass density and
effective modulus are both negative. Such acoustic materi-

als will exhibit a band structure that possesses bands with
negative group velocity, i.e. the wave vector points in the
direction opposite to the direction of propagation of the en-
ergy. With metamaterials, negative effective mass density
and modulus are the result of local resonances [4,5]. Neg-
ative refraction can also be achieved using phononic crystals.
Here, the mass density and the elastic moduli are positive and
negative refraction results from Bragg scattering. For such
phononic crystals, the elastic wave band structure exhibits a
pass band with negative group velocity. Focusing of sound
has been shown using lenses constituted of negatively refract-
ing two-dimensional and three-dimensional phononic crys-
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tals [6-10]. Focusing of acoustic waves by refractive acous-
tic devices constituted of phononic crystals was also demon-
strated experimentally by Cervera et al. [11] and confirmed
theoretically by Gupta and Ye [12]. Sound focusing was also
achieved by flat acoustic lenses without negative refraction
by using aperiodic lattices of sound scatterers [13] or by us-
ing a gradient index lens [14].

In this paper we present a comprehensive study of fo-
cusing of acoustic waves by negatively refracting flat lenses
composed of a homogeneous metamaterial as well as an in-
homogeneous phononic crystal. In Sec. 2, we investigate
the concept of focusing using a flat lens made from a ho-
mogeneous doubly negative acoustic metamaterial by using
a Green’s function formalism. In that section, we derive an
analytical solution for the imaged sound field of a single point
source produced by the flat lens. We then consider, in Sec. 3,
the focusing of acoustic waves by a flat lens made from a neg-
atively refracting phononic crystal. This inhomogeneous sys-
tem is studied by using the Finite Difference Time Domain
(FDTD) method. The two-dimensional phononic crystal is
a triangular lattice of steel cylinders embedded in methanol.
The lens is immersed in water. Particular attention is attached
to a comparison between numerical results and experimental
results reported elsewhere [10]. Furthermore, we calculate
the energy flux density throughout the water and lens and
show that the FDTD numerical results can be related to sim-
ple ray tracing analysis of negative refraction in a homoge-
neous medium. Finally, Sec. 4 reports the conclusions drawn
from this study.

2. Imaging with a flat lens using an acoustic
metamaterial

In this section, we investigate analytically the physics of the
propagation of elastic waves in a flat lens composed of a ho-
mogeneous doubly negative acoustic metamaterial. The for-
malism of Green’s functions is used to solve for the acoustic
field resulting from a point source in the vicinity of the flat
lens. We first introduce the Green’s function of an infinite
homogeneous medium and construct the Green’s function of
a flat lens composed of that same medium immersed in some
other medium.

The equation defining the Green’s function,G, associated
with elastic waves in an infinite fluid medium has the form:

(
∆ +

ω2

c2

)
ρc2G(~x, ~x′) = δ(~x− ~x′) (1)

where∆ is the Laplace operator,δ the usual delta function,ρ
andc are the density and the speed of sound in the medium,
and ω the angular frequency. For a homogeneous infinite
medium, the solution of equation (1) is given by:

G(~x, ~x′) =
−1

4πρc2

eik|~x−~x′|
|~x− ~x′| wherek2 =

ω2

c2
(2)

For the study of lamellar composite media or media with
flat surfaces or interfaces, it is convenient to write the Green’s
function as a two-dimensional Fourier transform:

G(~x, ~x′) =
∫

d2~k//

(2π)2
ei~k//(~x//−~x′//)G(k//, x3, x

′
3) (3)

where~k// and~x// are two-dimension vectors in the plane
(x1, x2). Inserting equation (3) into equation (1) results in the
elastic wave equation defining the two-dimensional Fourier
transform of the Green’s function:

(
∂2

∂x2
3

−(k2−k2
//)

)
ρc2G(k//, x3, x

′
3)=δ(x3−x′3) (4)

The solution of equation (4) is then given by:

G(k//, x3, x
′
3) =

−1
2ρc2α

e−α|x3−x′3| (5)

whereα2 = k2
// − ω2/c2 .

