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Streaming and removal forces due to second-order sound field
during megasonic cleaning of silicon wafers
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We calculate the second-order streaming force in a fluid in the vicinity of the solid/fluid interface for
two systems of importance in the technology of megasonic cleaning of silicon wafers. The first
system consists of a single planar interface between a solid elastic medium representing silicon and
a viscous fluid, namely water. The second system accounts for the finite thickness of silicon wafers.
It is composed of one silicon slab~wafer! immersed in water. The components of the streaming
force parallel and normal to the silicon/water interface are determined as functions of frequency and
wave vector of the incident acoustic wave. The normal component of the streaming force is used to
calculate the removal force defined as the net force perpendicular to the solid/fluid interface acting
on a spherical contaminant particle adhering to the silicon surface. The removal force is too small
to remove submicron particles. In contrast the streaming force parallel to the solid/fluid interface
may remove particles by pushing or rolling them. The streaming force is shown to be very sensitive
to the angle the incident acoustic wave makes with the silicon/water interface. ©2000 American
Institute of Physics.@S0021-8979~00!05324-X#
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I. INTRODUCTION

Megasonic waves have been extensively used to rem
contaminant particles from silicon wafers during manufa
turing of semiconductor devices. In this process, planar
con wafers are immersed in a water-based solution and
jected to a beam of sonic energy with a frequency in
range 600 KHz–1 MHz. The acoustic wave propagates ty
cally along directions parallel to the wafer/fluid interfac
Much of the work in the area of megasonic cleaning has b
directed towards finding conditions such as megasonic po
and duration of field to optimize particle removal. Seve
processes are known or believed to be operative in a me
onic field, namely microcavitation, acoustic streaming, a
pressure induced chemical effects. However, it has not b
established to any reasonable degree of confidence wh
these phenomena are responsible for particle remova
brief review of the mechanisms that have been claimed to
responsible for the cleaning action in a megasonic field
pertinent at this stage.

The megasonic waves can be visualized as pres
variations propagating into the fluid at the speed of sou
When a sonic wave passes over a solid particle, the pres
gradient in that wave exerts a force acting on that partic1

Since the pressure front typically propagates parallel to
surface of the wafer, the acoustic force on an adsorbed
ticle is parallel to the wafer surface and should not be abl

a!Electronic mail: deymier@oxygen.mse.arizona.edu
6820021-8979/2000/88(11)/6821/15/$17.00
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dislodge the particle by opposing the adhesion force. T
force may only push the particle along the surface of
wafer. Olim1 has shown that the acoustic pressure force
an isolated particle in water is proportional to the cube of
diameter of the particle. This author has then estimated
for particles with a diameter less than 0.35mm, the pressure
force is smaller than the adhesion force and that megas
cleaning in absence of any other cleaning mechanism
not be efficient. Olim’s model neither accounts for the inte
action of the incident acoustic wave with the wafer nor
scattering by the contaminant particle. A more realis
model of the acoustic pressure field has been derived
Wu.2 However, this model is limited to a single wafer im
mersed in a nonviscous fluid and was not used to determ
the pressure force on deposited contaminant particles.
have recently calculated the acoustic pressure force du
scattering of a megasonic wave by a submicron particle
posited on a silicon substrate.3 We have shown that scatte
ing of the acoustic wave by deposited submicron particle
negligible and that the pressure field in the vicinity of t
solid/fluid interface is primarily controlled by transmissio
and reflection. Since efficient particle removal is expected
result from processes that are associated with high en
densities, the scattering of an incident acoustic wave w
millimeter wavelength by a submicron particle adhering a
wafer/water interface is unlikely to lead to a sufficient ener
concentration.

Microcavitation is produced by the pressure variations
sound waves moving through the liquid. Cavitation bubb
1 © 2000 American Institute of Physics
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are formed by the low-pressure components of the acou
wave. This component causes a hole or cavity to form in
liquid. This cavity implodes when the walls can no long
sustain the compressive forces. During cavitation, the for
tion of a cavity and its subsequent collapse is able to c
centrate the low energy density of the sound wave into a v
small volume leading locally to very high pressures and te
peratures. The contaminant particles may serve as nucle
centers that cause the cavities to collapse before they
fully develop. The transfer of energy from the cavities to t
particles may therefore dislodge the particles. Cavitation
pears to be an important mechanism in ultrasonic clean
However, it had been claimed that in megasonic cleaning
time between megasonic pulses on the order of 1.25ms is too
short for the formation of cavities.4 Following this argument,
Shwartzmanet al.4 suggested that the cleaning action in m
gasonic cleaning resulted from rocking action due to hi
pressure waves rather than cavitation. More recently, h
ever, cavitation was detected in a megasonic tank
sonoluminescence.5 These experimental measurements in
cate that the maximum cavitation intensity occurs near
water surface of the megasonic tank. It may then be c
cluded from this observation that this cleaning mechan
should not result in effective particle removal since the tr
sient cavitation activity is concentrated near the water s
face and therefore will not affect most of the wafer are5

However, the presence of stable cavitation throughout
megasonic cleaning tank may probably assist cleaning
ciency by introducing microstreaming currents near the w
fer surface.

The loss of acoustic momentum that results from atte
ation or dissipation of the sound field in a viscous fluid m
result in a time-independent fluid motion~stationary vorti-
ces!, known as acoustic streaming.6 When considering the
acoustic field in a viscous medium, viscosity leads to tim
independent second-order effects such as acoustic stream
Acoustic streaming may be treated as a nonlinear correc
to the linear~first-order! acoustic field. Acoustic streamin
can occur either in a free nonuniform sound field or n
obstacles immersed in the sound field. There are sev
types of acoustic streaming classified in terms of sc
namely Eckart’s quartz-wind-like streaming,7 Schlichting
streaming in boundary layers8 and microstreaming near se
ondary sound sources such as oscillating bubbles or vibra
particles on surfaces.9

The boundary conditions imposed on the acoustic field
the interface between a solid and a viscous fluid result in
fluid flow within a viscous boundary layer near the interfa
known as Schlichting streaming. Eckart streaming occ
outside the acoustic boundary layer. Eckart streaming is g
erated by a free nonuniform attenuated sound field that
the inhomogenity scale significantly larger than the acou
wavelength. Microstreaming is another type of microsc
streaming. It is associated with fluid vortices resulting fro
secondary sound sources such as sound waves scatter
oscillating bubbles in a viscous medium.

