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Abstract
A multiscale methodology that couples a finite difference time domain
(FDTD) system (representing an elastic continuum) and an atomistic molecular
dynamics (MD) system is proposed. The handshaking involves a parallel
coupling of both the length and timescale. The FDTD–MD ‘interface’ is
probed by a wave packet and the elastic impedance mismatch between the
two systems is studied by examining the part of the probing wave packet
that gets reflected from the interface. The reflected part is characterized in
both temporal and frequency domains. Results show that only a small part of
the wave is reflected from the interface, indicating a near seamless bridging
of the two systems. Further, thermalization of the MD region results in
transmission of additional energy into the FDTD region, with the transmitted
energy corresponding to frequencies much higher than the central frequency of
the probing wave packet. A characteristic resonant frequency exists between
the MD and the FDTD regions, which is a result of a feedback between the two
regions.

1. Introduction

Multiscaling has recently received much attention in several branches of physical sciences. In
materials, a large part of the work is devoted to modern simulation methods involving coupling
of length scales and sometimes timescales; they can be characterized as serial or concurrent.
In serial methods a set of calculations at a fundamental level (small length scale) is used to
evaluate parameters for use in a more phenomenological model that describes a phenomenon
of interest at longer length scales. For example, atomistic simulations can be used to obtain
the constitutive behaviour of finite elements (FEs), which are then used to simulate larger scale
problems [1]. Several research groups are presently working productively on such methods,
and several applications can be found [2, 3].
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Concurrent methods rely on coupling seamlessly different computational methodologies
applied to different regions of the material. For example, crack propagation is a problem that
was tackled early on by multiscale methods [1, 4]. Atomic simulation techniques (molecular
dynamics (MD)) were used to model the crack tip where large deformations (even bond
breakage) occur and continuum approaches (FE methods) were used to model the region
far away from the crack tip. Broughton and co-workers [5] proposed an algorithm involving
handshaking between FEs, MD and semi-empirical tight-binding (TB) regions. This algorithm
was able to dynamically track a crack propagating through silicon. The handshaking between
the MD and FE regions was achieved by drawing an imaginary surface between them. Within
the range of the MD interatomic potential from this surface, FE mesh points were located at
equilibrium atomic sites. Moving away from this overlapping region into the FE region, the
mesh spacing was made larger. Any FE that crosses the interface contributed half its weight
to a conservative Hamiltonian. Similarly any MD interaction that crossed the interface also
contributed half its weight. Kohlhoff et al [6] introduced a similar transition region between
the atomic and continuous regions. They also scaled down the FE size to the atomic scale
in this transition region. Unlike the work of Broughton et al the interface was of finite size
and not sharp. Abraham et al [7] combined the above two techniques by constructing an
explicit Hamiltonian for the atoms and the FE nodes in the transition region by weighing
their contributions with respect to their distance away from the middle of the interface. Ogata
and co-workers [8] used a similar algorithm to study chemical reactions and their interplay
with mechanical phenomena in materials, such as in the oxidation of Si (111) surface. The
quasicontinuum method formulated by Shenoy et al [9], links atomistic and continuum models
through a reduction of the full set of atomistic degrees of freedom, to model crystals with more
than one grain, grain boundary structures and their energetics. In this method, the total energy
of the system is expressed as a weighted sum of contributions of representative atoms. The
local environment of atoms is taken into account, and depending on the local deformation
gradient, the atomic energies are calculated.

In linear elasticity the fundamental properties such as stress, strain, moduli are thermo-
mechanical quantities. These quantities are defined such that they satisfy the thermodynamic
and the long time limit. That is, these quantities represent averages over a large enough
number of microscopic constituents and nearly infinite time. Calculating some of these
quantities from atomistic models does not present significant difficulties as long as large enough
systems and long enough times are used. This constitutes the basis for coarse graining that
enables the extension of atomistic systems into the realm of continuous models with seamless
coupling between length scales [10]. Problems in bridging continuum (e.g. FE) and atomistic
regions may arise when the continuum or part of the continuum region is pushed outside the
thermodynamic and long time limit. This is the case in many of the methodologies briefly
reviewed above where the FE coupled to an MD region are reduced to ‘atomic’ dimensions.
The spatial coupling between unphysically small FE and atoms implies also that the long time
limit may not be satisfied. In addition, an elastic continuum does not obey the same physics
over all possible wavelengths as that of a discrete atomic system. This physical mismatch is
easily noted in the dispersion relations of both systems that overlap only in the long wavelength
limit [11]. Based on the above observations, one can expect an elastic impedance mismatch
between a continuum and atomic simulation when an attempt is made to couple them.

