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We calculate the second-order streaming force in a fluid in the vicinity of the solid/fluid interface for
two systems of importance in the technology of megasonic cleaning of silicon wafers. The first
system consists of a single planar interface between a solid elastic medium representing silicon and
a viscous fluid, namely water. The second system accounts for the finite thickness of silicon wafers.
It is composed of one silicon slalwafer) immersed in water. The components of the streaming
force parallel and normal to the silicon/water interface are determined as functions of frequency and
wave vector of the incident acoustic wave. The normal component of the streaming force is used to
calculate the removal force defined as the net force perpendicular to the solid/fluid interface acting
on a spherical contaminant particle adhering to the silicon surface. The removal force is too small
to remove submicron particles. In contrast the streaming force parallel to the solid/fluid interface
may remove particles by pushing or rolling them. The streaming force is shown to be very sensitive
to the angle the incident acoustic wave makes with the silicon/water interfac000 American
Institute of Physicq.S0021-897@0)05324-X]

I. INTRODUCTION dislodge the particle by opposing the adhesion force. This
force may only push the particle along the surface of the
Megasonic waves have been extensively used to remov@afer. Olim' has shown that the acoustic pressure force on
contaminant particles from silicon wafers during manufac-an isolated particle in water is proportional to the cube of the
turing of semiconductor devices. In this process, planar silidiameter of the particle. This author has then estimated that
con wafers are immersed in a water-based solution and sulor particles with a diameter less than 0,86, the pressure
jected to a beam of sonic energy with a frequency in theforce is smaller than the adhesion force and that megasonic
range 600 KHz—1 MHz. The acoustic wave propagates typicleaning in absence of any other cleaning mechanism will
cally along directions parallel to the wafer/fluid interface. not be efficient. Olim’s model neither accounts for the inter-
Much of the work in the area of megasonic cleaning has beegction of the incident acoustic wave with the wafer nor its
directed towards finding conditions such as megasonic powejcattering by the contaminant particle. A more realistic
and duration of field to optimize particle removal. Severalmodel of the acoustic pressure field has been derived by
processes are known or believed to be operative in a megagyy 2 However, this model is limited to a single wafer im-
onic field, namely microcavitation, acoustic streaming, andnersed in a nonviscous fluid and was not used to determine
pressure induced chemical effects. However, it has not beae pressure force on deposited contaminant particles. We
established to any reasonable degree of confidence whethgaye recently calculated the acoustic pressure force due to
these phenomena are responsible for particle removal. Acattering of a megasonic wave by a submicron particle de-
brief review of the mechanisms that have been claimed to bSosited on a silicon substrataNe have shown that scatter-
responsible fqr the cleaning action in a megasonic field igng of the acoustic wave by deposited submicron particles is
pertinent at this stage. negligible and that the pressure field in the vicinity of the
The megasonic waves can be visualized as pressuigigfuid interface is primarily controlled by transmission
variations propagating into the fluid at the speed of soundanq reflection. Since efficient particle removal is expected to
When a sonic wave passes over a solid particle, the pressuggsy it from processes that are associated with high energy
gradient in that wave exerts a force acting on that particle. yensities, the scattering of an incident acoustic wave with
Since the pressure front typically propagates parallel to theyjjimeter wavelength by a submicron particle adhering at a
surface of the wafer, the acoustic force on an adsorbed pajgafer/water interface is unlikely to lead to a sufficient energy
ticle is parallel to the wafer surface and should not be able tQ ,ncentration.
Microcavitation is produced by the pressure variations in
dElectronic mail: deymier@oxygen.mse.arizona.edu sound waves moving through the liquid. Cavitation bubbles
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are formed by the low-pressure components of the acoustigolutions of hydrogen peroxide and ammonia. The ability of
wave. This component causes a hole or cavity to form in the megasonic field to induce interesting chemical effects has
liquid. This cavity implodes when the walls can no longerbeen reported In water containing nitrogen gas, application
sustain the compressive forces. During cavitation, the formaef a megasonic field has been shown to create Nidhd
tion of a cavity and its subsequent collapse is able to conNO; ions. In hydrogen peroxide solutions, hydroxyl radicals
centrate the low energy density of the sound wave into a veryOH) appear to form in the presence of a megasonic field.
small volume leading locally to very high pressures and temHowever, it is not known whether a megasonic field can
peratures. The contaminant particles may serve as nucleati@mhance the dissolution materials such as,Si®ough the
centers that cause the cavities to collapse before they cdormation of such species. The most commonly accepted
fully develop. The transfer of energy from the cavities to themechanism for particle removal from Si surfaces using SC1
particles may therefore dislodge the particles. Cavitation apsolutions is that the peroxide in the solution creates a thin
pears to be an important mechanism in ultrasonic cleaningxide film which is then etched by ammonium hydroxide.
However, it had been claimed that in megasonic cleaning th@articles are presumed to be removed during the etching of
time between megasonic pulses on the order of k2B too  the oxide. The etch rate of oxide in conventional SC1 solu-
short for the formation of caviti€sFollowing this argument, tions has been measured to be approximately 0.3 nm/min. In
Shwartzmaret al suggested that the cleaning action in me-more dilute solutions, the etch rate may be expected to be
gasonic cleaning resulted from rocking action due to high-even smaller and consequently the “oxide etch” theory for
pressure waves rather than cavitation. More recently, howparticle removal has come under some criticism. Since the
ever, cavitation was detected in a megasonic tank byse of megasonic energy in dilute SC1 solutions is effective
sonoluminescenceThese experimental measurements indi-in removing particles from wafer surfaces, it is possible that
cate that the maximum cavitation intensity occurs near théhe etch rate of oxide is increased by the megasonic field.
water surface of the megasonic tank. It may then be con- The preceding brief review of the current understanding
cluded from this observation that this cleaning mechanisnof some of the mechanisms that may be responsible for the
should not result in effective particle removal since the tran-cleaning action in megasonic tanks demonstrates a clear need
sient cavitation activity is concentrated near the water surfor a more fundamental study of the megasonic cleaning pro-
face and therefore will not affect most of the wafer atea. cess. Experimental studies of megasonic cleaning are
However, the presence of stable cavitation throughout thelouded by the overlap of the possible mechanisms. The
megasonic cleaning tank may probably assist cleaning effeomplexity of some of these mechanisms added to the very
ciency by introducing microstreaming currents near the wasmall spatial scales involved render the design of unambigu-
fer surface. ous experiments difficult. To date experimental investiga-
The loss of acoustic momentum that results from attenutions have not been able to pin point the exact mechanism of
ation or dissipation of the sound field in a viscous fluid mayparticle removal by megasonic waves and only empirical
result in a time-independent fluid motidstationary vorti- methods have allowed advancement in megasonic particle
ce9, known as acoustic streamifigi/hen considering the removal. We have therefore elected to undertake a theoreti-
acoustic field in a viscous medium, viscosity leads to time-cal study of the megasonic cleaning and in particular of some
independent second-order effects such as acoustic streamirgf.the individual phenomena that are susceptible to removing
Acoustic streaming may be treated as a nonlinear correctionontaminant particles from silicon wafers.
to the linear(first-orde) acoustic field. Acoustic streaming The primary objective of the present article is to inves-
can occur either in a free nonuniform sound field or neatigate, theoretically, phenomena associated with second-
obstacles immersed in the sound field. There are severakrder sound fields such as acoustic streaming and more, spe-
types of acoustic streaming classified in terms of scalegifically Schlichting streaming on particle removal during
namely Eckart's quartz-wind-like streamifigSchlichting megasonic cleaning. This theoretical study consists of two
streaming in boundary layérand microstreaming near sec- parts, namely the calculation of the time-dependdinst-
ondary sound sources such as oscillating bubbles or vibratingrden acoustic displacement field at solid/viscous-fluid inter-
particles on surfaces. faces, followed by the calculation of the time-independent
The boundary conditions imposed on the acoustic field atsecond-orderpressure field.
the interface between a solid and a viscous fluid result in the  The nonlinear motion in a viscous fluid is governed by
fluid flow within a viscous boundary layer near the interfacethe Navier—Stokes equation. For small velocities, Navier—
known as Schlichting streaming. Eckart streaming occurstokes equation can be linearized. This linearized equation
outside the acoustic boundary layer. Eckart streaming is gerfer sound propagation in a fluid is completely analogous to
erated by a free nonuniform attenuated sound field that hathat of elasticity theory for an isotropic solid where the lon-
the inhomogenity scale significantly larger than the acoustigitudinal and transverse sound velocities are replaced by
wavelength. Microstreaming is another type of microscalecomplex numbers. Solving for the acoustic field near a solid
streaming. It is associated with fluid vortices resulting fromimmersed in a viscous fluid requires a simultaneous treat-
secondary sound sources such as sound waves scatteredrbgnt of the Navier—Stokes equation for the fluid and the
oscillating bubbles in a viscous medium. elastic wave equation for the solid with appropriate boundary
Megasonic cleaning efficiency is often improved whenconditions at the interfaces. We use the method of the inter-
using a chemically active cleaning medium such as SCiace response theoryIRT) based on the formalism of
cleaning solutions. SC1 cleaning solutions are water-base@reen’s function¥ to calculate the first-order acoustic dis-
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placement field. The IRT provides an attractive framework (a)