Megasonic cleaning efficiency is often improved wh
using a chemically active cleaning medium such as S
cleaning solutions. SC1 cleaning solutions are water-ba
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solutions of hydrogen peroxide and ammonia. The ability
a megasonic field to induce interesting chemical effects
been reported.10 In water containing nitrogen gas, applicatio
of a megasonic field has been shown to create NH41 and
NO3

2 ions. In hydrogen peroxide solutions, hydroxyl radica
~OH! appear to form in the presence of a megasonic fie
However, it is not known whether a megasonic field c
enhance the dissolution materials such as SiO2 through the
formation of such species. The most commonly accep
mechanism for particle removal from Si surfaces using S
solutions is that the peroxide in the solution creates a t
oxide film which is then etched by ammonium hydroxid
Particles are presumed to be removed during the etchin
the oxide. The etch rate of oxide in conventional SC1 so
tions has been measured to be approximately 0.3 nm/min
more dilute solutions, the etch rate may be expected to
even smaller and consequently the ‘‘oxide etch’’ theory
particle removal has come under some criticism. Since
use of megasonic energy in dilute SC1 solutions is effec
in removing particles from wafer surfaces, it is possible th
the etch rate of oxide is increased by the megasonic fiel

The preceding brief review of the current understand
of some of the mechanisms that may be responsible for
cleaning action in megasonic tanks demonstrates a clear
for a more fundamental study of the megasonic cleaning p
cess. Experimental studies of megasonic cleaning
clouded by the overlap of the possible mechanisms. T
complexity of some of these mechanisms added to the v
small spatial scales involved render the design of unamb
ous experiments difficult. To date experimental investig
tions have not been able to pin point the exact mechanism
particle removal by megasonic waves and only empiri
methods have allowed advancement in megasonic par
removal. We have therefore elected to undertake a theo
cal study of the megasonic cleaning and in particular of so
of the individual phenomena that are susceptible to remov
contaminant particles from silicon wafers.

The primary objective of the present article is to inve
tigate, theoretically, phenomena associated with seco
order sound fields such as acoustic streaming and more,
cifically Schlichting streaming on particle removal durin
megasonic cleaning. This theoretical study consists of
parts, namely the calculation of the time-dependent~first-
order! acoustic displacement field at solid/viscous-fluid inte
faces, followed by the calculation of the time-independe
~second-order! pressure field.

The nonlinear motion in a viscous fluid is governed
the Navier–Stokes equation. For small velocities, Navie
Stokes equation can be linearized. This linearized equa
for sound propagation in a fluid is completely analogous
that of elasticity theory for an isotropic solid where the lo
gitudinal and transverse sound velocities are replaced
complex numbers. Solving for the acoustic field near a so
immersed in a viscous fluid requires a simultaneous tre
ment of the Navier–Stokes equation for the fluid and
elastic wave equation for the solid with appropriate bound
conditions at the interfaces. We use the method of the in
face response theory~IRT! based on the formalism o
Green’s functions11 to calculate the first-order acoustic di
P license or copyright; see http://jap.aip.org/jap/copyright.jsp
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placement field. The IRT provides an attractive framewo
for the calculation of acoustic properties of inhomogene
media. The response function~e.g., acoustic Green’s func
tion! of an inhomogeneous medium~e.g., wafer in a fluid!
can be calculated in terms of the known bulk Green’s fu
tions of each constitutive subsystem~wafer or fluid! and ‘‘in-
terface response operators’’ which account for the geom
of the various interfaces. The Green’s function formalism
then applied to the calculation of first-order velocity field d
to scattering of an incident acoustic wave by:~1! a semi-
infinite solid/viscous-fluid interface~i.e., a semi-infinite elas-
tic solid in contact along its surface with a semi-infinite v
cous fluid!; ~2! a wafer immersed in a viscous fluid modelle
as a slab of elastic solid sandwiched between two se
infinite viscous fluid media.

For the calculation of second-order corrections to
sound field, a method developed by Nyborg12 is used. Start-
ing with the nonlinear Navier–Stokes equation, Nybo
makes the approximation that its solution is the superposi
of first-order and second-order contributions to the displa
ment ~or velocity! field. The first term varies sinusoidally i
time with a frequencyv and thus represents the first-ord
sound field. The second-order term is time independent
may give rise to acoustic streaming. In Nyborg’s approa
one begins by determining the first-order approximation
the velocity ~this is the sound field calculated with th
Green’s function method!, then one uses this in getting
second-order approximation. Nyborg defines the stream
forceF in terms of the time average over several sonic cyc
of gradients of the first-order velocity field. The streami
forceF can then be interpreted as the time rate of increas
momentum in the fluid. It is equivalent to some extern
force field that, provided flow is not constrained, may
driving the fluid into streaming motion. If the fluid is con
strained not to flow then the streaming force is balanced
the gradient of the second-order acoustic pressure.

This article is organized as follows. In Sec. II we intr
duce the methods and models with some details. Sectio
reports on the results for the streaming force obtained in
case of a single silicon/water interface and of a silicon s
~wafer! immersed in water. The removal force on a spheri
contaminant particle resulting from the streaming force
calculated in Sec. IV. In this same section, we compare
removal force to the adhesion force that drives the part
toward the silicon surface. There we consider only the c
tribution of the van der Waals forces to adhesion. Seve
cases previously analyzed in Sec. III are studied. Finally,
draw some conclusions concerning the effect of the stre
ing force on particle removal in megasonic cleaning.

II. MODELS AND METHOD

A. Models

In a typical megasonic cleaning tank, several wafers
cleaned at one time. The wafers are arranged parallel to
other in cassettes. The medium through which the megas
waves propagate is inhomogeneous and may therefor
simply represented as a layered composite consisting o
ternating silicon slabs separated by water-based fluid lay
Downloaded 05 Mar 2008 to 150.135.172.77. Redistribution subject to AI
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Since wafer diameters are significantly larger than the wa
length of megasonic waves, the layered composite is tre
here as being infinite in directions parallel to the wafer/flu
interfaces. Furthermore, for the sake of simplicity of t
models we take the solid medium as being isotropic. In t
article we consider two multilayer geometries. First, we
vestigate the interaction between an incident acoustic w
and a single interface between two semi-infinite homo
neous media composed of silicon and water, respectiv
This system will be called the silicon/water system. Th
simple interface is used to establish the mathematical pro
dure for calculating the second-order sound field. A mo
realistic geometry corresponding to one wafer immersed
water is then treated. This system with two parallel interfa
is modeled as a solid slab of silicon separating two se
infinite media of water. Since the radius of a silicon waf
exceeds by far its thickness, the slab is considered to b
infinite length. We will refer to that system as the wate
silicon/water system.

Figure 1 illustrates the type of layered composite s
tems studied in this article. All interfaces are chosen to
perpendicular to the axisX3 of a Cartesian coordinate syste
(X1 ,X2 ,X3).

B. First-order „linear … equations of motion
and Green’s function formalism

In this subsection we formulate the equations necess
to describe motion in an elastic solid~silicon! and a viscous
fluid ~water!. The equation of motion for the displaceme
ua , a51,2,3 of a point in an infinite homogeneous thre
dimensional elastic material is

FIG. 1. Illustration of the two inhomogeneous systems studied,~a! the
silicon/water system and~b! the water/silicon/water system.
P license or copyright; see http://jap.aip.org/jap/copyright.jsp
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rüa5(
b

]sab

]Xb
, ~1!

wherer is the mass density,üa the second derivative with
respect to the timet of ua andsab the stress tensor

sab5(
mn

Cabmnhmn . ~2!

Cabmn are the usual elastic constants andhmn the deforma-
tion tensor

hmn5
1

2 S ]um

]Xn
1

]un

]Xm
D . ~3!

