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Theory of acoustic scattering by supported ridges at a solid-liquid interface
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We combine a general Green’s function formalism and an approach due to Nyborg@W. L. Nyborg, in
Acoustic Streaming, Physical Acoustics, edited by W. P. Mason~Academic, London, 1965!, Vol. II B, Chap. 11#
to calculate the first-order pressure and second-order pressure gradient fields in the vicinity of solid inhomo-
geneities at a solid/liquid interface. We treat the problem of scattering of an incident acoustic plane wave by a
single ridge and two parallel ridges separated by a trench on a planar substrate. The calculated vibrational
density of states shows the existence of resonances at low frequencies, especially in the case of a trench.
Excitation of a trench resonant vibrational mode enhances the magnitude of the first-order pressure and of the
second-order pressure gradient. The resonant frequencies of a trench decrease and the pressure enhancement
increases with increasing aspect ratio of the ridges~height to width!.
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I. INTRODUCTION

The problem of the interaction between acoustic wa
and solid surfaces in contact with fluids has relevance to
electronic industry. For instance, megasonic waves are ex
sively used to remove contaminant particles from planar
patterned silicon wafers immersed in a water-based solu
during processing of integrated circuits@1#.

In a previous study, we employed a method based o
Green’s function formalism to solve the linear wave equ
tion, to calculate the acoustic pressure field around an infi
ridge on a silicon wafer immersed in water subjected to
megasonic beam@2#. This study showed that the acoust
shear stress on a ridge has no detrimental effect on the in
rity of patterned silicon wafers. We then implemented
methodology for determining the time-independent seco
order solution to the nonlinear Navier-Stokes equation@3#.
This approach was used to calculate the second-order str
ing force in a viscous fluid in the vicinity of a planar silicon
water interface. Schlichting streaming or acoustic stream
in a narrow boundary layer was identified as a poten
mechanism for megasonic cleaning of silicon wafers@4#. In
the present paper, we combine the Green’s function form
ism for nonplanar solid/fluid interfaces of Ref.@2# and the
methodology for solving the nonlinear effects of Ref.@3# to
shed light on the first-order~linear! and second-order~non-
linear! pressure field in the vicinity of surface inhomogen
ities on a solid substrate in contact with a fluid. We focus
a single infinite ridge and two adjacent parallel ridges se
rated by a trench. We pay particular attention to conditio
associated with resonances for which variations in the fi
order and second-order pressure fields are most signific
Our paper builds on previous studies of acoustic resona
of a protuberance or indentation on an elastic solid med
@5,6# but focuses on resonances of fluid features. The
evance of these resonant conditions to acoustic wave-b
cleaning technologies used in the electronic industry are
cussed in the conclusion. The formulation of the theoret
1063-651X/2002/65~3!/036601~7!/$20.00 65 0366
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methods for calculating linear and nonlinear solutions to
acoustic wave equation is presented in some details in
II. The calculated vibrational density of states, first-ord
pressure, and second-order pressure gradient for severa
ometries of the surface inhomogeneities are reported
Sec. III.

II. FORMULATION

A. Geometry

In this paper, we consider two inhomogeneous syste
composed of a rigid solid and a nonviscous fluid. These s
tems model rough interfaces with an infinite ridge and
infinite trench composed of two parallel ridges, respective
In the two cases the substrate fills the half spaceX3,0 in the
Cartesian coordinate system (O,X1 ,X2 ,X3). The axis of the
ridges is oriented parallel to theX2 direction. In this study,
we assume that the ridge has a cross section with an e
nential shape@see Fig. 1~a!# defined in the (X1 ,O,X3) plane
by

X35 f ~X1!5A expF2S X1

R D 4G . ~1!

We obtain a trench by constructing two exponential ridg
@see Fig. 1~b!#. The cross section of the trench~double ridge!
is given by

X35 f ~X1!5A expF2S uX1u
R

21.5D 4G10.02S 22
uX1u
R

16D
with 23<

X1

R
<13. ~2!