In this paper, we report on a study undertaken to examine and quantify the impedance
mismatch between an elastic continuum and an atomistic region as the continuum spatial and
temporal scales are forced toward atomic scales. We have coupled dynamically an elastic
continuum modelled with the finite difference time domain (FDTD) method and an atomistic
system modelled with MD. The impedance mismatch at the interface between the MD and
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the FDTD systems is probed with an incoming elastic wave packet with broadband spectral
characteristics centred on a predetermined central frequency. Reflection of part of the probe
wave packet is a sign of impedance mismatch between the two systems. This reflection is
characterized in the time and frequency domains over spatial and timescales ranging from
atomic scales to the thermodynamic/long time limit scales.

This paper is organized as follows. In section 2 we briefly review the FDTD and MD
method and pay particular attention to their coupling. Results and a discussion of the results
are reported in section 3. Conclusions drawn from this study in terms of interfacing continuum
and atomic regions are presented in section 4.

2. Methodology

Here we briefly review: in section 2.1, the FDTD method used to simulate the behaviour of an
elastic continuum, in subsection 2.2, the atomistic method of MD. In subsection 2.3, we give
a description of the system and its physical parameters. The approach used to couple the two
methodologies is presented in some detail in subsection 2.4 with particular attention paid to
the coupling in space and time. Finally, the probing wave packet is described in subsection 2.5.

2.1. FDTD method

The FDTD method solves numerically the elastic wave equation in homogeneous or inho-
mogeneous media. The elastic wave equations are integrated by means of discretization in
both the spatial and the time domains [12, 13]. More specifically, real space is discretized
into a grid on which all the variables and parameters are defined. The main variables are the
acoustic displacement and the stress field at every site on the grid. The relevant parameters of
the system are the densities and elastic constants for each constitutive element. The relevant
parameters of the simulation are the grid spacing and the size of the time step. Appropriate
boundary conditions such as periodic boundary conditions or absorbing boundary conditions
are applied.

The FDTD scheme discretizes the wave equation ∂2ui/∂t2 = (1/ρ)(∂Tij /∂xj ) in both
the spatial and time domains and explicitly calculates the evolution of the displacement ‘u’ in
the time domain. (Tij is the stress tensor, ρ is the density, and un is the displacement of the nth
element.) For the sake of simplicity, we limit the system to one-dimensional propagation. The
FDTD region is discretized into N one-dimensional elements. We assume the FDTD region
to be infinitely stiff in the other two directions. The elastic wave equations are approximated
using centre differences in both time and space. The displacement un of any element ‘n’ at
each time step is a function of the stress gradient σ ′

n(t) across that element. The displacement
and the stress evolution of the system is given by

εn(t + �t) = un+1(t) − un(t)

�x
,

σn(t + �t) = C11nεn(t + �t),

σ ′
n(t + �t) = σn+1(t + �t) − σn(t + �t)

�x
,

un(t + �t) = 2un(t) − un(t − �t) +
�t2

ρn(t)
[σ ′

n(t)],

(1)

where �x is the length of each element, �t is the size of the FDTD time step, and εn, C11n, and
ρn are the strain, stiffness and the density of the nth element. Thus in this technique we can
predict the displacement of every element knowing the stress on that element. We assume that
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the stress on any element is uniform. Absorbing boundary conditions [11] are implemented in
order to prevent reflection from the end elements of the FDTD mesh. The following relations
denote the boundary conditions;

uN(t + �t) = uN−1(t) +
co�t − �x

co�t + �x
uN−1(t + �t) − uN(t),

u1(t + �t) = u2(t) +
co�t − �x

co�t + �x
u2(t + �t) − u1(t),

(2)

where co = √
C11/ρ and corresponds to the longitudinal velocity of the elastic wave through

the medium.

2.2. MD method

The essence of MD methods involves solving the N -body problem of classical mechanics
[14]. In other words, it involves solving Newton’s equations of motion for a given set of
particles, the interactions between particles governed by an interatomic potential, enabling
one to keep track of the evolution of the system in phase space. The equations of motions are
solved using standard finite difference schemes at each time step of the simulation. An MD
simulation can be carried out under a variety of constant thermodynamic conditions. Here we
use the macroscopic conditions of constant strain, number of molecules and temperature. In
our studies, the MD system is propagated through phase space by solving for the equations of
motion at each time step using the Verlet integrator. Temperature is maintained constant via a
momentum rescaling procedure. Periodic boundary conditions are employed.