With these definitions and assuming that the fluid excitati
execute harmonic motion with pulsationv ~v52pn wheren
is the frequency! and a time dependencee2 ivt, the equation
of motion ~1! becomes

2rv2ua5 (
bmn

Cabmn

]2um

]Xb]Xn
. ~4!

For an isotropic elastic medium

Cabmn5C12dabdmn1C44~damdbn1dandbm! ~5!
riz

a

t-
d,
ul
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s

with C125C1122C44. The symbold i j is the Kroenecker
symbol equal to 1 wheni 5 j and 0 wheni is different from
j. The longitudinal and transverse plane wave velocities,Cl

andCt , are given respectively by the relations

Cl
25

C11

r
and Ct

25
C44

r
. ~6!

If we introduce in Eq.~4! the operator

Ham~r!5rv2dam1(
bn

Cabmn

]2

]Xb]Xn
~7!

we may define the bulk response function~or Green’s func-
tion!, Gmn(r,r8), as the solution of the equation

(
m

Ham~r!Gmn~r,r8!5dand~r2r8!. ~8!

Since one will later deal with inhomogeneous media se
rated by parallel interfaces, it is convenient to make a Fou
analysis of the Green’s function parallel to a plane (X3

50). We further apply a rotation of theX1 , X2 axes that
brings theX1 axis along the wave vectorki parallel to the
plane. After these transformations, Eq.~8! becomes
rS v22ki
2Cl

21Ct
2 d2

dX3
2 0 ik i~Cl

22Ct
2!

d

dX3

0 v21Ct
2S d2

dX3
22ki

2D 0

ik i~Cl
22Ct

2!
d

dX3
0 v22ki

2Cl
21Ct

2 d2

dX3
2

D 3S G11 G12 G13

G21 G22 G23

G31 G32 G33

D 5d~X32X38!S 1 0 0

0 1 0

0 0 1
D .

~9!
nd
ion

o

uid

to
he
In the preceding equationGmn stands forGmn(kivuX3 ,X38).
Let us recall that Eq.~9! leads toG125G215G235G3250,
that is a decoupling between sagittal and transverse pola
tions.

The motion of the bulk fluid, in the absence of extern
forces, is governed by the Navier–Stokes equation

rF]v
]t

1~v•¹!vG52¹p1m¹2v

1S m81
1

3
m D¹~¹•v !, ~10!

wherev is the velocity,r the density,m and m8 the coeffi-
cients of shear and dilatation viscosity, andp the pressure.
For small velocities, Eq.~10! can be linearized after neglec
ing the term~v•¹!v. Assuming, as in the case of the soli
that the fluid excitations execute harmonic motion with p
sationv, the velocityv is related to the displacementu by

v52 ivu. ~11!
a-

l

-

Finally, we assume that the pressure term in Eq.~10! is due
only to the density fluctuations giving rise to dilatation a
compression of the fluid. That is, we neglect the contribut
due to thermal fluctuations. Then

p52l~¹•u!, ~12!

wherel is the compressibility of the fluid which is related t
the ~longitudinal! sound velocityC via

C25
l

r
. ~13!

With the above assumptions, the stress tensor in the liq
can be written as

sab5l~¹•u!dab1mF ]na

]Xb
1

]nb

]Xa
2

2

3
dab~¹•v !G

1m8dab~¹•v !. ~14!

This form of the stress tensor is completely analogous
that obtained in elasticity theory for an isotropic solid. T
following correspondences should be made:
P license or copyright; see http://jap.aip.org/jap/copyright.jsp
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Cl ~ f !
2 5C22

iv

r S m81
4

3
m D ,

~15!

Ct~ f !
2 52

ivm

r
,

whereCl ( f ) andCt( f ) are the fluid equivalent of the velocitie
of the longitudinal and transverse sound waves in a solid

The derivation of the bulk Green’s function of the vi
cous fluid can be done step by step along the same line
for the isotropic solid. The Green’s function of the fluid
therefore given by Eq.~9! provided the velocities of the
sound waves are replaced by those given in Eq.~15!. The
Green’s function of a bulk homogeneous elastic medium
reported in the appendix in the form of Eq.~A1!.

C. Interface response theory

The IRT11 allows for the construction of the Green
function of an inhomogeneous medium in terms of t
Green’s functions of the block constituents of the compos
The Green’s function of a composite medium can be writ
in the form of an interface integral equation

gJ~r,r8!5GJ ~r,r8!1E drMGJ ~r,rM !E drM8 GJ21~rM ,rM8 !

3E drM9 @gJ~rM8 ,rM9 !2GJ ~rM8 ,rM9 !#

3E drM-GJ21~rM9 ,rM- !GJ ~rM- ,r8!,

$r,r8%PD, $rM ,rM8 ,rM9 ,rM-%PM ~16!

with

GJ ~r,r8!5H GJ i~r,r8!, $r,r8%PDi ,i 51,N

0 rPDi , r8PD j ,iÞ j ,
~17!

whereD represents the space of the entire inhomogene
medium,M is the total domain of interfaces, andDi is the
space in which the constitutive blocki is defined. In the case
of layered composites media, using two-dimensional Fou
transforms of the Green’s function in a plane parallel to
interfaces, the domain of the interfaces reduces to po
along theX3 axis, thus the integrals in Eq.~16! reduce to
discrete sums over these points.

We note that in order to solve forgJ(r,r8) using Eq.~16!,
one needs to know its form in the domain of the interfac
gJ(rM ,rM9 ). According to the IRT, the inverse of the Green
function of the inhomogeneous medium defined in the
main of the interfaces may be expressed in terms of the
verse Green’s function of the constitutive blocks defined
the domain of their surfaces, such that
Downloaded 05 Mar 2008 to 150.135.172.77. Redistribution subject to AI
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gJ21~rPMi j ,r8PMkl!50 if Mkl¹Mi ,

gJ21~rPMi j ,r8PMil !

5gJs
21~rPMi j ,r8PMil ! if lÞ j , ~18!

gJ21~rPMi j ,r8PMi j !

5(
k

gJs
21~rPMkl ,r8PMkl! if Mkl[Mi j ,

with Mi j standing for the interface between the constitut
blocks i and j. In Eq. ~18! gJs stands for the Green’s functio
of the constitutive blocks with free surfaces. All the boun
ary conditions~e.g., continuity of displacement! at the inter-
faces are satisfied through Eq.~18!. The inhomogeneous me
dia considered in this study are composed of semi-infin
media and slabs. The Green’s function of a semi-infinite m
dium or a slab is obtained from the bulk Green’s functi
defined previously. In the presence of a free surface or
surfaces, Eq.~9! has to be solved subject to the bounda
conditions expressing the absence of stress at the sur
The inverse of the Green’s function at the surface of a se
infinite elastic medium and at the surfaces of an elastic s
have been reported in the literature and presented in the
pendix.

In addition to the Green’s function, the IRT allows fo
the determination of the elastic displacement field result
from the scattering of an incident wave by the interfaces
the inhomogeneous medium. IfU~r! represents a bulk inci-
dent wave launched in one homogeneous piece of the c
posite system, the displacement field,u~r!, including all the
waves reflected and transmitted by the interfaces is t
given by the relation

u~r!5U~r!2E drMGJ ~r,rM !E drM8 GJ21~rM ,rM8 !U~rM8 !