It is useful to rewrite equation (3) in the form:

G(~x, ~x′) =
∫

k2
//
≤ω2

c2

d2~k//

(2π)2
ei~k//(~x//−~x′//)G(k//, x3, x

′
3)

+
∫

k2
//

> ω2

c2

d2~k//

(2π)2
ei~k//(~x//−~x′//)G(k//, x3, x

′
3) (6)

The first term in equation (6) corresponds to an integra-
tion overk//’s that satisfyk2

//−ω2/c2 ≤ 0 and therefore in-
cludes the contribution of propagating traveling waves to the
Green’s function. The second integral withk2

// − ω2/c2 > 0
is associated with evanescent waves. We note that the charac-
ter of the Green’s function in equation (5) in terms of travel-
ing or evanescent waves is best seen by considering the nature
of α as an imaginary or real number:

α = ±i

√
ω2

c2
− k2

//ifω ≥ k//c

α =

√
k2

// −
ω2

c2
if ω ≤ k//c (7)

In Eq. (7), the sign multiplying the imaginary number de-
termines the direction of propagation of the traveling wave.
Limiting the integration in Eq. (6) to traveling waves results
in the so-called diffraction limit.

We now consider the calculation of the Green’s function
of inhomogeneous media. The Interface Response Theory
(IRT) [15] allows for the construction of the Green’s function
of an inhomogeneous medium in terms of the Green’s func-
tions of the block constituents of the composite. The Green’s
function of a composite medium can be written in the form
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of an interface integral equation:

↔
g (r, r′) =

↔
G(r, r′) +

∫
drM

↔
G(r, rM )

∫
dr′M

↔
G
−1

(rM , r′M )

× ∫
dr′′M

[
↔
g (r′M , r′′M )− ↔

G(r′M , r′′M )
]

× ∫
dr′′′M

↔
G
−1

(r′′M , r′′′M )
↔
G(r

′′′
M , r′),

{r, r′} ∈ D,
{rM , r′M , r′′M , r′′′M} ∈ M

(8)
with

↔
G(r, r′) =

{
↔
Gi(r, r′), {r, r′} ∈ Di, i = 1, N
0 r ∈ Di, r′ ∈ Dj , i 6= j

(9)

whereD represents the space of the entire inhomogeneous
medium,M is the total domain of interfaces andDi is the
space in which the constitutive blocki is defined. In the
case of layered composites media, using the two-dimensional
Fourier transforms of the Green’s function in a plane paral-
lel to the interfaces, the domain of the interfaces reduces to
points along thex3 axis; thus, the integrals in equation (8)
reduce to discrete sums over these points.

We note that in order to solve for↔g (r, r′) using Eq. (8),
one needs to know its form in the domain of the interfaces,
↔
g (rM , r

′′
M ). According to the IRT, the inverse of the Green’s

function of the inhomogeneous medium defined in the do-
main of the interfaces may be expressed in terms of the in-
verse Green’s function of the constitutive blocks defined in
the domain of their surfaces, such that
↔
g
−1

(r ∈ Mij , r′ ∈ Mkl) = 0
if Mkl /∈ Mi
↔
g
−1

(r ∈ Mij , r′ ∈ Mil) = ↔
g
−1

s (r ∈ Mij , r′ ∈ Mil)
if l 6= j
↔
g
−1

(r ∈ Mij , r′ ∈ Mij) =
∑
k

↔
g
−1

s (r ∈ Mkl, r′ ∈ Mkl)

if Mkl ≡ Mij

(10)
with Mijstanding for the interface between the constitutive
blocks i andj. In equation (10),↔g s stands for the Green’s
function of the constitutive blocks with free surfaces.

All the boundary conditions (e.g. continuity of displace-
ment) at the interfaces are satisfied through equations (10).
The inhomogeneous media considered in this study are com-
posed of semi-infinite media and slabs. The Green’s function
of a semi-infinite medium or a slab is obtained from the bulk
Green’s function defined previously. In the presence of a free
surface or free surfaces, Eq. (4) has to be solved subject to
the boundary conditions expressing the absence of stress at
the surface. The inverse of the Green’s function at the surface
of a semi-infinite fluid elastic medium and at the surfaces of
an elastic fluid slab have been reported in the literature and
presented below.