for the calculation of acoustic properties of inhomogeneous

media. The response functige.g., acoustic Green’s func-

tion) of an inhomogeneous mediute.g., wafer in a fluig Solid Fluid

can be calculated in terms of the known bulk Green'’s func- 0 >

tions of each constitutive subsystémafer or fluid and “in- (Silicon) (Water) 3

terface response operators” which account for the geometry

of the various interfaces. The Green’s function formalism is

then applied to the calculation of first-order velocity field due X

to scattering of an incident acoustic wave k§) a semi-

infinite solid/viscous-fluid interfacé.e., a semi-infinite elas- 2

tic solid in contact along its surface with a semi-infinite vis- )

cous fluig; (2) a wafer immersed in a viscous fluid modelled

as a slab of elastic solid sandwiched between two semi- (b)

infinite viscous fluid media. :
For the calculation of second-order corrections to the Fluid Scflid

sound field, a method developed by NybGrig used. Start- o

ing with the nonlinear Navier—Stokes equation, Nyborg -d2 0 +d/2 'X

makes the approximation that its solution is the superposition (Water) (Silicon) (Water)

of first-order and second-order contributions to the displace-

ment(or velocity) field. The first term varies sinusoidally in

time with a frequencyw and thus represents the first-order

sound field. The second-order term is time independent angiG. 1. lilustration of the two inhomogeneous systems studiay the

may give rise to acoustic streaming. In Nyborg’s approachsilicon/water system antb) the water/silicon/water system.

one begins by determining the first-order approximation to

the velocity (this is the sound field calculated with the

Green's function methgd then one uses this in getting 2 Since wafer diameters are significantly larger than the wave-

second-order approximation. Nyborg defines the Streamln%ngth of megasonic waves, the layered composite is treated

forceF in terms of the time average over several sonic CyCIe?1ere as being infinite in directions parallel to the wafer/fluid

of gradients of the first-order velocity field. The streaming. L
. . ) interfaces. Furthermore, for the sake of simplicity of the
force F can then be interpreted as the time rate of increase g . . L " .
. . . . models we take the solid medium as being isotropic. In this
momentum in the fluid. It is equivalent to some external

. : . . article we consider two multilayer geometries. First, we in-
force field that, provided flow is not constrained, may be . . . . .
L o : . L vestigate the interaction between an incident acoustic wave
driving the fluid into streaming motion. If the fluid is con-

. . . and a single interface between two semi-infinite homoge-
strained not to flow then the streaming force is balanced b¥1eous media composed of silicon and water, respectively

the gradient of the second-order acousic pressure. This system will be called the silicon/water system. This

This article is organized as follows. In Sec. Il we intro- _. : . . )
. : : imple interface is used to establish the mathematical proce-
duce the methods and models with some details. Section | . .
dure for calculating the second-order sound field. A more

reports on the results for the streaming force obtained in the__. . . ; :
. - . I realistic geometry corresponding to one wafer immersed in

case of a single silicon/water interface and of a silicon slab . ; . .
. . - Water is then treated. This system with two parallel interfaces

(wafen immersed in water. The removal force on a spherical . . ) :
. . . ) . Is modeled as a solid slab of silicon separating two semi-
contaminant particle resulting from the streaming force is

calculated in Sec. IV. In this same Section. we compare thmfinite media of water. Since the radius of a silicon wafer
removal force to .the.adhesion force that oirives thep articIe%XCeeds by far its thickness, the slab is considered to be of
o . P infinite length. We will refer to that system as the water/
toward the silicon surface. There we consider only the con-_.,.
o . ilicon/water system.
tribution of the van der Waals forces to adhesion. Severa? . : .
Figure 1 illustrates the type of layered composite sys-

cases previously an_alyzed n Se(_:. lll are studied. Finally, WSems studied in this article. All interfaces are chosen to be
draw some conclusions concerning the effect of the stream-

. . . . . perpendicular to the axis; of a Cartesian coordinate system
ing force on particle removal in megasonic cleaning. (X1, X,X5)
IREAVEEAK) N