1E drMGJ ~r,rM !E drM8 GJ21~rM ,rM8 !

3E drM9 gJ~rM8 ,rM9 !E drM-GJ21~rM9 ,rM- !U~rM- !,

$r,r8%PD, $rM ,rM8 ,rM9 ,rM-%PM ~19!

with Eq. ~17! still applying.
Finally, the total variation of the density of vibrationa

statesDn(v) between the composite system and a refere
system may be determined from the knowledge ofgJ21 in the
space of the interfaces.11 For layered composites it is conve
nient to use a matrix representation of the inverse of
Green’s function in the spaceM, namely,gJ21(M ,M ). With
such a notation, the total variation in density of states
given by

Dn~v!52
1

p

d

dv
~arg detgJ21~MM !

2arg detgJref
21~MM !!, ~20!

where ref stands for the reference system.
At this stage we have at hand the tools to characte

the first-order~time-dependent! acoustic field at an interface
P license or copyright; see http://jap.aip.org/jap/copyright.jsp
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between an isotropic elastic solid and a viscous fluid. In
next section we show following Nyborg12 that this first-order
sound field can be used to determine the time-indepen
second-order solution to the nonlinear Navier–Stokes eq
tion.

D. Second-order „nonlinear … correction to sound
field: Nyborg’s method

To determine the time-independent second-order s
tion to the nonlinear Navier–Stokes equation, we use
method developed by Nyborg12 to calculate second-orde
corrections to the acoustic field in a viscous fluid. Start
with the nonlinear Navier–Stokes equation, Nyborg ma
the approximation that its solution is the superposition o
steady-state sound field and a steady flow. The veloc
pressure, and density fields are therefore written as

v5v11v2 ,

p5p01p11p2 , ~21!

r5r01r11r2 .

Here,p0 andr0 are some static pressure and the density
the fluid in absence of acoustic field.v1 , p1 , and r1 are
first-order approximations to solutions of the Navier–Stok
equation. These quantities vary sinusoidally in time with
pulsationv and thus represent the sound field solution to
linearized form of the Navier–Stokes equation. The seco
order terms,v2 , p2 , andr2 , are time independent. The ter
v2 is the acoustic streaming velocity and describes a ste
state flow of the fluid. The acoustic streaming velocity m
be obtained from an equation derived by Nyborg and ac
rate up to second order

m¹2v25¹p22F, ~22!

whereF is an effective source force of streaming related
the first-order velocityv1 by

2F[r0^~v1•¹!v11v1~¹•v1!&. ~23!

The bracketŝ & indicate that a time average is taken ov
several sonic cycles. With Nyborg’s approach, one begins
wl
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determining the first-order approximation to the veloc
~this is the sound field calculated with the Green’s functi
method or IRT!, then one uses this in getting a second-ord
approximation.

Equation~23! can be simplified in the case of layere
composites. We first recall that one can make a Fou
analysis of the displacement field parallel to the plane of
interfaces, namely the planeX350. Provided that we have
chosen theX1 , X2 axes such that the two-dimensional wav
vectorki is parallel toX1 , the components of the first-orde
displacement fieldu1 take the form in complex notation

ũ1~X1,0,X3 ,t !5ũ1~kivuX3!eik iX1e2 ivt,

ũ2~X1,0,X3 ,t !50, ~24!

ũ3~X1,0,X3 ,t !5ũ3~kivuX3!eik iX1e2 ivt,

with u15Re$ũ1% where Re stands for the real part of th
complex quantityũ1 .

The components of the first-order velocityv1 , in com-
plex notation, are therefore given by

ṽ1~X1,0,X3 ,t !52 ivũ1~kivuX3!eik iX1e2 ivt,

ṽ2~X1,0,X3 ,t !50, ~25!

ṽ3~X1,0,X3 ,t !52 ivũ3~kivuX3!eik iX1e2 ivt,

with v15Re$ṽ1%.
Equation~23! may be written in complex notation as

2F5r0•
1

2
ReS 2ṽ1

] ṽ1*

]X1
1S ṽ3

] ṽ1*

]X3
1 ṽ1

] ṽ3*

]X3
D

0

2ṽ3

] ṽ3*

]X3
1S ṽ3

] ṽ1*

]X1
1 ṽ1

] ṽ3*

]X1
D D ~26!

where the superscript* stands for the complex conjugat
quantity.

Upon insertion of Eq.~25! in Eq. ~26! the nonzero com-
ponents of the acoustic streaming force may be expresse
terms of the displacement field
H F152r0v2e22ki9X1S 2ki9ū1ū1* 1
1

2
ReF ū3

]ū1*

]X3
1ū1

]ū3*

]X3
G D

F352r0v2e22ki9X1S 2ki9 Re@ ū1ū3* #1ReF ū3

]ū3*

]X3
G D .

~27!
cle
is

ince
In Eq. ~27! ū denotes in shortũ(kivuX3) andki9 is the imagi-
nary part of the modulus of the complex wave vectorki(ki

5ki81 ik i9). The relations in Eq.~27! provide a simple mean
of calculating the acoustic streaming force from the kno
edge of the first-order acoustic displacement field.
-

E. Second-order acoustic forces on deposited
particle

During megasonic cleaning, a contaminant solid parti
adhering to the surface of a wafer may be removed if it
subjected to a force counteracting the adhesion force. S
P license or copyright; see http://jap.aip.org/jap/copyright.jsp
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the attractive adhesion force is perpendicular to the silic
water interface and oriented toward the solid, the remo
force also has to be normal to the surface but directed in
opposite direction. Considering the effect of the seco
order sound field on particle removal, only the componen
the streaming forceF3 may give rise to such a removal forc
Here, we also make the assumption that the solid part
does not alter the first-order sound field. This approximat
is justified since the contaminant particles we are conside
have diameters on the order of 1mm or smaller, and that the
wavelength of the incident acoustic wave is on the order o
millimeter.

The net force due to the second-order sound field ac
on a particle subjected to the time-independent second-o
pressure fieldp2 is

f5E
S
p2ndS, ~28!

where the integral is over the surface of the particle andn is
the normal to that surface. Upon conversion of the surf
integral into a volume integral, the second-order net fo
becomes

f5E
V
¹p2dV. ~29!

We insert Eq.~22! into Eq. ~29! to obtain

f5E
V
~F1m¹2v2!dV. ~30!

The silicon/water interface prevents the fluid from flowing
directions parallel to the axisX3 , and the component of th
streaming velocity in that direction is zero. The remov
force may then be defined as the third component of
second-order forcef 3 via

f 35E
V

F3dV. ~31!

In order to calculate the removal force it is therefore on
necessary to determine the component of the streaming f
perpendicular to the wafer/water interface.

The first component of the second-order forcef 1 cannot
be calculated from the streaming forceF1 since in that di-
rection the fluid is set in motion and we do not know t
streaming velocity,v2 @see Eq.~30!#. We anticipate however
that a strongF1 will result in large streaming velocities nea
the silicon/water interface and therefore strong drag for
on contaminant particles in that direction. We therefore
sociate qualitatively in the rest of the article, a largeF1 to
large forces that may pull/push or roll contaminant partic
adhering to the wafer surface.