The inverse of the Green’s function,↔g
−1

s of a semi-
infinite mediumi, bounded by a free surface atx3 = 0, is
given in the domain of its surface by [16]:

g−1
si (k//ω |x3 = 0, x′3 = 0) = −ρiαic

2
i (11)

In the construction of a flat lens, we will also consider a
slab of some medium 1 of thickness,d, with surfaces perpen-
dicular to the axisx3 and located atx3 = ±d/2. The inverse
Green’s function of the slab in the space of its surfaces has
been derived previously [17] and is given by

↔
g
−1

s1 (MM)

=

(
↔
g
−1

s1

(
k//ω

∣∣−d
2 ,−d

2

) ↔
g
−1

s1

(
k//ω

∣∣−d
2 , +d

2

)
↔
g
−1

s1

(
k//ω

∣∣+d
2 ,−d

2

) ↔
g
−1

s1

(
k//ω

∣∣+d
2 , +d

2

)
)

=
(

ν w
w ν

)

(12)
Its components take the analytical form

v = −ρ1α1c
2
1

ch (α1d)
sh (α1d)

w = −ρ1α1c
2
1

(−1)
sh (α1d)

(13)

We now consider the inhomogeneous medium consisting
of a medium 1 sandwiched between two semi-infinite me-
dia 2 (see Fig. 1). The interfaces between these media are
parallel to each other and normal to the axisx3. This geome-
try is that of a flat lens (1) immersed in some medium 2. The
thickness of the lens is defined asd. The lens is centered on
the origin 0.

Using the IRT to calculate the Green’s function of the
composite medium in terms of the Green’s functions of the
constitutive parts, namely a slab of medium 1 and the two
semi-infinite media, we obtain:

FIGURE 1. Schematic geometrical representation of the composite
medium representative of a flat lens (medium 1) immersed in some
medium 2.

g(k//, x3, x
′
3) =

2ρ1c
2
1α1e

−α2(x3−x′3−d)

(ρ1c2
1α1 + ρ2c2

2α2)
2
eα1d − (ρ1c2

1α1 − ρ2c2
2α2)

2
e−α1d

for x′3 < −d/2 andx3 > d/2 (14)
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FIGURE 2. (a) Schematic illustration of negative refraction across
an interface between a regular medium (2) and a doubly negative
(density, modulus) metamaterial. k//, α1 andα2 are the compo-
nents of the wave vector parallel and perpendicular to the inter-
face between the media 2 and 1, respectively. (b) Schematic il-
lustration of focusing by a flat lens exhibiting negative refraction
[medium (1)]. S and I are the source and image, respectively.

In Eq. (14), the subscripts 1 and 2 refer to the two media.
Medium 2 is considered to be a normal positively refracting
fluid with

α2 =

√
k2

// −
ω2

c2
2

if ω ≤ k//c2

α2 = −i

√
ω2

c2
2

− k2
// = −ik

(2)
3 if ω ≥ k//c2 (15)

In Eq. (15), the negative sign multiplying the imaginary
number ensures a propagating character to the elastic waves
in medium 2.

When medium 1 is composed of an acoustic metamate-
rial exhibiting negative refraction,ρ1 ≤ 0 . Since the speed
of sound in the medium 1,c1 =

√
λ/ρ, is positive and real,

the compressibility must be negative,λ < 0. For this meta-
material, we have:

α1 =

√
k2

// −
ω2

c2
1

if ω ≤ k//c1

α1 = +i

√
ω2

c2
1

− k2
// = +ik

(1)
3 if ω ≥ k//c1 (16)

The positive sign multiplying the imaginary number “i”
indicates that a wave, which propagates from medium 2 into
medium 1 and which satisfies the continuity ofk// at the in-
terface between the two media, would have components of
the wave vector along thex3 direction antiparallel to each
other. Since the energy of the wave propagates along the
same direction (i.e. the direction of the group velocity), this
implies that the wave vector in medium 2 is parallel to the
group velocity and that in medium 1 the wave vector is an-
tiparallel to the group velocity. This behavior is characteristic
of the phenomenon of negative refraction at the interface be-
tween media 1 and 2 and is illustrated in Fig. 2.