2.3. Model system

The elastic system to be probed is chosen to be argon. The elastic constant C11 was found from a
series of MD simulations carried out under the following conditions: the model for the atomic
system was a three-dimensional face centred cubic (FCC) crystal with periodic boundary
conditions containing 500 particles interacting through a 6–12 Lennard-Jones potential with
parameters chosen to simulate argon. The interatomic potential was truncated at a distance of
8.51 Å. The uniaxial long-time limit stress (σ)–strain (ε) curve for that crystal (figure 1) was
obtained at 46 K with the temperature maintained via a velocity-rescaling scheme. For these
calculations, a strain was applied in one direction while maintaining the length of the other
edges of the simulation cell rigid. The strain was applied in increments of 2 × 10−4 in the
interval [−0.1 to 0.1] and the resulting stress was then calculated from a virial-like equation
[15] by averaging over 5000 MD time steps. An MD time step (dt) equals 10.0394 fs. The
curve was then fitted to a third degree polynomial (equation (2)).

σ = 4.304 × 1010ε3 − 1.54 × 1010ε2 + 3.045 × 109ε. (3)

2.4. FDTD/MD coupling

An adaptive mesh and algorithm method (AMAR) developed by Garcia et al [16] involved
embedding a direct simulation Monte Carlo (DSMC) particle method within a Navier–Stokes
continuum method solver at the level of an adaptive mesh refinement (AMR) hierarchy. In
AMAR, the DSMC region uses a time step that is comparable to that of the finest continuum
grid. This is extremely useful for problems that span many timescales because a small time
step is used in regions that require high resolution and this method has been successfully used
to study the flow of a fluid past a sphere, and the compression of gases by a movable piston.
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Figure 1. Uniaxial stress vs strain curve for the LJ–MD system.

The concept of using different time steps to address different length scales has been the idea
behind the ‘time scaling’ involved in our simulations.

The handshaking is handled by replacing one FDTD element by a three-dimensional MD
cell, the MD cell parameters chosen to exactly match the ‘model MD system’. As shown in
equations (1), the equations of motion for the propagation of the wave through the medium
involves solving for the displacement as well as the stress fields for every FDTD element at
every FDTD time step. The stress and the strain for every element are assumed to be uniform
over its length. Thus, when an FDTD element is replaced by an MD cell, the equivalent
displacement and stress for the element is calculated by uniaxially straining the MD cell along
the direction of the wave propagation (the strain is obtained from equations (1)). The condition
of rigidity in the other two directions is satisfied by keeping the length of the edges of the MD
cell constant in these directions. The average value of the MD stress is evaluated for every
FDTD time step with the final configuration of the MD atoms obtained at the previous FDTD
time step serving as the initial state for the current MD calculation.

Since the continuum is assumed to be perfectly elastic, the elastic constant (C11) of the
FDTD region was chosen to be 3.045 GPa, which corresponds to the linear term of equation (2).
This ensures a coarse serial coupling between the MD and FDTD region.

2.4.1. Time scaling. A preliminary study of the wave propagation characteristics indicated
that the FDTD time step (�tcrit) had to be smaller than (�x/2co) for a stable algorithm.
At every FDTD time step, the MD stress is calculated by averaging over Nmd (=�t/dt)

time steps, with �t � �tcrit . A reduction in �t automatically leads to a decrease in the
number of MD time steps over which stress is averaged (for every FDTD time step). It
is therefore possible to push the time coupling between the two simulation techniques in
such a way that one achieves in the smallest limit, a one to one correspondence between the
two time steps. The FDTD/MD hybrid method, therefore, allows us to test a range of time
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Figure 2. An illustrative representation of the system consisting of 10 000 elements; the open
boxes represent FDTD elements and the darkened box corresponds to the MD cell.

scaling conditions from coarse graining to time matching between a continuum and an atomic
system.

2.4.2. Spatial coupling. The number of FDTD elements is chosen to be 10 000. The length
of each FDTD element (�x) was chosen to equal the zero pressure box length of the MD cell
(26.67 Å). The central wavelength of the wave packet was chosen to be an integral multiple of
�x, to ensure stability of the FDTD algorithm.

2.5. Probing signal

The probing wave packet is a one-dimensional wave packet and is of the form
a0 cos(−kx) exp(−(kx)2/2), where k is the wave vector, and a0 the maximum amplitude
of the wave. The wave is propagated through the medium with an initial longitudinal velocity
c0. The signal’s frequency spectrum is broadband and the central frequency of the wave packet
ν equals c0k.