III. RESULTS

A. Silicon Õwater system

Let us illustrate the procedure for obtaining the displa
ment field in an inhomogeneous medium composed of
semi-infinite media separated by a single planar interf
Downloaded 05 Mar 2008 to 150.135.172.77. Redistribution subject to AI
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subjected to an incident acoustic wave. We locate the in
face atX350 and denote by~1! the medium to the left of the
interface~silicon! and by ~2! the water to the right of the
interface. We assume that the incident wave is launche
the liquid @medium ~2!# toward the silicon/water interface
The components of the displacement of the bulk wave
given in a two dimensional Fourier space parallel to theX3

50 plane in the form13

Ũ1~kivuX3!5
B

Z
ea l

~2!X3,

Ũ2~kivuX3!50, ~32!

Ũ3~kivuX3!52 i
a l

~2!

ki

B

Z
ea l

~2!X3,

whereB is the wave amplitude andi 5A21. Z is a normal-

izing factor equal toA12(a l
(2)/ki)2 and a l

(2) is given in
appendix.

The wave vectorki of a bulk compressive~longitudinal!
incident plane wave is related to the incidence angleu the
incoming wave makes with the normal to the interface,
the relation

ki5
v

Cl ~2!
sinu. ~33!

The inverse of the Green’s function,gJs
21 of a semi-infinite

medium ‘‘i’’, bounded by a free surface atX350, is given in
the appendix as Eq.~A3!. The inverse of the surface Green
functions of the two semi-infinite media are inserted into E
~18! to obtain the inverse of the surface Green’s function
the solid/fluid inhomogeneous medium

gJ21~kivu0,0!5gJs1
21~kivu0,0!1gJs2

21~kivu0,0!. ~34!

The matrix gJ21(kivu0,0) is then inverted to obtain
gJ(kivu0,0).

The inverse of the Green’s function is inserted in E
~20! to calculate the variation in density of vibrational stat
of the silicon/water interface. For this we have used the f
lowing data: a silicon density of 2.333103 kg/m3, a density
of water of 103 kg/m3, longitudinal speed of sound in wate
of 1500 m/s, and transverse and longitudinal speed of so
in silicon of 5843 and 8433 m/s, respectively. The coefficie
of dilatation viscositym8 is chosen to be one third of th
coefficient of shear viscosity,m with m51023 Pa s21. We
have calculated the variation in density of state of the silic
water system according to Eq.~20! using a reference com
posed of one half of an infinite silicon medium and one h
of an infinite water medium. Figure 2 reports on that var
tion in density of states as a function of pulsation at so
givenki . For computational convenience, we have chose
real valuedki because of the small magnitude of its imag
nary part relative to its real part due to the low viscosity
water. This figure shows several interesting features.
feature around a pulsation of 1 Mrad/s corresponds to
lower bound of the bulk vibrational band of the fluid. How
ever, a refinement of the density of states in this vicinity~see
P license or copyright; see http://jap.aip.org/jap/copyright.jsp
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inset! indicates the presence of a peak below the bulk b
of the fluid. This peak represents a Stoneley–Scholte sur
wave localized in the liquid at the fluid/solid interface.
localized Stoneley–Scholte wave propagates in the fluid
direction parallel to the solid/fluid interface. Its amplitud
decays exponentially with distance from the solid/fluid int
face. However, since the Stoneley–Scholte wave lies be
the bulk band of the liquid it cannot be excited by an incide
bulk wave originating from the liquid, such as one produc
by the transducer in the megasonic tank. The sharp feat
near 3.9 and 5.6 Mrad/s are the lower limits of the transve
and longitudinal vibrational bulk bands of silicon. A broad
peak located at 3.4 Mrad/s and below the bulk band of s
con is associated with a Rayleigh wave localized at the
face of the solid. This is a wave that propagates in the s
in a direction parallel to the interface which amplitude d
creases exponentially inside the solid. The acoustic b
structure of the silicon/water system is then reported in F
3. In this figure, we plot pulsation versus the wave vect
From our calculations we find that the dispersions relat
for the Rayleigh and Stoneley–Scholte waves are given
v55157ki and 1499.36ki , respectively.

The elastic displacement field in the fluid region~2! of
the inhomogeneous system is derived from Eq.~19!,

ũ~kivuX3!5Ũ~kivuX3!

2GJ 2~kivuX3,0!GJ 2
21~kivu0,0!Ũ~kivu0!

1GJ 2~kivuX3,0!GJ 2
21~kivu0,0!gJ~kivu0,0!

3GJ 2
21~kivu0,0!Ũ~kivu0!, ~35!

FIG. 2. Variation in density of vibrational states as a function of pulsat
for the system containing a single silicon/water interface. The inset
magnification of the plot around the lower limit of the water bulk ba
below which the Stoneley–Scholte mode exists. The wave vector of
incident wave is constant and takes the value indicated on the graph.
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whereGJ 2(kivuX3 ,X38) is given in the appendix by replacin
the appropriate elastic coefficients with those of Eq.~15!.

After lengthy algebraic manipulations, the compone
of the elastic displacement field in the water are obtained

ũ1~kivuX3!
Z

B
5ea l

~2!X31j re
2a l

~2!X31j te
2a t

~2!X3,

ũ2~kivuX3!50, ~36!

ũ3~kivuX3!
Z

B

52 i
a l

~2!

ki
Fea l

~2!X32j re
2a l

~2!X32
j t

e~2! e2a t
~2!X3G ,

where

j r52
11e~2!

12e~2! 1
2

A

2r~2!e~2!

~12e~2!!2 v2c2

1
1

A

2r~2!

~12e~2!!2

v4

ki
4 @a l

~2!c11a t
~2!e~2!c3#

~37!

j t52
e~2!

12e~2!2
1

A

2r~2!~11e~2!!e~2!

~12e~2!!2 v2c2

2
1

A

2r~2!e~2!

~12e~2!!2

v4

ki
4 @a l

~2!c11a t
~2!c3#

with

a

e

FIG. 3. Dispersion curves for the system with a single silicon/water in
face. The thin solid line is the dispersion curve for the fluid. The thin das
line indicates the dispersion relation for the Stoneley–Scholte mode.
long-dash lines refer to the dispersion curves for the transverse~lower
curve! and longitudinal~upper curve! waves. The dotted line represents th
pulsation/wave vector relationship for the Rayleigh wave.
P license or copyright; see http://jap.aip.org/jap/copyright.jsp
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c15
r~1!a t

~1!

12e~1! 1
r~2!a t

~2!

12e~2! ,

c25r~1!F22Ct~1!
2 1

v2

ki
2~12e~1!!G2r~2!

3F22Ct~2!
2 1

v2

ki
2~12e~2!!G , ~38!

c35
r~1!a l

~1!

12e~1! 1
r~2!a l

~2!

12e~2! ,

and

A5
v4

ki
4 c1c32ki

2c2
2. ~39!

