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Concurrent multiscale model of an atomic crystal coupled with elastic continua
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A methodology based on a Green’s function formalism, which enables the coupling between atomic and
continuous systems, is employed to evaluate the dynamical properties of concurrent elastic multiscale models.
Boundary conditions satisfying the continuity of displacement and stress across interfaces between a harmonic
crystal and continua are insufficient to establish seamless coupling at high frequency. The elastic mismatch in
coupled discrete/continuous models is inherently linked to the difference in dispersion of the constitutive
media.
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I. INTRODUCTION

Multiscaling has recently received much attention in s
eral branches of physical science. Existing multiscale sim
lation methodologies can be characterized as serial or
current. Within serial methods, a set of calculations a
fundamental level~small length scale! is used to evaluate
parameters as input for a more phenomenological model
describes a system at longer length scales. For example
quasicontinuum method is a zero temperature technique
a formulation based on standard continuum mechanics@e.g.,
the finite element~FE! method# with the additional feature
that the constitutive equations are drawn from calculation
the atomic scale.1–4 In contrast, concurrent methods bui
around the idea of describing the physics of different regi
of a material with different models and linking them via a s
of boundary conditions. The archetype of concurrent me
ods divides the space into atomistic regions coupled wit
continuum modeled via the FE method.5,6 Coarse graining
has been proposed as a mean to couple seamlessly a mo
lar dynamics~MD! region to a FE mesh.7 Coarse-grained
MD produces equations of motion for a mean-displacem
field at the nodes of a coarse-grained mesh partitioning
atomistic system. Other algorithms that allow the coupl
between atomistic and continuum regions have b
proposed.8–11 Broughtonet al.8 presented an algorithm in
volving hand shaking between FE and MD methods. T
algorithm was able to dynamically track a crack propagat
through silicon. The handshaking between the MD and
regions was achieved by drawing an imaginary surface
tween them. Within the range of the MD interatomic pote
tial from this surface, FE mesh points were located at eq
librium atomic sites. Any FE element that crosses
interface contributes half its weight to a conservative Ham
tonian. Similarly any MD interaction that crosses the int
face also contributes half its weight to this Hamiltonia
Kohlhoff et al.9 introduced a similar transition region be
tween the atomic and continuous regions. They also sc
down the finite element size to the atomic scale in this tr
sition region. Unlike Broughtonet al.’s work, the interface
was of finite size and not sharp. Abrahamet al.10 combined
the above two techniques by constructing an explicit Ham
0163-1829/2002/66~13!/134106~5!/$20.00 66 1341
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tonian for the atoms and the FE nodes in the transition reg
by weighing their contributions with respect to their distan
away from the middle of the interface. Ogataet al.11 used a
similar algorithm to study chemical reactions and their int
play with mechanical phenomena in materials, such as in
oxidation of the Si~111! surface.

In the case of dynamical simulations, interfaces betwe
atomistic systems and the coarser FE mesh will suffer
wanted reflections as the second medium cannot sup
short-wavelength vibrational modes. This problem could
overcome by coupling an atomistic system to a true c
tinuum and not one of its discretized forms. Indeed, a c
tinuum exhibits a linear dispersion relation for all freque
cies. Here we consider an approach based on Gre
functions wherein a hybrid system is constructed by interf
ing a harmonic cubic crystal and an elastic continuu
through appropriate boundary conditions. The boundary c
ditions satisfy the continuity of elastic displacements and
continuity of stresses. The method naturally avoids unde
able effects due to the discretization of the continuum
retains, however, the inherent difference in vibrational b
havior of the nonlinear dispersive atomic system and of
linear dispersive continuum. The investigation of the effe
of this difference on the propagation of elastic waves
discrete/continuum composite media constitutes the cor
the present study. We consider two hybrid systems, nam
~A! a semi-infinite continuum/semi-infinite crystal and,~B! a
finite crystal slab sandwiched between two semi-infinite c
tinua. The first system provides a window on the propert
of a single interface between continuum and atomic me
The necessity for multiscale modeling and simulation of h
brid continuum and atomic systems finds its roots in a n
for minimization of computational effort. To that effect, th
atomic scale region typically takes on finite dimensions a
is embedded into a continuum with larger dimensions. T
continuum/discrete/continuum system~B! provides the basis
for the quantification of undesirable effect in such hyb
systems.

In Sec. II, we present in details the Green’s functio
based methodology enabling the coupling between ela
continua and harmonic crystals. Plane waves propaga
through the hybrid systems are used to probe and quan
©2002 The American Physical Society06-1
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the coupling between the continuum and discrete media
Sec. III, we report the transmission coefficient of the hyb
systems~A! and ~B! as a function of the angular frequenc
Conclusions concerning the applicability and limitations
concurrent discrete/continuous multiscale models are dr
in Sec. IV.