Il. MODELS AND METHOD

A. Models B. First-order (linear) equations of motion

. . . nd Green'’s function formalism
In a typical megasonic cleaning tank, several wafers ar&

cleaned at one time. The wafers are arranged parallel to each In this subsection we formulate the equations necessary
other in cassettes. The medium through which the megasonto describe motion in an elastic soligilicon) and a viscous
waves propagate is inhomogeneous and may therefore bkid (watep. The equation of motion for the displacement
simply represented as a layered composite consisting of alt,, «=1,2,3 of a point in an infinite homogeneous three-
ternating silicon slabs separated by water-based fluid layergimensional elastic material is
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) 90 op with C1,=C4,—2Cyy. The symbol§;; is the Kroenecker
pl,= >, X (1) symbol equal to 1 whei=j and 0 wheni is different from
p A j. The longitudinal and transverse plane wave velocit&s,
wherep is the mass density, the second derivative with andC,, are given respectively by the relations
respect to the timeé of u, and o,z the stress tensor

C C
c2=—2 andc?=—%. (6)
p p

Uaﬁzz Caﬁ,u,vny,v' (2)
g If we introduce in Eq.(4) the operator

Capuv are the usual elastic constants amgl, the deforma-
. (92
ton tenser Hau(N=p? 80+ 2 Capurgse oo (@)
m 5 HYIX gdX,
_1(du, odu, 3
MTur=7 axX, aX,) ©) we may define the bulk response functi@m Green’s func-

: , : .
With these definitions and assuming that the fluid excitationst,lon)’ Gpuu(r,r"), as the solution of the equation

execute harmonic motion with pulsation(w=27v wherev ) )
is the frequencyand a time dependenes !, the equation % Hou(NGu(rr')=64,6(r—r"). ®)
of motion (1) becomes
2 Since one will later deal with inhomogeneous media sepa-
o2 — E C U (4) rated by parallel interfaces, it is convenient to make a Fourier
pw-U, aBuv X 90X . , .

Brv IXpdX, analysis of the Green’s function parallel to a plané; (

=0). We further apply a rotation of th¥,;, X, axes that

For an isotropic elastic medium ; i
brings theX; axis along the wave vectds, parallel to the

Capur=C1200p0,,+ Cas( 6005, 6019p,) (5 plane. After these transformations, £8) becomes
212024 2 d? : , o d
w —kHC|+CtW 0 Ik”(C|_Ct)W
3 3
i Gy G Gig 1 00
p 0 w?+C? o kz) 0 x| Gz Gz G| =8Xz—Xy)[ 0 1 0
d d2 G3l G32 G33 0 0 1
: 2~2 2
'kH(CIZ_CtZ)d_Xs 0 w?—kjC;i +Ctd_)(§
9
|
In the preceding equatioB,,, stands forG,,,(kjo|X3,X3). Finally, we assume that the pressure term in @@) is due

Let us recall that Eq(9) leads t0G,=G,;=G,3=G3,=0,  only to the density fluctuations giving rise to dilatation and
that is a decoupling between sagittal and transverse polarizaompression of the fluid. That is, we neglect the contribution

tions. due to thermal fluctuations. Then
The motion of the bulk fluid, in the absence of external
forces, is governed by the Navier—Stokes equation p=—A(V-u), (12

where\ is the compressibility of the fluid which is related to

dv the (longitudina) sound velocityC via
p| o+ (@-V)v =—-Vp+uVi J e
A
1 C2=—. (13
+(M,+§M)V(V‘U), (10 .

With the above assumptions, the stress tensor in the liquid

can be written as
wherew is the velocity,p the density,u and i’ the coeffi-

cients of shear and dilatation viscosity, apdhe pressure. Y08 Vg %_
For small velocities, Eq10) can be linearized after neglect- Tap=MV-U)dapt 1t IX g * X,
ing the term(v-V)v. Assuming, as in the case of the solid, ,

that the fluid excitations execute harmonic motion with pul- ' 8ap(V-0). 14
sationw, the velocityv is related to the displacemeutby

2
3 0ap(V-0)

This form of the stress tensor is completely analogous to
that obtained in elasticity theory for an isotropic solid. The
v=—liwu. (1)  following correspondences should be made:
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o 4 g HreM;,r'eM)=0 if MyeM;,
Cil=C*~—| +§M), ~ N !
P (15 g HreM;,reMy)
=g;(reMyj,r'eMy) if 1#], (18)
i o /
Ctz(f):__p ) g 1(reMij,r e M;))

:Ek gs (reMy 1" eMy)  if My=M;;,
whereC, ) andCyy) are the fluid equivalent of the velocities
of the longitudinal and transverse sound waves in a solid. with M;; standing for the interface between the constitutive
The derivation of the bulk Green’s function of the vis- blocksi andj. In Eq.(18) g, stands for the Green’s function
cous fluid can be done step by step along the same lines a$ the constitutive blocks with free surfaces. All the bound-
for the isotropic solid. The Green’s function of the fluid is ary conditions(e.g., continuity of displacemenat the inter-
therefore given by Eq(9) provided the velocities of the faces are satisfied through E48). The inhomogeneous me-
sound waves are replaced by those given in @§). The dia considered in this study are composed of semi-infinite
Green's function of a bulk homogeneous elastic medium isnedia and slabs. The Green’s function of a semi-infinite me-
reported in the appendix in the form of E@1). dium or a slab is obtained from the bulk Green’s function
defined previously. In the presence of a free surface or free
surfaces, Eq(9) has to be solved subject to the boundary
The IRT allows for the construction of the Green’s conditions expressing the absence of stress at the surface.
function of an inhomogeneous medium in terms of theThe inverse of the Green’s function at the surface of a semi-
Green’s functions of the block constituents of the compositeinfinite elastic medium and at the surfaces of an elastic slab
The Green’s function of a composite medium can be writterhave been reported in the literature and presented in the ap-
in the form of an interface integral equation pendix.
In addition to the Green'’s function, the IRT allows for
the determination of the elastic displacement field resulting
N S e = P R-1 , from the scattering of an incident wave by the interfaces in
glrr)=G(rr HJ drMG(r,rM)J druG (" M) the inhomogeneous medium. Uf(r) represents a bulk inci-
dent wave launched in one homogeneous piece of the com-
xf dry,[a(ryy J’KA)—E(V{\A ] posite system, the displacement fieldr), including all the
waves reflected and transmitted by the interfaces is then
given by the relation

C. Interface response theory

x [ iy i,
u(r)=U<r>—f drM6<r,rM>J driy G Xy ri) UCriy)

{r,r'teD, {ru.fu.f."veM (16)
+f drMé’<r,rM>f dr{y G~ (ry rf)
with
< [ aririy i [ oE v,
g Gi(r,r'), {rr'}eD;,i=1N an
r,r')= o ’ oo m
(r.r) 0 reD;, r'eDj,i#j, {r.r'}eD, {rm.ru v fur €M (19

with Eq. (17) still applying.