All other quantities have been defined previously.
We combine Eq.~36!, ~37!, ~38!, ~39!, and ~27! to cal-

culate the components of the streaming force. As a check
our method, we have verified, in the limit of a rigid soli
water interface and an incident plane wave parallel to
interface, that the componentF1 of the streaming force take
the same analytical form as that reported by Nyborg.12 It is
also easy to verify analytically that in the case of a nonv
cous fluid, the componentF150 since the conditions of con
tinuity of the displacements at the solid/liquid interface do
not have to be satisfied in the directionX1 , that is, the fluid
may slide freely on the solid.

We calculate numerically the components of the strea
ing force near the silicon/water interface in the case of tr
eling plane waves in the fluid and as a function of inciden
angle of the incoming wave~see Fig. 4!. This force is calcu-
lated at 0.1mm from the interface and at a frequency typ
cally used in megasonic cleaning of 700 kHz~v54.398
Mrad/s!. Again for the sake of simplicity in this calculation
we use a realki defined aski5(v/C) sinu. The components
of the streaming force along the interfaceF1 is one to two
orders of magnitude larger thanF3 . The streaming force
does not vary significantly and remains small outside a n
row range of angles centered on the value correspondin
the excitation of the Rayleigh wave. The sign ofF3 changes
drastically across the conditions for stimulating the Rayle
wave. A positiveF3 gives rise to a removal force opposin
the adhesion force acting on some contaminant particle.
hesion is promoted by a negativeF3 . In Fig. 5, we present
F3 as a function ofX3 in the vicinity of the silicon/water
interface for two different conditions. These correspond
modes of vibration that can be excited by incident travel
plane waves, namely a plane wave grazing the interface
citing a fluid bulk mode@Fig. 5~a!# and a plane wave at a
angle of 16.57° from the normal to the interface that stim
lates the Rayleigh wave@Fig. 5~b!#. In the two cases, the
acoustic boundary layer where the sound field is contro
by the continuity condition of the solid and fluid displac
ments at the interface extends only over a very few microm
ters owing to the low viscosity of water. An increase in she
viscosity has, for effect, to extend the acoustic bound
layer. The thickness of the acoustic boundary layer scale
Am/vr. Incident waves grazing the silicon/water interfa
Downloaded 05 Mar 2008 to 150.135.172.77. Redistribution subject to AI
or

e

-

s

-
-
e

r-
to

h

d-

o
g
x-

-

d

-
r
y
as

@see Fig. 5~a!#, as is the case in a typical megasonic clean
tank, produce an extremely small streaming forceF3 . The
streaming force is essentially negligible outside the acou
boundary layer. In contrast, the magnitude ofF3 is increased
manyfold by choosing an angle of incidence that satisfies
dispersion relation for the Rayleigh wave@see Fig. 5~b!#. The
force appears to be constant beyond a few micrometers, h
ever, at large distances, extending over hundreds of
crometers, from the silicon/water interface,F3 varies peri-

odically with X3 according to the factor sin 2al
(2)9X3 where

a l
(2)9 is the imaginary part of the complex numbera l

(2) . The
very small value of water’s coefficient of shear viscos
makesF1 and F3 almost independent ofX1 over distances
on the order of millimeters.

In summary, excitation of the Rayleigh wave seems
be the most favorable case for contaminant particle remo
from a single silicon/water interface.

B. Water Õsilicon Õwater system

We model a silicon wafer by a slab of solid medium 1
thicknessd which surfaces are perpendicular to the axisX3

and located atX356d/2 @see Fig. 1~b!#. The inverse
Green’s function of the slab in the space of its surfaces
reported in the appendix@Eq. ~A5!#. The silicon slab is
coupled on its two sides to two semi-infinite media. T
semi-infinite media are constituted of water~medium 2! and
the inverse Green’s function at their respective surface

FIG. 4. Components of the streaming force parallel~a! and perpendicular
~b! to the silicon/water interface as functions of the angle the incident w
makes with the normal to the interface. The streaming force is normalize
the square of the displacement amplitude of the incident waveB. The
streaming force is calculated at a distance of 0.1mm from the interface. The
pulsation has the value 4.398 Mrad/s.
P license or copyright; see http://jap.aip.org/jap/copyright.jsp
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6830 J. Appl. Phys., Vol. 88, No. 11, 1 December 2000 Deymier et al.
obtained from Eq.~A3!. The inverse of the Green’s functio
of a silicon slab immersed in water, defined at the solid/fl
interfaces is then obtained from Eq.~18!. The variation in
density of vibrational states of this inhomogeneous med
is then determined numerically from Eq.~20! using an infi-
nite water medium as reference system. We have take
silicon slab of thicknessd50.64 mm as representative of
standard wafer. The speed of sound and coefficient of
cosity are the same as in Sec. III A. Figure 6 reports on
variation in density of states as a function of pulsation for
same realki used in the case of a single solid/water interfa
The feature near 1 Mrad/s is again the lower limit of the b
band of the fluid. The bulk band of the solid does not app
in this figure since the slab has finite dimensions along
axis X3 . A finite slab possesses only discrete vibration
states that become resonant states when coupled to s
infinite fluid media. The resonant states show as sharp p
in the density of states within the bulk band of the fluid. W
note that the pulsation at which these resonances occur
responds to those of the lower bound of the transverse
longitudinal bulk bands of silicon. Finally,Dn exhibits a
well-defined peak below the lower limit of the bulk band
water, forv around 0.33 MHz. This peak is associated w
the first flexural mode of vibration of the slab.14 The flexural
modes of higher order are not observed since their frequ
cies exceed those considered in this study. The first o
flexural mode is localized within the fluid near the silico
wafer/water interface. This mode being localized in the l

FIG. 5. Normal component of the streaming force as a function of dista
from the silicon/water interface in the case of~a! a nearly grazing incident
plane wave and~b! the Rayleigh wave.
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uid at the interface between a solid and a liquid, we will re
subsequently to this flexural mode as a wave of
Stoneley–Scholte type. Again, this surface wave canno
excited by an incident plane wave launched from the liqu
We have verified that as the thickness of the slab increa
the number of resonant peaks and the pulsation of
Stoneley–Scholte wave increase. In the limit of an infinite
thick slab, one recovers the result of Fig. 2, that is, the re
nant states merge into a solid band, the pulsation of
Stoneley–Scholte wave approaches that of the bulk ban
the liquid and a peak corresponding to the Rayleigh wa
forms below the transverse bulk band of the solid. We ha
calculated the variation in density of states for several val
of the wave vector,ki . Figure 7 represents the dispersio
relations v(ki) for the Stoneley–Scholte wave, the bu
band of the fluid as well as the resonant states in the so
The density of states calculated with the IRT includes
possible modes of vibration of the water/silicon/water s
tem, including flexural modes of the wafer. However, in t
case of a silicon wafer with a thickness ofd50.64 mm, the
resonances associated with the flexural modes are unob
able in the range of frequencies and wave vectors (ki) con-
sidered. Indeed, in the long wavelength limit (kid!1) con-
sidered in this study, the lowest localized mode whi
corresponds to the first flexural mode~referred to as
Stoneley–Scholte wave!, cannot be excited by an incomin
wave from the liquid, whereas the next flexural modes
situated at frequencies well above the frequency domain c
sidered.