The linear term in the previous expression is added to
exponential function in order to elevate slightly the botto
of the trench with respect to the planar interface. In the p
ceding expressions,A controls the height of the ridge andR
©2002 The American Physical Society01-1
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its width. We define the geometric aspect ratio byA/2R. The
geometries expressed in Eqs.~1! and ~2! attempt to model
patterned silicon wafers encountered in integrated circ
although we have chosen the exponential shape for the
of mathematical practicality. The fourth power in the exp
nential argument is chosen to mimick the nearly rectang
cross section of ridges in integrated circuits.

B. Nonlinear and linear acoustic fields

The nonlinear motion in a viscous fluid, in absence
external forces, is governed by Navier-Stokes equation

rF]v

]t
1~v•“ !vG52“p1m¹2v1S m81

m

3 D“~“•v! ,

~3!

wherev is the velocity,r the density,m and m8 the coeffi-
cients of shear and dilatation viscosity, andp the pressure.
Since in this paper, for the sake of simplicity, we treat t
case of nonviscous fluids. Navier-Stokes equation reduce
the nonlinear Euler equation. We briefly recall in this sect
the method used for determining the time-independ
second-order solution to the nonlinear Euler equation. F
lowing Nyborg’s approach@7#, one makes the approximatio
that the fluid velocity, the excess pressure, and the ex
density are written as the superpositions

v5v~1!1v~2!, ~4!

p2p~0!5p~1!1p~2!, ~5!

r2r~0!5r~1!1r~2! . ~6!

Here, the termsp(0) and r (0) are the static pressure an
the density of the fluid in absence of acoustic field and
te
rd
t

-
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time and space independent.v(1), p(1), and r (1) are first-
order approximations to the nonlinear problem. These qu
tities follow harmonic motions with a time dependencee2 ivt

wherev is the pulsation. The second-order terms,v(2), p(2),
andr (2) are time independent.

Inserting Eqs.~4!, ~5!, and ~6! into the nonlinear Euler
equation, eliminating all terms of order greater than tw
averaging the remaining terms over several sonic cycles
grouping the terms of the same order, yields the followi
equations:

“p~1!52r~0!
]v~1!

]t
, ~7!

“p~2![2r~0!^~v~1!
•“ !v~1!1v~1!~“•v~1!!&. ~8!

Equation~7! is formally equivalent to the equation of propa
gation of longitudinal waves in a nonviscous fluid. Equati
~8! gives the second-order pressure gradient in terms of fi
order velocity field. The bracketŝ& indicate that a time av-
erage is taken over several sonic cycles in order to re
only these terms that are time independent. In Nyborg’s
proach, for nonviscous fluids,“p(2) represents a volumic
force directly relevant to the problem of acoustic cleani
@3,7#. A contaminant particle adhering to the surface of
wafer may be removed provided this volumic force count
acts the adhesion force of this particle to the surface.

Since the fluid undergoes harmonic motion and consid
ing complex notation,~i.e., v(1)5Re$ṽ(1)%!, the first-order
velocity field is

ṽ~1!5
2 i

vr~0! “ p̃~1! . ~9!

With this, Eq.~8! may be written in complex notation a
“p~2!52r~0! 1
2 ReS 2ṽ1

~1!
] ṽ1

~1!*

]X1
1 ṽ3

~1!
] ṽ1

~1!*

]X3
1 ṽ1

~1!
] ṽ3

~1!*

]X3

2ṽ3
~1!

] ṽ3
~1!*

]X3
1 ṽ3

~1!
] ṽ1

~1!*

]X1
1 ṽ1

~1!
] ṽ3

~1!*

]X1

D , ~10!
or
where the superscript* stands for the complex conjuga
quantity. This equation enables us to calculate second-o
corrections to the acoustic pressure field from solutions
the linear acoustic wave equation.