Finally, the total variation of the density of vibrational
where D represents the space of the entire inhomogeneoustatesAn(w) between the composite system and a reference
medium,M is the total domain of interfaces, a2} is the  system may be determined from the knowledggof in the
space in which the constitutive blocks defined. In the case space of the interfacéd.For layered composites it is conve-
of layered composites media, using two-dimensional Fouriepient to use a matrix representation of the inverse of the
transforms of the Green’s function in a plane parallel to theGreen’s function in the spadd, namely,§~*(M,M). With
interfaces, the domain of the interfaces reduces to pointsuch a notation, the total variation in density of states is
along theX; axis, thus the integrals in E416) reduce to  given by
discrete sums over these points.

We note that in order to solve fgi(r,r’) using Eq.(16),
one needs to know its form in the domain of the interfaces,
g(rm.ri). According to the IRT, the inverse of the Green’s P}
functiopl/I of the inhomogeneous medium defined in the do- —argdeg,; (MM)), 20
main of the interfaces may be expressed in terms of the inwhere ref stands for the reference system.
verse Green’s function of the constitutive blocks defined in At this stage we have at hand the tools to characterize
the domain of their surfaces, such that the first-order(time-dependentacoustic field at an interface

1d o
An(w)=—;ﬁ(argdeg (MM)
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between an isotropic elastic solid and a viscous fluid. In thaletermining the first-order approximation to the velocity
next section we show following Nybotgthat this first-order  (this is the sound field calculated with the Green’s function
sound field can be used to determine the time-independemiethod or IRT, then one uses this in getting a second-order
second-order solution to the nonlinear Navier—Stokes equapproximation.

tion. Equation(23) can be simplified in the case of layered
composites. We first recall that one can make a Fourier

D. Second-order (nonlinear ) correction to sound analysis of the displacement field parallel to the plane of the

field: Nyborg's method interfaces, namely the plané;=0. Provided that we have

To determine the time-independent second-order solu€h0OSeN they, X, axes such that the two-dimensional wave-

tion to the nonlinear Navier—Stokes equation, we use Y€clork is parallel toX,, the components of the first-order
method developed by Nyboryto calculate second-order displacement fieldi; take the form in complex notation

corrections to the acoustic field in a viscous fluid. Starting
with the nonlinear Navier—Stokes equation, Nyborg makes
the approximation that its solution is the superposition of a
steady-state sound field and a steady flow. The velocity, U2(X1,0X3,t)=0, (24)
pressure, and density fields are therefore written as

U1(X1,0X3,1) =Ty(kjo|Xg)e**ie ™!,

Us(X1,0X3,1) =TUs(kjw|Xz)e iX1e~ et

V=110, with u;=Re{U;} where Re stands for the real part of the

B complex quantityl, .
P=Po+ P11 P2, (2D The components of the first-order velocity, in com-
plex notation, are therefore given by

p=potp1tp2.
Here, p, and p, are some static pressure and the density of ~ 01(X1,0X3,t) = =i wly(kjo|Xg)e*Xe ",
the fluid in absence of acoustic field,, p;, andp, are
first-order approximations to solutions of the Navier—Stokes 02(X1,0X3,1)=0, (25
equation. These quantities vary sinusoidally in time with a
pulsationw and thus represent the sound field solution to the  75(X;,0X3,t) = — i 0ls(k w|X3) ek *e~ et

linearized form of the Navier—Stokes equation. The second- .

order termsp,, p,, andp,, are time independent. The term with v, = Re{’\"/l}. . . .

v, is the acoustic streaming velocity and describes a steady- Equation(23) may be written in complex notation as
state flow of the fluid. The acoustic streaming velocity may

~k ok %

be obtained from an equation derived by Nyborg and accu- B 9v1 +(~ v +3 ‘9”3)
1 U3 U1
rate up to second order 1 X, 9X3 X3
_szO.ERe 0 (26)
uV2v,=Vp,—F, (22) _ gy (. dur azg)
+ +
whereF is an effective source force of streaming related to vsﬁxs vsﬂxl vlﬁxl

the first-order velocity, by where the superscriptstands for the complex conjugate

e quantity.

F=po{(v1-V)v1t01(V-v1)). (23 Upon insertion of Eq(25) in Eq. (26) the nonzero com-
The brackets ) indicate that a time average is taken overponents of the acoustic streaming force may be expressed in
several sonic cycles. With Nyborg’s approach, one begins byerms of the displacement field

_Juy _ duj
2

_+ R
Usaxs Yo

|

) (27)

”n —— 1
F1=—pow?e 2 Xl( —k'uuf + =R

u3

X3

Fa=— powzeZKf’Xl( —kj Reu;u3 ]+ R{Ua

In Eq. (27) u denotes in shoiti(k,»|X3) andk| is the imagi- E. Second-order acoustic forces on deposited

nary part of the modulus of the complex wave vedigk,  Particle

=K +ik|). The relations in Eq(27) provide a simple mean During megasonic cleaning, a contaminant solid particle
of calculating the acoustic streaming force from the knowl-adhering to the surface of a wafer may be removed if it is
edge of the first-order acoustic displacement field. subjected to a force counteracting the adhesion force. Since
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the attractive adhesion force is perpendicular to the siliconsubjected to an incident acoustic wave. We locate the inter-
water interface and oriented toward the solid, the removaface atX;=0 and denote byl) the medium to the left of the
force also has to be normal to the surface but directed in thimterface (silicon) and by (2) the water to the right of the
opposite direction. Considering the effect of the secondinterface. We assume that the incident wave is launched in
order sound field on particle removal, only the component othe liquid [medium (2)] toward the silicon/water interface.
the streaming forc&; may give rise to such a removal force. The components of the displacement of the bulk wave is
Here, we also make the assumption that the solid particlgiven in a two dimensional Fourier space parallel to Xae
does not alter the first-order sound field. This approximation=0 plane in the forr?

is justified since the contaminant particles we are considering
have diameters on the order ofuln or smaller, and that the

~ B (2)y
L . . =—e% 3
wavelength of the incident acoustic wave is on the order of a Us(kjo|X3) z&'

millimeter.
The net force due to the second-order sound field acting Oz(kuw|X3)=0, (32)
on a particle subjected to the time-independent second-order
pressure fielg, is _ al(z) B
Us(kjw[Xz)=—i s 7 e %3,
f= ndS, 28 . . . .
Lpz 28) whereB is the wave amplitude anid=+/—1. Z is a normal-