II. MODELS AND METHODOLOGY

We treat two coupled systems, namely,~A! a semi-infinite
continuum/semi-infinite crystal, and~B! a finite crystal slab
sandwiched between two semi-infinite continua. In bo
cases, the interfaces are taken to be parallel to a~001! plane
~see Fig. 1!. We exploit the periodicity of the continuum an
of the crystal in the direction parallel to the interface to d
compose the elastic and the vibrational Green’s functi
~and displacement! of the semi-infinite media and slab i
Fourier series in the coordinateskW // , parallel to the inter-
faces. For the sake of simplicity, we reduce the problem
wave propagation along the direction perpendicular to
interfaces by settingkW //50W . We also limit this study to trans
verse modes of vibration. The equation of motion in the c
tinuum simplifies to the one-dimensional elastic wave eq
tion. Assuming that the excitations execute harmonic mot
with pulsationv (v52pn wheren is the frequency! and a
time dependence exp(2 ivt), the continuum equation o
motion becomes

rv2u1C44

]2u

]x2
50, ~1!

whereu is the displacement andx the direction@001#. The
elastic continuum has the density,r. The Green’s function of
the bulk continuous elastic medium,Gc, is given by the
equation

FIG. 1. Projections of~A! the semi-infinite harmonic atomic
crystal/semi-infinite continuum and ~B! the semi-infinite
continuum/crystal slab/semi-infinite continuum sandwich. The g
areas represent the continua. See the text for details.
13410
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rv2Gc~x,x8!1C44

]2Gc~x,x8!

]x2
5d~x2x8!, ~2!

which has, for a solution,12

Gc~x,x8!52
1

2ra tCt
2

exp~2a tux2x8u!. ~3!

In Eq. ~2!, d is the usual delta function. The elastic consta
C44 is related to the density and transverse speed of so
throughCt5AC44/r. a t is defined by the relationa t

25k//
2

2(v/Ct)
2 which, atk//50 yieldsa t52 i (v/Ct).

The atomic system will be taken to be a simple-cub
crystal with lattice parametera. The atoms have massm. The
lattice vibrations of the crystal are described with t
Montroll-Potts model.13 The interactions between neare
neighbor atoms are harmonic with the isotropic force co
stant coefficientsb. The equation of motion for transvers
waves in the discrete system forkW //50W is that of a one-
dimensional monoatomic harmonic crystal, namely,

mv2un2b~un1122un1un21!50. ~4!

The indexn refers to an atomic site along the@001# direction.
From Eq.~4! and usingr5m/a,3 it is straightforward to

obtain a relationship dimensionally equivalent to Eq.~2! that
defines the Green’s function of the discrete system,Gd,

bGd~n11,n8!2gGd~n,n8!1bGd~n21,n8!5a2dn,n8 ,
~5!

wheredn,n8 is the Kroenecker symbol andg52b2mv2. In
deriving Eq.~5!, it is worth noting that the Kroenecker sym
bol is a dimensionless quantity while the delta function
Eq. ~2! has dimension of the inverse of a length. The solut
to Eq. ~5! is well known,14 and is given as

Gd~n,n8!5
a2

b

t un2n8u11

t221
, ~6!

with

t5H j2A~j221! if j.1

j1A~j221! if j,21

j1 iA~12j2! if 21,j,11

~7!

and

j5
g

2b

The transverse speed of sound,Ct , in the continuum me-
dium is related to the long-wavelength limit of the cryst
wave velocity according toCt5aAb/m. The elastic Green’s
function for the semi-infinite continuum with a stress fr
surface located atx50, gs

c was also reported in Ref. 12:

y
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gs
c~x,x8!52

1

2ra tCt
2 $exp~2a tux2x8u!

1exp@2a t~x1x8!#% if x,x8.0. ~8!

The Green’s functions of a semi-infinite discrete cryst
gs

d1 and of a discrete crystal slab composed ofL ~001!
atomic planes with two parallel ideal free surfaces,gs

d2 , are
calculated in Ref. 14:

gs
d1~n,n8!5

a2

b

t un2n8u111t22(n1n8)

t221
if n,n8<0, ~9!

gs
d2~n,n8!5

a2

b H t un2n8u111tn1n8

t221
1

t2L11

~ t221!~12t2L!

3~ tn2n81tn82n1t12n2n81tn1n821!J
if 1<n,n8<L. ~10!