For the sake of simplicity and in order to obtain analytical
solutions, we takeρ1 = −ρ2 = −ρ ≤ 0, c1 = c2 = c. We
also consider the separate cases of traveling and evanescent
waves. For traveling waves,k// ≤ ω/c andα1=−α2 = −α.
Under these conditions, the Green’s function of the compos-
ite medium simplifies to

g(k//, x3, x
′
3) =

e−α(x3−x′3−2d)

2ρc2α

for x′3 < −d/2 andx3 > d/2 (17)

We are now going to analyze the response of the com-
posite medium to aδ stimulus (i.e. point source) ap-
plied on the left side of the slab of medium 1 located at
x′3 = −a − d/2. We are particularly interested in the nature
of the Green’s function on the right side (side opposite to the
point source) of the slab. In that case the position-dependent
term in the argument of the exponential in Eq. (17) becomes
x3−x′3−2d=x3−(3(d/2)−a). Considering the response at
x3 ≥ 3(d/2)−a thenx3−(3(d/2)−a)= |x3−(3(d/2)−a)|.
With this, Eq. (17) is rearranged in the form:

g(k//, x3, x
′
3) =

e−α|x3−( 3d
2 −a)|

2ρc2α

for x′3 = −a− d/2 and x3 > 3
d

2
− a (18)

In the case of evanescent waves,k//>ω/c and
α1=α2=α, Eq. (14) takes again the form of Eq. (17).
Therefore, for all k//, the Green’s function at
x′3=−a−d/2 andx3>3(d/2) − a (i.e. Eq. (18)), is iso-
morphic to the two-dimensional Fourier transform of the
Green’s function of a homogeneous medium (see Eq. (5)).
Taking the inverse Fourier transformation over all k// (i.e.
traveling and evanescent waves) gives a solution of the
form: G(~x, ~xi) = (1/4πρc2)(ei(ω/c)|~x−~xi|)|~x− ~xi| where
~xi = (0, 0, (3d/2) − a) is the focal point of a perfect image
of the source. Limiting the integration in Eq. (6) to traveling
waves only (evanescent waves have exponentially decaying
amplitudes) results in an imperfect image with a resolution
(half width of image) exceeding the ultimate resolution of
half the wavelength as predicted by diffraction theory.
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FIGURE 3. Schematic illustration of the phononic crystal com-
posed of a triangular array of steel cylindrical inclusions in a
methanol matrix. The first Brillouin zone of that crystal is also
illustrated.

FIGURE 4. Band structure of the phononic crystal in the direction
ΓM of the Brillouin zone. The band marked with an arrow shows a
negative group velocity.

FIGURE 5. Schematic illustration of the phononic crystal flat lens.
The lens is made from six planes of cylinders perpendicular to the
ΓM direction. The lens is finite in the direction perpendicular to
the ΓM direction with a length of approximately 15a wherea is
the inter-cylinder spacing. The white spot marks the location of the
source of sound at some distanced from the left side of the lens
surface.

3. Acoustic imaging using a flat lens made out
of a phononic crystal

We have shown in Sec. 2 that a flat lens composed of a homo-
geneous acoustic metamaterial can focus sound waves with
a resolution that approaches the limit imposed by diffrac-
tion. Here we use numerical methods to investigate the fo-
cusing of sound by an inhomogeneous flat lens composed of
a phononic crystal. Phononic crystals composed of materials
with positive densities and moduli can exhibit negative re-
fraction. In contrast to homogeneous metamaterials, negative
refraction in the case of phononic crystals results from band
structure effects associated with Bragg scattering due to the
periodic nature of the lattice. We employ the Finite Differ-
ence Time Domain method to study the negative refraction
and focusing properties of a two-dimensional phononic crys-
tal. The FDTD method has been extensively used to study the
propagation of acoustic waves in phononic crystals [18-20].
The wave equation to be solved in two-dimensions (x1,x3)
is:

ρ(x1, x3)
∂2~u

∂t2
= ∇.σ (19)

whereρ(x1, x3) is the mass density,~u and σ are the two-
dimensional displacement field and the stress tensor. The
components of the stress tensor are calculated from the elastic
displacement using isotropic Hooke’s laws with position de-
pendent elastic coefficients C11(x1,x3) and C44(x1,x3). The
latter elastic coefficient is zero for fluids. The FDTD method
can also be extended to calculate the band structure of in-
homogeneous periodic medium [21]. In all the calculations
reported below, we use an interval for the discretization of
space of 2×10−5m. The acoustic waves are propagated in
time with a time step of 6×10−10sec. These values satisfy
the Courant condition and lead to a stable algorithm.