. . . . HH _ (2) 2 (2) . .
where the integral is over the surface of the particle migl ~ 12ing factor equal toy1—(a;"/k))* and ¢}’ is given in

the normal to that surface. Upon conversion of the surfac&PPendix. _ o
integral into a volume integral, the second-order net force 1 he wave vectok, of a bulk compressivélongitudina)

becomes incident plane wave is related to the incidence angkhe
incoming wave makes with the normal to the interface, by
the relation
fzf VpodV. (29
\Y%
w -
We insert Eq(22) into Eq. (29) to obtain ku:T(z)S'“ 6. (33

) The inverse of the Green’s functiog, * of a semi-infinite
f= JV(F”LMV vo)dV. B0 medium “i”, bounded by a free surface X =0, is given in
the appendix as E§A3). The inverse of the surface Green’s
The silicon/water interface prevents the fluid from flowing in functions of the two semi-infinite media are inserted into Eq.

directions parallel to the axiXz, and the component of the (18) to obtain the inverse of the surface Green’s function of
Streaming VelOCity in that direction is zero. The removalthe solid/fluid inhomogeneous medium

force may then be defined as the third component of the

second-order forcé; via g 1(k,0]|0,0=§5"(k,®|0,0+ §5' (kj»|0,0). (34
The matrix g *(k,»|0,0) is then inverted to obtain
fa= fv FsdV. (31 §(k,|0,0).

The inverse of the Green’s function is inserted in Eqg.

In order to calculate the removal force it is therefore only(20) to calculate the variation in density of vibrational states
necessary to determine the component of the streaming forast the silicon/water interface. For this we have used the fol-
perpendicular to the wafer/water interface. lowing data: a silicon density of 2.3310° kg/m®, a density

The first component of the second-order fofgecannot  of water of 16 kg/m?, longitudinal speed of sound in water
be calculated from the streaming for€g since in that di-  of 1500 m/s, and transverse and longitudinal speed of sound
rection the fluid is set in motion and we do not know thein silicon of 5843 and 8433 m/s, respectively. The coefficient
streaming velocityy, [see Eq(30)]. We anticipate however, of dilatation viscosityu' is chosen to be one third of the
that a strond~, will result in large streaming velocities near coefficient of shear viscosity, with ©=10"3Pas 1. We
the silicon/water interface and therefore strong drag forcesave calculated the variation in density of state of the silicon/
on contaminant particles in that direction. We therefore aswater system according to E(RO) using a reference com-
sociate qualitatively in the rest of the article, a lafgeto  posed of one half of an infinite silicon medium and one half
large forces that may pull/push or roll contaminant particlesof an infinite water medium. Figure 2 reports on that varia-

adhering to the wafer surface. tion in density of states as a function of pulsation at some
givenk; . For computational convenience, we have chosen a
IIl. RESULTS real valuedk, because of the small magnitude of its imagi-

nary part relative to its real part due to the low viscosity of
water. This figure shows several interesting features. The
Let us illustrate the procedure for obtaining the displacefeature around a pulsation of 1 Mrad/s corresponds to the
ment field in an inhomogeneous medium composed of twdower bound of the bulk vibrational band of the fluid. How-
semi-infinite media separated by a single planar interfacever, a refinement of the density of states in this vici(sge

A. Silicon /water system
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0} (Mrad.s'l) FIG. 3. Dispersion curves for the system with a single silicon/water inter-

face. The thin solid line is the dispersion curve for the fluid. The thin dashed
FIG. 2. Variation in density of vibrational states as a function of pulsation "€ indicates the dispersion relation for the Stoneley—Scholte mode. The

for the system containing a single silicon/water interface. The inset is a{ong-dash Iine; re_fer to the dispersion curves for th_e transvioseer
magnification of the plot around the lower limit of the water bulk band €Urve and longitudinalupper curvg waves. The dotted line represents the

below which the Stoneley—Scholte mode exists. The wave vector of thé)ulsationlwave vector relationship for the Rayleigh wave.
incident wave is constant and takes the value indicated on the graph.

whereé)z(kuw|x3,xé) is given in the appendix by replacing
insed indicates the presence of a peak below the bulk banthe appropriate elastic coefficients with those of Edp).
of the fluid. This peak represents a Stoneley—Scholte surface After lengthy algebraic manipulations, the components
wave localized in the liquid at the fluid/solid interface. A of the elastic displacement field in the water are obtained as
localized Stoneley—Scholte wave propagates in the fluid in a
direction parallel to the solid/fluid interface. Its amplitude ~ " " o
decays exponentl_ally with distance from the solld/ﬂl_ﬂd Inter-g, (k,w|Xs) B =e% Kst e Ko K
face. However, since the Stoneley—Scholte wave lies below
the bulk band of the liquid it cannot be excited by an incident
bulk wave originati_ng from the quu_id, such as one prOducedﬁz(kHw|X3)=0, (36)
by the transducer in the megasonic tank. The sharp features
near 3.9 and 5.6 Mrad/s are the lower limits of the transverse
and longitudinal vibrational bulk bands of silicon. A broader _ z
peak located at 3.4 Mrad/s and below the bulk band of siIi-“3(kH“’|x3) B
con is associated with a Rayleigh wave localized at the sur- )
face of the solid. This is a wave that propagates in the solid . ¢
in a direction parallel to the interface which amplitude de- K, e?
creases exponentially inside the solid. The acoustic band
structure of the silicon/water system is then reported in Fig\yhere
3. In this figure, we plot pulsation versus the wave vector.
From our calculations we find that the dispersions relation 1462 2 2,22
. ) € p e

for the Rayleigh and Stoneley—Scholte waves are given as ¢ =
w=>515%; and 1499.3K,, respectively.

The elastic displacement field in the fluid regi@®) of 1 2p@ @t

2
TP T Az

the inhomogeneous system is derived from B§), A 1=y k—ﬁ[afz)dfﬁ al? e 3]
~ €?  12p(14€?)e? ) 37
(ko] X3) =U(kjo| X3) G210 AT (1= @2
—Ga(kjw[X3,0)G; *(kj[0,0U(k | 0) 1 2p?e? w—4[a<2>¢ o]
+Golkjw|X5,0/G; (k0] 0,0(kiw|0,0 A(1—e®) it T T
x G5 (kyw]0,0U(Kw|0), (35  with
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p p —~
= 1— D + 1_@ £~ 0 jr
2 2 § -100 |-
Vo= =20 i amy | P :
I % 200 —
2 w’ =
X —2Ct<2>+m} (38) ‘\‘@ -300
RENCIRNCINE =400 | (2)
¢3:1_E(1)+1_E(2), , Y O N A |
and —_
T
o? g ~
A= Uil ki{y3. (39) Z
[\ -
All other quantities have been defined previously. S 0
We combine Eq(36), (37), (38), (39), and(27) to cal- R
culate the components of the streaming force. As a check for -1 B
our method, we have verified, in the limit of a rigid solid/ e (b)
water interface and an incident plane wave parallel to the oLl L L L
interface, that the componeht of the streaming force takes -2
the same analytical form as that reported by Nybdrt.is 0 1020 30 40 50 60 70 80 90

also easy to verify analytically that in the case of a nonvis-
cous fluid, the compone; =0 since the conditions of con-
tinuity of the displacements at the solid/liquid interface doesgig. 4. components of the streaming force paraligland perpendicular

not have to be satisfied in the directi®f, that is, the fluid  (b) to the silicon/water interface as functions of the angle the incident wave

may slide freely on the solid. makes with the normal to the interface. The streaming force is normalized to
We calculate numerically the components of the Streamghe square of t_he displacement e_amplltude of the |nC|d<_ent wBwv&he