In the limit of a fluid, such as water, with very low com
pressibility,r is assimilated tor (0). Assuming that the lon-
gitudinal speed of sound in the fluid,cl , is constant, taking

p̃~1!5 ir~0!cl
2v“• ṽ~1!, ~11!

and in the case of irrotational motion of the fluid, Eq.~7!
becomes
er
o

D p̃~1!2
1

cl
2

]2p̃~1!

]t2 5D p̃~1!1
v2

cl
2 p̃~1!50. ~12!

This equation is recast in the form

1

r~0! S ]2

]X1
2 1

]2

]X3
2 1

v2

cl
2 D p̃~1!~X1 ,X3!50. ~13!

Since the solid is rigid, we must, therefore, solve Eq.~13! for
the liquid motion subject to the boundary condition“ p̃(1)

50 in the direction normal to the solid-liquid interface. F
this we employ a method based on Green’s functions@8#.
1-2
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THEORY OF ACOUSTIC SCATTERING BY SUPPORTED . . . PHYSICAL REVIEW E65 036601
Equation~13! may be written in the form,Hp̃(1)50, where
the differential operatorH is defined as

H5
1

r~0! S ]2

]X1
2 1

]2

]X3
2 1

v2

cl
2 D . ~14!

The Green’s functionG(X1 ,X3 ;X18 ,X38uv) is the solution of
an equation similar to Eq.~13!, namely,

1

r~0! S ]2

]X1
2 1

]2

]X3
2 1

v2

cl
2 DG~X1 ,X3 ;X18 ,X38uv!

5d~X12X18!d~X32X38! ~15!

with again the appropriate boundary conditions. Analyti
solutions of Eq.~15! are known in the following two cases
an unbounded fluid and a fluid bounded by a planar ri
surface. The Green’s functionG` of an infinite unbounded
fluid is given by

G`~X1 ,X3 ;X18 ,X38uv!52
ir~0!

4
H0

~1!H v

cl
@~X22X18!2

1~X32X38!2#1/2J , ~16!

whereH0
(1) is a Hankel function of the first kind. The Green

function gb for the semi-infinite fluid bounded by a rigi
planar surface atX350, is also known and takes the form

gb~X1 ,X3 ;X18 ,X38uv!

52
ir~0!

4 H H0
~1!S v

cl
@~X12X18!21~X32X38!2#1/2D

1H0
~1!S v

cl
@~X12X18!21~X31X38!2#1/2D J . ~17!

The Green’s function for the fluid in contact with a rig
planar solid supporting a rigid raised inhomogeneity~e.g.,
ridge! is not known analytically but it can be constructe
mathematically by cutting out of the semi-infinite fluid th
volume occupied by the inhomogeneity~Fig. 1! and applying
the boundary condition on that additional interface. T
mathematical operation is achieved by the application o
cleavage operatorV onto gb . The cleavage operator is de

FIG. 1. Cross section of~a! a single exponential ridge and~b!
two exponential ridges separated by a trench~thick line!. A andR
measure the height and width of the inhomogeneity.
03660
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fined as (1/r (0))(]/]n), where (]/]n) means the normal de
rivative at the boundaries. The cleavage operator is, th
fore, only operating in the spaceM of the interface being cut
Here M represents the surface of the raised inhomogene
We obtain the Green’s functiongf of the fluid in which one
has made a cut from the relation@8#,

gf~M ,M !@ I ~M ,M !1V~M ,M !gb~M ,M !#5gb~M ,M !,
~18!

whereI (M ,M ) is the unit matrix. Equation~18! is an inte-
gral equation, with integration over the solid/fluid interfa
spaceM. Once the interface elements ofgf are known in the
spaceM, we can deduce the Green’s function in the spaceD
encompassing the entire fluid via

gf~D,D !5gb~D,D !1gb~D,M !@gb
21~M ,M !gf~M ,M !

2I ~M ,M !#gb
21~M ,M !gb~M ,D !. ~19!