We consider a two-dimensional phononic crystal com-
posed of a triangular array of steel cylinders embedded in
a matrix of methanol (Fig. 3). The inter-cylinder spacing is
taken as 1.27mm with a cylinder diameter of 1.02mm. The
steel physical characteristics are: mass density of 7780kg/m3,
longitudinal speed of sound of 5825m/s and transverse speed
of sound of 3227m/s. For the methanol matrix, we use a mass
density of 792kg/m3 and a longitudinal speed of sound of
1103m/s. Finally, all calculations of the lens immersed in wa-
ter employ for that fluid a mass density equal to 1000kg/m3

and a speed of sound of 1500m/s. The band structure of
the periodic phononic crystal is reported in figure 4. It ex-
hibits a pass band between 500kHz and 778kHz with a neg-
ative group velocity. This band corresponds to waves with
a wave vector pointing in the direction opposite to the di-
rection of propagation of the energy. It has been shown ex-
perimentally that waves in this band exhibit the phenomenon
of negative refraction upon crossing an interface between a
homogeneous medium such as water and the phononic crys-
tal [10]. The equifrequency contour in the Brillouin zone of
the phononic crystal matches that of water at a frequency of
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550 kHz [10]. The latter condition is important to achieve
good imaging with the phononic crystal flat lens, as all inci-
dent waves will be refracted and will contribute to the con-
struction of an image. In the following, the imaging capa-
bility of the steel/methanol flat lens will be studied in water.
We now develop the model of a lens that we will compare
with experimental results reported in reference 10. The ex-
periment involves the mapping of the pressure field ampli-
tude created by a 550 kHz line source transducer (0.55mm
wide) and imaged by a steel/methanol phononic crystal flat
lens. The line source runs parallel to the principal axis of the
steel cylinders and mimics the behavior of a point source in
a plane perpendicular to the cylinders. To model this system
we utilize the method of FDTD to study the propagation of
acoustic waves emitted from a point source, having the size
of a grid point in the FDTD discretized mesh, located at a
distanced=1.6mm from the lens surface (Fig. 5). The source
emits a sinusoidal displacement which is updated in time ac-
cording to:

uu
1 = u1 + A sin(ωt)

uu
3 = u3 + A cos(ωt) (20)

where~uu is the updated displacement field of the point source
and~u is the solution to equation 19; A is the amplitude of the
sinusoidal source andω its angular frequency.

Because of a discrepancy between the FDTD band struc-
ture of the model and the experimental one, possibly due to
the choice of the physical parameters or discretization mesh
used in the model, the condition for matching the equifre-
quency contour of the Brillouin zone of the model phononic
crystal to that of water is achieved at a frequency of 530kHz
and not 550kHz as in the experiment. The point source used
in the FDTD calculation is therefore emitting a sound wave at
a frequency of 530kHz. We impose Mur’s absorbing bound-
ary conditions [22] along the four edges of the simulated sys-
tem. In Fig. 6, we report the calculated average pressure field
on the side of the lens opposite to the source in the form of a
contour map. The average pressure is normalized to the max-
imum average pressure on that side of the lens. The average
pressure is defined at steady state according to the relation:

P̄ =
π

2
1
T

t+T∫

t

|P (t)| dt (21)

where the time integral is taken over one period of the inci-
dent wave,T , and the instantaneous pressure,P (t), is calcu-
lated from the stress tensor according to

P (t) = −1
2
(σ11 + σ22).

Figure 6 clearly shows that the negatively refracting phononic
crystal behaves as a lens and focuses the sound emitted by the
source into a localized image. The calculated image is com-
pared to the experimental results of [10] in Fig. 7 in the form
of lateral and perpendicular cuts of the contour map through

FIGURE 6. Contour map of the normalized average pressure field
(see text for definition) on the side of the lens opposite to the source
of sound. The units of the axes are in millimeters.

the point of highest normalized average pressure. Good
agreement is observed for the width of the focal spot in the
direction parallel to the crystal surface while along the per-
pendicular direction, we find experimentally that the focal
spot is narrower and closer to the crystal surface than in the
theoretical predictions. According to the Rayleigh criterion,
the spatial resolution of the lens can be estimated as half the
width of the peak, measured from the maximum to the first
zero. In the experimental case, this width amounts to 1.5mm.
The wavelength of the experimental incident wave at 550kHz
in water isλ=2.73mm. The experimental spatial resolution
of the flat lens is therefore 0.55λ. With a half peak width of
2.77mm and the frequency of 530kHz, the resolution of the
model lens is 0.49λ. This resolution is just below than the
ultimate resolution limit of 0.5λ of any conventional imaging
system as predicted by diffraction theory.