. . B . streaming force is calculated at a distance of @ from the interface. The

ing force near the silicon/water interface in the case of travpyisation has the value 4.398 Mradis.

eling plane waves in the fluid and as a function of incidence

angle of the incoming wavésee Fig. 4. This force is calcu-

lated at 0.1um from the interface and at a frequency typi-

cally used in megasonic cleaning of 700 kKi@a=4.398

Mrad/s. Again for the sake of simplicity in this calculation,

we use a red; defined ak;=(w/C) siné. The components

of the streaming force along the interfaEg is one to two dispersion relation for the Rayleigh walee Fig. §)]. The

orders of magmtugig larger thaf. The streamlng force force appears to be constant beyond a few micrometers, how-
does not vary significantly and remains small outside a nar-

row range of angles centered on the value corresponding tever, at large dlstanggs, extendlng over hunQreds O.f mr-
2 . . Crometers, from the silicon/water interfade; varies peri-

the excitation of the Rayleigh wave. The signFof changes i , ) oy

drastically across the conditions for stimulating the Rayleigrdically with X3 according to the factor sind” X where

wave. A positiveF, gives rise to a removal force opposing @) is the imaginary part of the complex numhef). The

the adhesion force acting on some contaminant particle. Advery small value of water's coefficient of shear viscosity

hesion is promoted by a negati¥e. In Fig. 5, we present makesF; and F5; almost independent of; over distances

F, as a function ofXs in the vicinity of the silicon/water ©n the order of millimeters.

interface for two different conditions. These correspond to !N summary, excitation of the Rayleigh wave seems to

modes of vibration that can be excited by incident travelingbe the most favorable case for contaminant particle removal

plane waves, namely a plane wave grazing the interface exXtom a single silicon/water interface.

citing a fluid bulk moddgFig. 5a)] and a plane wave at an

angle of 16.57° from the normal to the interface that stimu-

lates the Rayleigh wavgFig. 5b)]. In the two cases, the We model a silicon wafer by a slab of solid medium 1 of

acoustic boundary layer where the sound field is controlledhicknessd which surfaces are perpendicular to the axis

by the continuity condition of the solid and fluid displace- and located atX;==*d/2 [see Fig. 1b)]. The inverse

ments at the interface extends only over a very few micromeGreen’s function of the slab in the space of its surfaces is

ters owing to the low viscosity of water. An increase in sheareported in the appendikEq. (A5)]. The silicon slab is

viscosity has, for effect, to extend the acoustic boundancoupled on its two sides to two semi-infinite media. The

layer. The thickness of the acoustic boundary layer scales aemi-infinite media are constituted of watenedium 2 and

Vulwp. Incident waves grazing the silicon/water interfacethe inverse Green’s function at their respective surface is

O (degrees)

[see Fig. Ba)], as is the case in a typical megasonic cleaning
tank, produce an extremely small streaming foFge The
streaming force is essentially negligible outside the acoustic
boundary layer. In contrast, the magnituderafis increased
manyfold by choosing an angle of incidence that satisfies the

B. Water/silicon /water system
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Nv 1.1 FIG. 6. Variation in density of vibrational states as a function of pulsation
for the system composed of a silicon slabafer) immersed in water. The
l3a) 1.0 wave vector of the incident wave is constant and takes the value indicated
=~ . on the graph.
0.9 | | | | |
0 1 2 3 4 5 6 uid at the interface between a solid and a liquid, we will refer
subsequently to this flexural mode as a wave of the
X3 (pm) Stoneley—Scholte type. Again, this surface wave cannot be

FIG. 5. Normal component of the streaming force as a function of distanc excited by an incident plane wave launched from the liquid.
fron; tHe silicon/watepr interface in the case?a)‘ a nearly grazing incident We have verified that as the thickness of the Slab_ Increases,
plane wave andb) the Rayleigh wave. the number of resonant peaks and the pulsation of the
Stoneley—Scholte wave increase. In the limit of an infinitely
thick slab, one recovers the result of Fig. 2, that is, the reso-
obtained from Eq(A3). The inverse of the Green’s function nant states merge into a solid band, the pulsation of the
of a silicon slab immersed in water, defined at the solid/fluidStoneley—Scholte wave approaches that of the bulk band of
interfaces is then obtained from E(L8). The variation in  the liquid and a peak corresponding to the Rayleigh wave
density of vibrational states of this inhomogeneous mediunforms below the transverse bulk band of the solid. We have
is then determined numerically from E@O) using an infi-  calculated the variation in density of states for several values
nite water medium as reference system. We have taken @f the wave vectork,. Figure 7 represents the dispersion
silicon slab of thicknessl=0.64 mm as representative of a relations w(k;) for the Stoneley—Scholte wave, the bulk
standard wafer. The speed of sound and coefficient of visband of the fluid as well as the resonant states in the solid.
cosity are the same as in Sec. Ill A. Figure 6 reports on th&he density of states calculated with the IRT includes all
variation in density of states as a function of pulsation for thepossible modes of vibration of the water/silicon/water sys-
same reak used in the case of a single solid/water interfacetem, including flexural modes of the wafer. However, in the
The feature near 1 Mrad/s is again the lower limit of the bulkcase of a silicon wafer with a thickness @f 0.64 mm, the
band of the fluid. The bulk band of the solid does not appearesonances associated with the flexural modes are unobserv-
in this figure since the slab has finite dimensions along theble in the range of frequencies and wave vecté&f ¢on-
axis X3. A finite slab possesses only discrete vibrationalsidered. Indeed, in the long wavelength limi¢<1) con-
states that become resonant states when coupled to sersidered in this study, the lowest localized mode which
infinite fluid media. The resonant states show as sharp peak®erresponds to the first flexural modgeferred to as
in the density of states within the bulk band of the fluid. We Stoneley—Scholte wayecannot be excited by an incoming
note that the pulsation at which these resonances occur comrave from the liquid, whereas the next flexural modes are
responds to those of the lower bound of the transverse arsltuated at frequencies well above the frequency domain con-
longitudinal bulk bands of silicon. FinallyAn exhibits a  sidered.
well-defined peak below the lower limit of the bulk band of To calculate the first-order acoustic displacement field in
water, forw around 0.33 MHz. This peak is associated withthe fluid near the slab, we insert into E49), the inverse of
the first flexural mode of vibration of the slabThe flexural g *(MM) along with the Green’s function of bulk water
modes of higher order are not observed since their frequerand the displacement of an incident wave with the form
cies exceed those considered in this study. The first ordegiven by Eq.(30). The first-order displacement field is then
flexural mode is localized within the fluid near the silicon used to determine the components of the second-order
wafer/water interface. This mode being localized in the lig-streaming force according to E(7). The two components
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FIG. 7. Dispersion curves for the water/silicon/water system. The dispersion Nv 0.40
curves for the solid are represented by the long-dash lines. The continuous Q (b)
line refers to the dispersion curve of the fluid. The dotted line corresponds to o (0.35
the pulsation/wave vector relationship for a Stoneley—Scholte wave local- R
ized in the liquid at the solid/fluid interface. 0.30 | | | ! |