These dynamical response functions depend on the a
lar frequencyv. We use a general theory of response fun
tions for partly discrete and partly continuous inhomog
neous systems,15 originally applied to a tight binding/nearly
free electron composite, to the calculation of the Gree
function of the coupled systems~A! and ~B!. This theory
builds upon the interface response theory of discrete c
posite systems16 and that of continuous composit
materials.17 The elastic displacement fieldu(D) everywhere
within the spaceD of the composite system is given by

u~D !5U~D !2U~M !G21~MM !G~MD !

1U~M !G21~MM !g~MM !G21~MM !G~MD !,

~11!

whereM refers to the space of the interfaces.G stands for the
bulk Green’s functions of the constitutive blocks of the co
posite.U is a bulk reference displacement field also defin
in the constitutive blocks.g(MM ) is the Green’s function of
the composite medium limited to its space of interfaces. T
elements of the inverse ofg(MM ) belonging to the inter-
faces between continuous and discrete systems are obt
as the sum of elements of the inverses of thegs8s of the
abutting constitutive blocks, such that

g21~rPMi j ,r 8PMkl!50 if Mkl¹Mi , ~12a!

g21~rPMi j ,r 8PMil !5gs
21~rPMi j ,r 8PMil ! if lÞ j ,

~12b!

g21~rPMi j ,r 8PMi j !5(
k

gs
21~rPMkl ,r 8PMkl!

if Mkl[Mi j , ~12c!
13410
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with Mi j standing for the interface between the constitut
blocks i and j. Mi represents the space of the interfaces
block i. This superposition of the inverses of surface Gree
functions imposes the appropriate boundary conditions
continuity of displacements and of continuity of stresses
the interfaces. The application of this method to system~A!
is detailed in the Appendix.

III. RESULTS

First we investigate the single interface between a h
monic crystal and the elastic continuum@system~A!# by cal-
culating, according to Eq.~11! ~see the Appendix!, the trans-
mitted displacement fieldu in the discrete system when
plane wave reference displacement fieldU is launched in the
continuous medium. In Fig. 2, we report the amplitude tra
mission coefficientt5uu/Uu2 and the energy transmissio
coefficient, defined asT5(Zd /Zc)t, as functions of reduced
angular frequency,v* 5v/vmax with vmax52Ab/m. Here
Zd5rVg andZc5rCt are the impedances of the continuo
and discrete media, respectively.Vg is the group velocity of
the atomic system. It is frequency dependent and determ
from the dispersion relation of the crystal. At low freque
cies and long wavelengths, there is no impedance mism
between the continuum and the crystal and both transmis
coefficients approach the ideal value of 1. The transmiss
of energy is impeded as the frequency approaches the u
limit of the crystal vibrational band. Beyondvmax, all waves
are reflected at the interface. The monotonic decrease in
energy transmission coefficient from 1 to 0 as the freque
increases results in part from the fact that the transve
speed of sound of the continuum remains constant while
group velocity of the crystal diminishes from the continuu

FIG. 2. Transmission coefficient in energy~solid line! and am-
plitude ~dashed line! vs the reduced angular frequency of an inc
dent plane wave launched from a semi-infinite elastic continu
and transmitted into the coupled semi-infinite simple cubic h
monic crystal.
6-3
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limit to zero at the highest frequency. The amplitude tra
mission coefficient does not have to be bounded by 1 a
does not need to satisfy a conservation law as is the cas
energy. At high frequency the continuum appears relativ
stiffer than the crystal yielding an increase in amplitu
transmission coefficient.

In the continuum/discrete/continuum system~B!, the
spaceM includes two interfaces parallel to the~001! plane.
The slab is finite in the direction@001#. The thickness of the
crystal slab is variable and is defined byL, the number of
~001! atomic planes perpendicular to that direction. W
launch a plane wave reference displacement in one of
semi-infinite continua, and calculate the transmitted am
tude in the other. The transmission coefficients in amplitu
and in energy are identical in this instance since the emit
and receiving media have the same impedance. The varia
of the transmission coefficient with reduced angular f
quency for two slab thicknesses is reported in Fig. 3. Si
larly to system~A! and owing to the boundary conditions,
perfect match between the continua and the finite crysta
achieved at long wavelengths. The transmission vanishe
the top of the crystal band. Contrary to the single interfa
however, a 100% transmission occurs at selected frequen
throughout the vibrational band of the crystal. These f
quencies correspond to resonances in the continuum b
associated with the discrete vibrational modes of the fin
slab. The number of resonant modes is directly dependen
the number of~001! planes constituting the slab. While th