To shed further light on the path of propagation of acous-
tic waves in the methanol/steel phononic crystal lens, we
have calculated the energy flux density vector throughout the
simulated water-methanol/steel lens system. The energy flux
density is defined as~R = P~v whereP is the pressure and~v
is the group velocity. The energy flux density vector points
in the direction of the group velocity. We report in figure 8
contour maps of the components of~R = (R1, R3) averaged
over one period. Figure 8b shows that theR3 component is
essentially positive in the lens as well as the water region to
the right of the lens, that is the energy propagates in the posi-
tive direction along the axisx3 (i.e. from the left to the right).
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FIGURE 7. Experimental (solid line) and calculated (dotted line)
normalized average pressure on the image side of the lens through
the point of highest normalized pressure (1) along (a) the direction
parallel and (b) the direction perpendicular to the lens surface, re-
spectively. The horizontal axes are in units of millimeters. The
main peak width in (a) is 3.0mm for the experimental data and
2.77mm for the calculated one. The measured half width corre-
sponds to a resolution of the lens of 0.55λ whereλ is the wave-
length of the incident wave in water. The resolution of the model
lens of 0.49λ is just below the ultimate resolution limit of 0.5λ of
any conventional imaging system as predicted by diffraction the-
ory. In (a), the position of the peaks is centered onx = 0 to facilitate
comparison of the experimental and calculated peak shapes.

More interestingly, the componentR1 changes sign succes-
sively as one moves from the source to the lens, through the
lens and out into water. We have superposed arrows onto
Fig. 8a to illustrate the overall direction of propagation of
the energy. Acoustic waves diverging from the source are
refracted negatively at the left surface of the lens. Inside the
lens from left to right, the waves converge back into a “point”
and diverge beyond. Upon exit through the second surface the
diverging waves are refracted negatively a second time and
focused into an image to the right of the lens. This is the path
a wave would follow in a ray tracing representation of focus-
ing by a negatively refracting homogeneous flat lens as de-
scribed in Sec. 2 and Fig. 2b. Furthermore, it is worth noting

FIGURE 8. Contour maps of the energy flux density vector, (a)
component,R1, parallel to the surface of the lens, and (b) compo-
nent,R3, perpendicular to the surface of the lens. The axes are in
units of millimeters. Note that the positive direction of thex1 axis
parallel to the lens points down. The arrows in (a) are guides to the
eye illustrating the direction of the propagation of energy.

that the energy propagates mostly in the methanol matrix of
the phononic crystal lens and that the steel cylinders behave
essentially like rigid rods.

For phononic crystal lenses periodic in the direction par-
allel to the lens surface with a periodas, the image obtained
is constructed from waves with a wave vectork// limited by
ks=π/as [3]. Here,as=1.27mm andks=2.47mm−1. Consid-
ering equation (6), the wave vector limit for traveling waves
is k//=ω/c which for water at 530kHz amounts to approx-
imately 2.22mm−1¡ks, implying that the image that we ob-
serve in the FDTD calculation includes all traveling waves.
That is, the resolution of the lens is not limited by its surface
periodicity.

4. Conclusions

We have investigated the phenomenon of negative refrac-
tion and focusing of acoustic waves by a flat lens composed
of a homogeneous metamaterial exhibiting negative effective
mass and compressibility using the Green’s function formal-
ism of the Interface Response Theory. The Finite Difference
Time Domain (FDTD) method is also used to show that a
flat lens constituted of a phononic crystal can be used to fo-
cus sound waves. The requisite for focusing is the existence
of a band in the band structure of the phononic crystal that
exhibits a negative group velocity. We compare the FDTD
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image with experimental data reported elsewhere [10]. Satis-
factory agreement between the numerical results and experi-
mental results is found in the width of the image produced by
the phononic crystal lens. Through the calculation of the en-
ergy flux density we relate the path of energy in the phononic

crystal lens to the simple ray tracing representation of nega-
tive refraction and focusing in a homogeneous metamaterial
lens. We also show that the resolution of the lens approaches
the limit of diffraction and is not limited by the phononic
crystal surface periodicity.
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