of the streaming force at a fixed location from thg=
+d/2 slab/water interface as a function of incidence angle X3 (pum)
are reported in Fig. 8. Here, we consider an incident plane

P : : . . FIG. 9. Normal component of the streaming force as a function of distance
wave originating in the fluid of pUIsatlon 4.398 Mrad/s. from one silicon/water interface in the case of incident waves with incident

angles equal tda) ~90° and(b) 31°. The system is composed of a silicon
slab immersed in water.

200

®=4.398 Mrad/s i th f the T q b
150 X1=0, X3=0.1 pm Again the component of the forde, exceeds-; by up to

two orders of magnitude-; shows a sharp increase at an
100 angle of incidence~10° (or k,~500m 1) corresponding to
(a) the resonant state associated with the longitudinal mode of
50 the solid.

Finally, we illustrate the variation oF5; and F; with
distance from the slab/water interface in Figs. 9 and 10 for
incident waves with two different incidence angles, namely a
-50 Y S T M grazing plane wavéFigs. 9a) and 1@a)] and a plane wave
0.6 with an incidence of 31fFigs. 9b) and 1@b)]. In all cases,
owing to the small viscosity of water, the acoustic boundary
layer does not exceed @m. The acoustic streaming force
perpendicular to the wafer/water interface is negligibly small
in the case of a grazing incident way€ig. 9a)]. On the
other hand, at an optimum incidence of JFg. Ab)], a
significant positive force exists inside the fluid extending
over a wide range of distances from the interface. The
streaming force parallel to the silicon/water interfaee
shows similar behaviors although it exceeds the férgdy
one to two orders of magnitude. Beyond the distances re-
0 10203040 50 60 70 80 90 ported in Figs. 9 and 10, and F5; vary sinusoidally in a
manner similar to the case of a single solid/water interface.

2 +20 -5
F,/B* (10" N.m™)

2 +20 -5
F,/B” (10" N.m”™)

O (degrees)
FIG. 8. Components of the streaming force paral&@land perpendicular IV. COMPARISON BETWEEN SECOND-ORDER
(b) to one of the silicon/water interfaces in the water/silicon/water system asACOUSﬂC FORCES AND PARTICLE ADHESION

functions of the angle the incident wave makes with the normal to theFORCE

interface. The streaming force is normalized to the square of the displace- . .
ment amplitude of the incident wa®& The streaming force is calculated at To calculate removal forces, we consider two particular

a distance of 0.Jum from the interface. cases. The first case is that of the silicon/water system with
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oz 0 FIG. 11. Removal and adhesion forces on a spherical particle adhering to
NQ -1 the silicon surface as a function of particle radius. The adhesion forces
= 220 ®=4.398 Mrad.s represented as dotted lines are for three different separation distances be-
~ 440 tween the particle and the silicon surface, namely 5, 7, and 10 A. The
6=31 b dashed-dotted line stands for the removal force in the case of the silicon/
— 40 X1=0 Um ( ) water system for an excited Rayleigh wave. The dashed line refers to the
B~ water/silicon/water system and excitation of a bulk wisee Fig. &) for
detailg.
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X, (um) particle adhesiof.The van der Waals force of adhesion be-
3K tween a spherical particle and a planar surface is givéh by
FIG. 10. Component of the streaming force parallel to the silicon/water Asd o

interface as a function of distance from one silicon/water interface in the (40
case of incident waves with incident angles equalao~90° and(b) 31°.

The system is composed of a silicon slab immersed in water.

S X1

where X5 is the distance of the center of the particle to the
surface. The effective Hamaker constant, is a function of
the material constituting the particleaterial 1, the surface
an incident plane wave of pulsation=4.398 Mrad/s(v  (material 3, and the medium surrounding the particle/
=700 kH2 and an incident angl#=16.57°. These condi- gyrface systenimaterial 3. Here, we consider the case of a
tions correspond to the excitation of the Rayleigh wave. Fokilica contaminant particle in water adhering to a wafer
the purpose of estimating the removal force, we neglect thgpated with a thin layer of silica. Since the silica layer on the
variation of F3 within the acoustic boundary layer and as- wafer surface is extremely thin compared to the wavelength
sume that it takes its minimum value d%;/B*~0.96  of the acoustic waves considered here, it will not affect the
X 10°°N/m® for all Xs's [see Fig. ®)]. In this case the results for the streaming force. The Hamaker constant for
removal force given by Eq(31) takes the simpler fornf;  tnhat system i\, 5= 0.83x 10-2°J 1718 the case of a par-
=0.96x 10°°B?V whereV is the volume of the particle. For ticle nearly in contact with the surface, the separation dis-
a spherical particle of radiusy, V = frg, the removal tanceX;—r,, is only on the order of a few angstrorfawe
force scales as the cube of the radius of the particle. In adselect three valuesX;—r,=5, 7, 10 A as a representative
dition, it varies as the square of the incident wave's displaceggt of separation distances.
ment amplitude. For megasonic transducers and typical me- |y Fig. 11, we report on the variation with particle radius
gasonic cleaning conditions, the displacement amplitude isf the removal forces due to a Rayleigh wave at a solid/fluid
on the order of X 10™°m.*° interface, a bulk wave for a wafer in water as well as van der
The second case, investigated here, corresponds to a Si{iyaals adhesive forces.
con wafer immersed in watewater/silicon/water system The removal forces associated with the Rayleigh and
with a pulsationw=4.398 Mrad/»=700 kH2 and an inci-  pylk wave cross the adhesive forces at radii exceeding sev-
dent angle¢=31°. Again for the sake of simplicity, the eral micrometers. The second-order streaming fd¥geis
variation OfF3 with distance as illustrated in F|g 9 is ne- therefore On|y Capab|e of removing |arge contaminant par-
glected and we tak&;/B*~0.32x 10°°N/m® for all X5's. ticles from silicon wafers. However, for small particles, the
With this, the removal force acting on a spherical particle isadhesive force dominates and the component of the removal
given by the simple relatiorf;=0.32x 10?°°B24ar3. force perpendicular to the solid/fluid interface is not suffi-
The London—van der Waals adhesion force is usuallycient to remove particles. We note, though, that the stream-
considered to be the dominant force for short distances iing force along the solid/fluid interface was several orders of
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V. CONCLUSIONS