FIG. 3. Transmission coefficient vs the reduced angular
quency for the continuum/crystal slab/continuum sandwich. T
slab crystal has~a! 10 and~b! 100 ~001! planes.
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number of transmitting frequencies increases with the s
thickness, the total energy transmitted from one continu
to the other remains constant at a value of approxima
78.5%. We have defined the total energy transmitted as
integral of the transmission coefficient over the compl
crystal band. We also calculate the displacement field,u, in-
side the finite crystal slab with Eq.~11! in the case of a plane
wave reference stateU. If the crystal slab were part of an
infinite atomic crystal the reference plane wave state wo
propagate freely and the square of its amplitude would
main uniform and equal to 1 throughout the entire slab. T
displacement field inside the coupled slab, however, lose
plane wave character. The square of the modulus of the
placement field is illustrated in Fig. 4 at two high frequenc
corresponding to a maximum and a subsequent minimum
transmission. At maximum transmission the displacem
amplitude oscillates about the plane wave uniform value
1. A minimum in transmission results from a significant r
duction in the displacement amplitude. In both cases the
plitude modulus varies spatially. These variations have
standing wave character and at high frequency exhibit mo
lations at short and long spatial scales. These variations
well seen in the limit of the complex amplitude of the di
placement field inside the slab forv* →1. This limit takes
the form

u~n,v* !'~21!n21
~12L !2 iL

~12L !21L2
2~L2n!A2~12v* !,

~13!

wheren stands for the atomic plane and 1<n<L. In sharp
contrast the reference plane wave state has the limit

Upw~n,v* !'~21!n21@211 i2nA2~12v* !# ~14!

whose real part remains spatially uniform and non-zero at
top of the crystal band.

-
e

FIG. 4. Spatial variation of the square of the modulus of t
amplitude of the displacement field inside the crystal slab coup
to two semi-infinite continua. The slab hasL5100 ~001! planes,
and the frequencies~a! and ~b! correspond to a maximum and
minimum in transmission, respectively.
6-4
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IV. CONCLUSION

In conclusion, we have presented a methodology base
Green’s functions for coupling atomic and continuous med
This approach overcomes the undesirable reflections du
the discretization of the continuum commonly encounte
in hybrid atomic/FE multiscale methods. The boundary c
ditions of continuity of displacements and stresses at the
terface between the elastic continuum and the atomic
monic crystal yield seamless coupling only at lo
wavelengths. The transmission of the elastic wave energ
significantly impeded at frequencies approaching the top
the vibrational band of the atomic system due to the m
match in the dispersion relations of the continuous and
crete media. A finite atomic crystal embedded in a continu
supports resonant vibrational modes leading to maxima
minima in the transmission spectrum of the coupled syst
The size of the finite crystal affects the number of resonan
~i.e., frequencies at which transmission occurs! but does not
impact the total energy that can be transmitted. Short
long scale modulations of the displacement field inside
coupled finite crystal may constitute a strong limitation in t
applicability of concurrent discrete/continuous multisca
models in representing correctly the physics of large ato
systems.
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APPENDIX

The space of the interface,M, between the discrete an
the continuous media in system~A! is located atx50 (n
50). Using Eqs.~8! and ~9!, we calculate the surfac
Green’s functions of the two media inM:
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gs
c~x50,x850!52

1

ra tCt
2

, ~A1a!

gs
d1~n50,n850!5

a2

b

t

t21
. ~A1b!

The inverse of the Green’s function of system~A! in M is
therefore obtained by inverting expressions~A1a! and~A1b!
and inserting them into Eq.~12c!. That is,

g21~0,0!5
b

a2

t21

t
2ra tCt

2 . ~A2!

We calculate the displacement field at atomic site,n, in the
discrete medium from a reference unit amplitude plane w
in the continuous medium. For system~A! with a single in-
terface, Eq.~11! takes the simple form

u~n!5U~n!2U~x50!G21~x50,n850!G~n850,n!

1U~x50!G21~x50,x850!g~0,0!

3G21~n850,n950!G~n950,n!. ~A3!

SinceU is only defined in the continuous medium, the fir
term of equation~A3! vanishes. The inverse of the bul
Green’s functionG21 in the second term of Eq.~A3! is not
defined forx50 andn850 since these locations correspon
to two different media. The second term also vanishes.
system~A!, only the third term of Eq.~A3! survives and
becomes:

u~n!5U~x50!@Gc~x50,x850!#21g~0,0!

3@Gd~n850,n950!#21Gd~n950,n!. ~A4!

UsingU(0)51, Eq.~3! for Gc, Eq.~6! for Gd, and Eq.~A2!
for g, one obtains

u~n!522ra tCt
2 1

b

a2

t21

t
2ra tCt

2

t2n. ~A5!

The transmitted displacement field in system~B! can be ob-
tained in a similar way.
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