To calculate the first-order acoustic displacement field
the fluid near the slab, we insert into Eq.~19!, the inverse of
gJ21(MM ) along with the Green’s function of bulk wate
and the displacement of an incident wave with the fo
given by Eq.~30!. The first-order displacement field is the
used to determine the components of the second-o
streaming force according to Eq.~27!. The two components

e

FIG. 6. Variation in density of vibrational states as a function of pulsat
for the system composed of a silicon slab~wafer! immersed in water. The
wave vector of the incident wave is constant and takes the value indic
on the graph.
P license or copyright; see http://jap.aip.org/jap/copyright.jsp
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of the streaming force at a fixed location from theX35
1d/2 slab/water interface as a function of incidence an
are reported in Fig. 8. Here, we consider an incident pl
wave originating in the fluid of pulsation 4.398 Mrad/

FIG. 8. Components of the streaming force parallel~a! and perpendicular
~b! to one of the silicon/water interfaces in the water/silicon/water system
functions of the angle the incident wave makes with the normal to
interface. The streaming force is normalized to the square of the disp
ment amplitude of the incident waveB. The streaming force is calculated a
a distance of 0.1mm from the interface.

FIG. 7. Dispersion curves for the water/silicon/water system. The disper
curves for the solid are represented by the long-dash lines. The contin
line refers to the dispersion curve of the fluid. The dotted line correspond
the pulsation/wave vector relationship for a Stoneley–Scholte wave lo
ized in the liquid at the solid/fluid interface.
Downloaded 05 Mar 2008 to 150.135.172.77. Redistribution subject to AI
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Again the component of the forceF1 exceedsF3 by up to
two orders of magnitude.F1 shows a sharp increase at a
angle of incidence;10° ~or ki;500 m21) corresponding to
the resonant state associated with the longitudinal mod
the solid.

Finally, we illustrate the variation ofF3 and F1 with
distance from the slab/water interface in Figs. 9 and 10
incident waves with two different incidence angles, namel
grazing plane wave@Figs. 9~a! and 10~a!# and a plane wave
with an incidence of 31°@Figs. 9~b! and 10~b!#. In all cases,
owing to the small viscosity of water, the acoustic bounda
layer does not exceed 3mm. The acoustic streaming forc
perpendicular to the wafer/water interface is negligibly sm
in the case of a grazing incident wave@Fig. 9~a!#. On the
other hand, at an optimum incidence of 31°@Fig. 9~b!#, a
significant positive force exists inside the fluid extendi
over a wide range of distances from the interface. T
streaming force parallel to the silicon/water interfaceF1

shows similar behaviors although it exceeds the forceF3 by
one to two orders of magnitude. Beyond the distances
ported in Figs. 9 and 10,F1 and F3 vary sinusoidally in a
manner similar to the case of a single solid/water interfa

IV. COMPARISON BETWEEN SECOND-ORDER
ACOUSTIC FORCES AND PARTICLE ADHESION
FORCE

To calculate removal forces, we consider two particu
cases. The first case is that of the silicon/water system w

s
e
e-

n
us
to
l-

FIG. 9. Normal component of the streaming force as a function of dista
from one silicon/water interface in the case of incident waves with incid
angles equal to~a! ;90° and~b! 31°. The system is composed of a silico
slab immersed in water.
P license or copyright; see http://jap.aip.org/jap/copyright.jsp
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an incident plane wave of pulsationv54.398 Mrad/s~n
5700 kHz! and an incident angleu516.57°. These condi
tions correspond to the excitation of the Rayleigh wave.
the purpose of estimating the removal force, we neglect
variation of F3 within the acoustic boundary layer and a
sume that it takes its minimum value ofF3 /B2'0.96
31020N/m5 for all X3’s @see Fig. 5~b!#. In this case the
removal force given by Eq.~31! takes the simpler formf 3

50.9631020B2V whereV is the volume of the particle. Fo
a spherical particle of radiusr 0 , V 5 4

3pr 0
3, the removal

force scales as the cube of the radius of the particle. In
dition, it varies as the square of the incident wave’s displa
ment amplitude. For megasonic transducers and typical
gasonic cleaning conditions, the displacement amplitud
on the order of 131026 m.15

The second case, investigated here, corresponds to a
con wafer immersed in water~water/silicon/water system!
with a pulsationv54.398 Mrad/s~n5700 kHz! and an inci-
dent angleu531°. Again for the sake of simplicity, the
variation of F3 with distance as illustrated in Fig. 9 is ne
glected and we takeF3 /B2'0.3231020N/m5 for all X3’s.
With this, the removal force acting on a spherical particle

given by the simple relation:f 350.3231020B2 4
3pr 0

3.
The London–van der Waals adhesion force is usu

considered to be the dominant force for short distance

FIG. 10. Component of the streaming force parallel to the silicon/wa
interface as a function of distance from one silicon/water interface in
case of incident waves with incident angles equal to~a! ;90° and~b! 31°.
The system is composed of a silicon slab immersed in water.
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particle adhesion.6 The van der Waals force of adhesion b
tween a spherical particle and a planar surface is given b16

f ndW5
A132r 0

6~X32r 0!2 , ~40!

whereX3 is the distance of the center of the particle to t
surface. The effective Hamaker constantA132 is a function of
the material constituting the particle~material 1!, the surface
~material 2!, and the medium surrounding the particl
surface system~material 3!. Here, we consider the case of
silica contaminant particle in water adhering to a wa
coated with a thin layer of silica. Since the silica layer on t
wafer surface is extremely thin compared to the wavelen
of the acoustic waves considered here, it will not affect
results for the streaming force. The Hamaker constant
that system isA13250.83310220J.17,18 In the case of a par-
ticle nearly in contact with the surface, the separation d
tance,X32r 0 , is only on the order of a few angstroms.19 We
select three values:X32r 055, 7, 10 Å as a representativ
set of separation distances.

In Fig. 11, we report on the variation with particle radiu
of the removal forces due to a Rayleigh wave at a solid/fl
interface, a bulk wave for a wafer in water as well as van
Waals adhesive forces.

The removal forces associated with the Rayleigh a
bulk wave cross the adhesive forces at radii exceeding
eral micrometers. The second-order streaming forceF3 is
therefore only capable of removing large contaminant p
ticles from silicon wafers. However, for small particles, th
adhesive force dominates and the component of the rem
force perpendicular to the solid/fluid interface is not suf
cient to remove particles. We note, though, that the stre
ing force along the solid/fluid interface was several orders

r
e

FIG. 11. Removal and adhesion forces on a spherical particle adherin
the silicon surface as a function of particle radius. The adhesion fo
represented as dotted lines are for three different separation distance
tween the particle and the silicon surface, namely 5, 7, and 10 Å.
dashed-dotted line stands for the removal force in the case of the sili
water system for an excited Rayleigh wave. The dashed line refers to
water/silicon/water system and excitation of a bulk wave@see Fig. 9~b! for
details#.
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magnitude larger than the component alongX3 . This stream-
ing force may then serve as a mechanism for wafer clean
by rolling and tugging the particles along its surface. T
contaminant particles will be removed from the wafer s
face when they reach the edge of the wafer. The directio
motion of the contaminant particle along the wafer is det
mined by the sign ofF1 .