We have calculated the first-order acoustic field in theAPPENDIX
case of a single interface between silicon and water and a The nonzero elements of the Green’s function of a bulk
silicon slab immersed in water. The solid was treated as an . o L2 ,
isotropic elastic medium and water as a viscous fluid. Thisc.’IId or liquid homogeneous mediun® (kyw|Xs, X3), so-
first-order acoustic field was then used to determine the'tion of Eq. (9), are given by’
second-order streaming force that allows us to estimate the
removal force that acts on a spherical contaminant particle
adhering to the solid surface. The removal force was then Gu=-
compared to the van der Waals adhesion force between a
silica particle and a flat silicon surface in water. We found
that in general the removal force resulting from the second-
order acoustic field is too small to remove submicron par-
ticle. However, the component of the streaming force paral-

kf

2paw®

’ ’
[e a|\X3 xgl_Ee at|X3 Xgl],

ik ,
Gis= G31=msgr(xg— X3)

lel to the solid/fluid interfaceF; is orders of magnitude X [e~aXamXsl g alXe=X3l],

larger than the componeft;. In this casefF; may lead to (A1)
particle removal by a rolling and tugging mechanism as sug- K2

gested by some authof®.In the literature on megasonic Gag= — =— [ — ee~ @Xa~Xal 4 g adlXs=Xgl],

cleaning it has been customary to compare the magnitude of 2parw

the force acting on the contaminant particle along the silicon/

water interface to the adhesion foft@his practice does not 1
reflect the fact that these two forces have directions perpen- G22= — 2pa
dicular to each other. There is no resisting force to the mo-

tion of the particle in the direction parallel to the silicon/ \here we have defined
water interface but a friction force at the particle/silicon

interface. The fluid flow in the directiorX; due to the

streaming forcd-, will lead to a drag force that may push a 2= Kk2— w-
contaminant particle or roll it depending on the magnitude of L C|2'
the friction force. A detailed study of this mechanism will be

— | Xg— X}
Cze o X3= X
t~t

2

the subject of a subsequent publication. Finally, we have 2
shown that subjecting a silicon wafer to a grazing incident af:kf_ —, (A2)
acoustic wave as is traditionally done in megasonic cleaning Ci

tanks may not lead to an optimum cleaning efficiency. In-
deed we have shown that the normal and parallel compo-
nents of the streaming force are strongly dependent on the e=—5
incidence angle of the incoming wave. Our results suggest
that cleaning efficiency may be improved by subjecting a
wafer to incident acoustic waves sampling a wide range of’
incidence angles. We recall that excitation of the longitudinal

| and «, are defined with the following sign conventiéh:

resonant mode of the wafer at an incidence of @@quency s w?® _
of 700 kH2 yields a very strong positive streaming force a=\ ki~ c2 it o<kCi,

L,
F.. These results further support the recently developed t

high-efficiency single-wafer megasonic cleaning technology 5

using a cylindrical quartz crystal positioned parallel to the . [ 2 if w=kC

top surface of a wafer that generates acoustic waves with “'t~ ' cz, @=L

variable incidence anglé3 With this technology the surface '

of a silicon wafer is stimulated by megasonic waves withThe inverse of the Green’s functioﬁ;1 of a semi-infinite
incidence angle varying between approximately5° and  mediumi, bounded by a free surfaceX4=0, is given in the
45°, domain of its surface By
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al(i)w2p(i)

S K(1-€D)

g;l(kuw|x3=0,X§=O)= 0

where the signst (and ¥) are used for semi-infinite media

located atX;=0(+) andX3=0(—), respectively.

We consider a slab of silicoimedium 1 of thicknessd
which surfaces are perpendicular to the axisand located
atX3=*=d/2. The inverse Green’s function of the slab in the
space of its surfaces has been derived previtisind is

(A4)

given by
o' (MM)
. d d d d
Js1 | Kjo 573 Gar'| Kjw| — 575
., d d| ., d d
Js1' | Kjo t5:75] Os kjw tots
which components take the analytical form
Gt (MM)
aq 0 |q1 hl 0 |f1
O U1 O 0 Wl O
—igq; O b, if, O e
= . . ) (A5)

hl 0 _|f1 al 0 _Iql
0 Wl 0 0 U1 0
—ify 0 e ig; O b,

with

Hlaq(l)

—[sh(a(l)d)ch(a(l)d)
2k\Cyy, ' |

a=
Ush(afYd)ch(aiPd)],

H agl) 2
b.= —_ h (1)d h (1)d
1= 2kHCt(1) [sh(e;™d)ch(a;™'d)

Ysh(atPd)ch(a{Vd)],

d d
o] e 2

—_ —

q1=H1( V(3K + aM?)

d d
2| 02
23

—%[Zafl)agl)e(l)-i-( (1)2+k ]

+sh2(

w
kf(1— ey
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Lo 2 @
0 +ip'k —th(i)'f'w
~pValc2, 0
. aMw2p®
”(1—6(')
(A3)
[
sh(a!Vd)sh(a{"d)
aVe?
hy=— Hl—[sh(a(l)d)— eVsh(afMd)]
Zkuct(l) ‘ l ,
Hyelt w?
= Zlk—tg—[sh(afl)d)—e“)sh( aVd)],  (A6)
II
(1) (1) (l)d
fi=—He sh?| « —sh?| «
t(l) 2

2K, 2 2

-1
—e(l)Ch( (1)d>sh< d)
2
d d
1)~ (1=
2)Ch( a; 2)

-1
1)sh( (1)d)ch< 1;” ,
(1)
12 Chlei”d)

__ ~
V1= —p 7y Ct(l)sh(agl)d)’

(-1
—_ 1, 2 N

In Eq. (A4), the dependency on frequency and wave vector is
implicit.

pvc? d d
im0 o o o ]

x| shl a!
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