3. Results

3.1. Simulation parameters and system set-up

The impedance mismatch between the two systems (FDTD and MD) was probed as a function
of the central frequency of the wave packet (ν). Simulations were carried out for two values of
ν namely 0.393 GHz and 3.93 GHz with a0 equaling 50 Å and 5 Å, respectively. Though, the
maximum displacement a0 equals 50 Å (which is greater than the length of the FDTD element),
the strain on any element is only a fraction of its length (refer equations (1)) for the definition of
strain). At every frequency, the size of the FDTD time step (�t) was systematically decreased,
and the impedance mismatch was studied as a function of Nmd, with Nmd equaling (94, 47, 23,
12, 8, 4).

The signal is initially centred about the 5000th element and is propagated along the positive
X direction. The MD cell is located at element 6000 (refer figure 2). The coupling is examined
by analysing the reflected signal at an element some distance away from the MD cell. This
signal is compared and contrasted with the signal that is reflected in the case when the MD
cell behaves as an FDTD element with a non-linear C11 as determined previously from the
third-order (σ ) vs (ε) relationship. The latter case will be referred to as the ‘pseudo MD–FDTD
coupling (PC)’ while the former will be referred to as ‘real-time MD–FDTD coupling (RTC)’.
Discrete fast Fourier transforms (FFT) [17] are used in obtaining the frequency spectrum of
all the signals.

3.1.1. Case 1: (ν = 0.393 GHz). Figure 3 represents the signal as it propagates (for the case
when Nmd = 94) as well as its frequency spectrum. Even though a cursory glance at figure 3
may appear to indicate to the naked eye that the signal propagates through the medium without
any loss, there is a fraction of the initial signal that is reflected from the MD–FDTD interface.
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Figure 3. (a) Time evolution of the wave packet at 0.393 GHz for Nmd = 94, (b) frequency
spectrum of the wave packet.

The reflected signals (both RTC and PC) were obtained as a function of Nmd (figure 4). The
magnitude of the reflected signals does not change significantly as a function of Nmd. Therefore
in this paper we discuss the signals for some representative cases (Nmd = 94, 47, 23 and 4).
As obvious from figure 4, the magnitude of the ‘PC’ signal is always smaller than the ‘RTC’
signal, though the general shapes of the signals are identical.

The frequency spectra of these signals are shown in figure 5. One notices the fact that
for every value of Nmd, the lower end of the frequency spectrum for both the ‘RTC’ and the
‘PC’ signals are pretty similar, with the number of features (humps) in the signals increasing
with decreasing Nmd. In addition, for every Nmd, the ‘PC’ signal has an upper cutoff at around
3 GHz, while the ‘RTC’ signal has a cutoff at around 150 GHz.
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Figure 4. Amplitude of the reflected signals at 0.393 GHz when (a) Nmd = 94, (b) Nmd = 47,
(c) Nmd = 23, (d) Nmd = 4.
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Figure 4. (Continued)

3.1.2. Case 2: (ν = 3.930 GHz). As in the previous case, though the signal appears to
propagate without any visible loss (figure 6), there is a small amount of reflection. Similar
to the previous case, the amount of reflection does not depend significantly on Nmd. But
unlike the previous case, the ‘RTC’ signals are not similar to the ‘PC’ signals. There is a clear
mismatch in the frequency spectrum of the two signals, with the intensity of the frequencies
being significantly higher for the ‘RTC’ signals (figure 7). The cutoff for the ‘PC’ signals
(figure 8) is around 30 GHz, which is an order of magnitude greater than the cutoff for case 1.
This corresponds exactly to the fact that ν for case 2 is an order of magnitude greater than ν

for case 1. Interestingly, the cutoff for the ‘RTC’ signals is still around 150 GHz.

3.2. Discussion

The previous section clearly showed the following: the amount of reflection (of both RTC and
PC signals) was extremely small and independent of Nmd. The ‘PC’ and the ‘RTC’ spectra
were comparable at the lower probing frequency, and the mismatch greatly increased for the
higher probing frequency. The ‘RTC’ and the ‘PC’ signals had distinct cutoffs, with the cutoff
for the ‘PC’ signals being much smaller than that of the ‘RTC’ signals. This can be explained
on the basis that the ‘PC’ signal represents the long-time limit of the coupling, where the high
frequency (short wavelength) modes are averaged out, while the abrupt cutoff for the ‘RTC’
signal represents an upper-limit in the frequencies that can be supported by the FDTD system.
The discretization of the continuum into small elements modifies its dispersion relation by
introducing an upper limit on the frequencies (a Debye-like frequency) that can be resolved.
This upper limit on frequency for travelling waves depends on the extent of discretization of
the continuum i.e. the size of the element. The effect of this frequency cutoff will be illustrated
further.