V. CONCLUSIONS

We have calculated the first-order acoustic field in
case of a single interface between silicon and water an
silicon slab immersed in water. The solid was treated as
isotropic elastic medium and water as a viscous fluid. T
first-order acoustic field was then used to determine
second-order streaming force that allows us to estimate
removal force that acts on a spherical contaminant part
adhering to the solid surface. The removal force was t
compared to the van der Waals adhesion force betwee
silica particle and a flat silicon surface in water. We fou
that in general the removal force resulting from the seco
order acoustic field is too small to remove submicron p
ticle. However, the component of the streaming force pa
lel to the solid/fluid interfaceF1 is orders of magnitude
larger than the componentF3 . In this case,F1 may lead to
particle removal by a rolling and tugging mechanism as s
gested by some authors.20 In the literature on megasoni
cleaning it has been customary to compare the magnitud
the force acting on the contaminant particle along the silic
water interface to the adhesion force.6 This practice does no
reflect the fact that these two forces have directions perp
dicular to each other. There is no resisting force to the m
tion of the particle in the direction parallel to the silico
water interface but a friction force at the particle/silico
interface. The fluid flow in the directionX1 due to the
streaming forceF1 will lead to a drag force that may push
contaminant particle or roll it depending on the magnitude
the friction force. A detailed study of this mechanism will b
the subject of a subsequent publication. Finally, we h
shown that subjecting a silicon wafer to a grazing incid
acoustic wave as is traditionally done in megasonic clean
tanks may not lead to an optimum cleaning efficiency.
deed we have shown that the normal and parallel com
nents of the streaming force are strongly dependent on
incidence angle of the incoming wave. Our results sugg
that cleaning efficiency may be improved by subjecting
wafer to incident acoustic waves sampling a wide range
incidence angles. We recall that excitation of the longitudi
resonant mode of the wafer at an incidence of 10°~frequency
of 700 kHz! yields a very strong positive streaming forc
F1 . These results further support the recently develo
high-efficiency single-wafer megasonic cleaning technolo
using a cylindrical quartz crystal positioned parallel to t
top surface of a wafer that generates acoustic waves
variable incidence angles.21 With this technology the surfac
of a silicon wafer is stimulated by megasonic waves w
incidence angle varying between approximately245° and
45°.
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APPENDIX

The nonzero elements of the Green’s function of a b
~solid or liquid! homogeneous medium,GJ (kivuX3 ,X38), so-
lution of Eq. ~9!, are given by22

G1152
ki

2

2ra lv
2 @e2a l uX32X38u2ee2a tuX32X38u#,

G135G315
ik i

2rv2 sgn~X32X38!

3@e2a tuX32X38u2e2a l uX32X38u#,
~A1!

G3352
ki

2

2ra tv
2 @2ee2a l uX32X38u1e2a tuX32X38u#,

G2252
1

2ra tCt
2 e2a tuX32X38u,

where we have defined

a l
25ki

22
v2

Cl
2 ,

a t
25ki

22
v2

Ct
2 , ~A2!

e5
a ta l

ki
2 .

a l anda t are defined with the following sign convention:21

a l ,t5Aki
22

v2

Cl ,t
2 if v<kiCl ,t

a l ,t52 iAv2

Cl ,t
2 2ki

2 if v>kiCl ,t .

The inverse of the Green’s function,gJs
21 of a semi-infinite

mediumi, bounded by a free surface atX350, is given in the
domain of its surface by13
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gsi
21~kivuX350,X3850!5S 2

a l
~ i !v2r~ i !

ki
2~12e~ i !!

0 6 ir~ i !kiF22Ct~ i !
2 1

v2

ki
2~12e~ i !!G

0 2r~ i !a t
~ i !Ct~ i !

2 0

7 ir~ i !kiF22Ct~ i !
2 1

v2

ki
2~12e~ i !!G 0 2

a t
~ i !v2r~ i !

ki
2~12e~ i !!

D
~A3!
a

he

r is

S.

a-
where the signs6 ~and7! are used for semi-infinite medi
located atX3<0(1) andX3>0(2), respectively.

We consider a slab of silicon~medium 1! of thicknessd
which surfaces are perpendicular to the axisX3 and located
at X356d/2. The inverse Green’s function of the slab in t
space of its surfaces has been derived previously23 and is
given by

gJs1
21~MM !

5S gJs1
21S kivU2 d

2
,2

d

2D gJs1
21S kivU2 d

2
,1

d

2D
gJs1

21S kivU1 d

2
,2

d

2D gJs1
21S kivU1 d

2
,1

d

2D D
~A4!

which components take the analytical form

gJs1
21~MM !

5S a1 0 iq1 h1 0 i f 1

0 v1 0 0 w1 0

2 iq1 0 b1 i f 1 0 e1

h1 0 2 i f 1 a1 0 2 iq1

0 w1 0 0 v1 0

2 i f 1 0 e1 iq1 0 b1

D , ~A5!

with

a15
H1a l

~1!v2

2kiCt~1!
2 @sh~a t

~1!d!ch~al
~1!d!

2e~1!sh~a l
~1!d!ch~a t

~1!d!#,

b15
H1a t

~1!v2

2kiCt~1!
2 @sh~a l

~1!d!ch~a t
~1!d!

2e~1!sh~a t
~1!d!ch~a l

~1!d!#,

q15H1H e~1!~3ki
21a t

~1!2!Fsh2S a l
~1!

d

2 D ch2S a t
~1!

d

2 D
1sh2S a t

~1!
d

2 D ch2S a l
~1!

d

2 D G
2

1

2
@2a l

~1!a t
~1!e~1!1~a t

~1!21ki
2!#
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sh~a t
~1!d!sh~a l

~1!d!J ,

h152
H1a l

~1!v2

2kiCt~1!
2 @sh~a t

~1!d!2e~1!sh~a l
~1!d!#,

e152
H1a t

~1!v2

2kiCt~1!
2 @sh~a l

~1!d!2e~1!sh~a t
~1!d!#, ~A6!

f 152H1e~1!
v2

Ct~1!
2 Fsh2S a l

~1!
d

2 D2sh2S a t
~1!

d

2 D G ,
H152

r~1!Ct~1!
2

2ki
FchS a l

~1!
d

2 D shS a t
~1!

d

2 D
2e~1!chS a t

~1!
d

2 D shS a l
~1!

d

2 D G21

3FshS a l
~1!

d

2 D chS a t
~1!

d

2 D
2e~1!shS a t

~1!
d

2 D chS a l
~1!

d

2 D G21

,

v152r~1!a t
~1!Ct~1!

2
ch~a t

~1!d!

sh~a t
~1!d!

,

w152r~1!a t
~1!Ct~1!

2 ~21!

sh~a t
~1!d!

.

In Eq. ~A4!, the dependency on frequency and wave vecto
implicit.
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