3.2.1. FDTD/MD coupling with no probing signal. Consider the case of a stand-alone MD
simulation at zero external pressure. The internal stress of the MD cell will typically oscillate
about zero such that the average stress equals zero if the simulation is run for many MD time
steps. The frequency spectrum of the stress for the model stand-alone MD system used in
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Figure 5. Frequency spectrum of the reflected signals at 0.393 GHz; (a) Nmd = 94, (b) Nmd = 47,
(c) Nmd = 23, (d) Nmd = 4. For each case the figure on the left represents the low frequency
range of the signal, while the figure on the right represents the high frequency range of the signal.
Here ‘RTC’ corresponds to a real-time coupling between the FDTD and the MD region and ‘PC’
corresponds to a pseudo-coupling between the two regions.
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time coupling between the FDTD and the MD region and ‘PC’ corresponds to a pseudo-coupling
between the two regions.

our simulations was determined and is shown in figure 9. The frequency spectrum of the
stand-alone MD cell spans frequencies up to several 1012 Hz. As a next step we carried out
an FDTD–MD multiscale simulation (with the same conditions used for the wave propagation
studies when Nmd = 4), except for the fact that there was no probing wave packet. The
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frequency spectrum of the coupled MD cell was obtained and is shown in figure 10. The
spectrum shows a distinct peak at 160 GHz; this mode of vibration associated with a feedback
resonance between the thermalized MD and the FDTD region. This resonant mode of vibration
arises because of the way the two regions are coupled (refer to the definition of strain and stress
on any element in equations (1)). Here the FDTD cells neighbouring the MD cell respond to its
stress fluctuation in the form of a non-zero displacement; this displacement in turn strains the
MD cell with a subsequent change in internal stress. The resonant frequency is a characteristic
of the size of the MD cell and corresponds to a wavelength of about 80 Å, which is about three
times the size of an FDTD element. In addition, frequency spectra of the displacements of
elements away from the MD cell were also obtained (figure 9). Figure 9 clearly shows the fact
that as one moves away from the MD cell, the cutoff moves to lower frequencies suggesting
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Figure 10. (a) Frequency spectrum of the MD cell (element 6000) when coupled with FDTD
elements. (b) Frequency spectra of FDTD elements at various distances away from the MD cell.
The inset of the respective figures refers to the location of the elements.

that the discretized FDTD system possesses a Debye-like frequency below 160 GHz. The
resonant FDTD–MD vibrational mode appears therefore as a ‘localized’ mode in the vicinity
of the MD cell, with the amplitude decaying as one moves away from the MD cell. The above
fact combined with the knowledge that the MD cell transmits additional thermalized energy
(corresponding to the higher frequency modes present in the RTC signals) makes the current
multiscale system non-conservative. Thus defining a ‘reflection coefficient’ for this system
becomes a difficult proposition, as in addition to the system being non-conservative, one has to
separate the MD transmitted energy from the ‘pure’ reflected energy arising from the coupling.

4. Conclusions

The coupling between an elastic discretized continuum FDTD region and an atomistic MD
region was examined by probing the MD/FDTD interface by an elastic wave with broadband
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spectral features. The impedance mismatch between the two regions was studied by analysing
the reflection (of the probing wave) at the interface as a function of the central frequency (ν) of
the probing elastic wave under two conditions: (1) a RTC between the MD and FDTD regions
(RTC); (2) the MD cell being replaced by an FDTD element such that the elastic constant of the
FDTD element equals the long-time limit value. In other words, the FDTD element behaves
as a pseudo MD cell (PC).

The lower end of the frequency spectrum of both the ‘PC’ and ‘RTC’ signals were similar
for ν = 0.393 GHz, though there was a significant mismatch when ν = 3.930 GHz. The
cutoffs for the RTC and the PC signals were at totally different frequencies, with the cutoff
for the RTC signal corresponding to a resonant feedback mode between the FDTD and the
MD regions. The extent of discretization of the continuum imposed a Debye-like limit on the
frequency propagation characteristics of the discretized continuum leading to the localization
of the resonant mode in the vicinity of the MD cell.

There was no significant difference in the magnitude of the reflection as the time steps of the
two simulations (FDTD and MD) were pushed closer to each other (i.e. as we decrease Nmd).
However at every Nmd, the ‘PC’ signal (representing the long-time limit) was significantly
smaller.
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