The first term on the right-hand side of Eq.~19! is the
Green’s function of the fluid bounded by a planar interfa
The second term represents a correction to the Green’s f
tion of the fluid with a planar interface that accounts for t
presence of the raised inhomogeneity. This term arises f
scattering of the acoustic waves by the inhomogeneity. Fr
Eq. ~19! it is convenient to define a scattering functio
T(M ,M ) as the expression

T~M ,M !5@gb
21~M ,M !gf~M ,M !2I ~M ,M !#gb

21~M ,M !.
~20!

Then, by analogy with Eq.~19!, the linear pressure field
p̃(1)(D) in the fluid bounded by a surface supporting an
homogeneity can be written in the form

p̃~1!~D !5 P̃~D !1gb~D,M !T~M ,M !P̃~M !. ~21!

From a pratical point of view, we consider the case of
incident compression wave of pulsationv traveling towards
the surface with an incident angleu,

p̃`~X1 ,X3uv!5
W

2
expF iv

cl
~X1 sinu2X3 cosu!G , ~22!

whereW/2 is the amplitude of the compression wave. In t
absence of an inhomogeneity, the acoustic wave is so
reflected by the rigid planar surface. The linear pressure fi
P̃(D) in the semi-infinite liquid bounded by a planar surfa
takes the following representation:

P̃~X1 ,X3uv!5
W

2 H expF iv

cl
~X1 sinu2X3 cosu!G

1expF iv

cl
~X1 sinu1X3 cosu!G J , ~23!

where the second term gives the compression wave refle
from the perfect planar surface.
1-3
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A. KHELIF et al. PHYSICAL REVIEW E 65 036601
C. Density of states

The density of states~DOS! inside the fluid, can be cal
culated from the Green’s function of the solid/fluid syste
with a surface inhomogeneitygf @9#. Here we report the
variation of the total density of states due to the presenc
the inhomogeneity onto the planar surface. It is defined

Dn~v!5
1

p

d

dv
$arg@det~gf

21~M ,M !!#

2arg@det~gb
21~M ,M !!#%. ~24!

Owing to the symmetry of the geometry, the Green’s fun
tion may be separated into its symmetric and antisymme
parts allowing for the calculations of the contributions of t
symmetric and antisymmetric vibrational modes to the d
sity of states.

D. Practical implementation

In order to obtain the scattering functionT(M ,M ) and the
first-order pressure fieldp(1)(D), one solves numerically the
integral Eqs.~18!, ~20!, and ~21!. For this, we discretize
space that transforms these equations into discrete m
relations. For this purpose, the axisX1 is divided into 2N
intervals having their middle at the pointsXn such thatXn
5(n11/2)DX with n52N, 2N11, . . . ,N21 and DX
5R/N. In this way, the continuous curve delimiting the i
terfacial spaceM is divided into small segments. The di
cretization of the interface domain for the ridge and t
trench ~dual ridges! is done with N5300 andN5500 in
order to have a good balance between convergence and
putation time. The matrixgf(M ,M ), is then calculated from
known matrices using Eq.~18!. It is then inserted into Eq
~10! to obtain the scattering matrixT(M ,M ), which in turns
is used into Eq.~21! to determine the first-order pressu
field in the fluid. Further details of the calculation as well
the numerical procedure are given in Refs.@10# and@11#. The
gradient of the second-order pressure is obtained from fi
and second-order derivatives of the first-order pressure.
derivatives in the computational method are calculated w
a finite difference method.

III. RESULTS

A. Density of states

Figure 2 displays the variation of the total density
statesDn(v) due to the presence of the ridge or the tren
onto the planar surface as function of the reduced freque
v* 5vR/cl . In panels~a! and~b!, these DOS are calculate
for a single ridge with two heightsA52R andA54R. The
same aspect ratios are considered for the trench~double
ridge! in panels~c! and~d!. The variation in density of state
exhibits for all graphs an overall decrease in the backgro
with increasing reduced frequency. This reduction in den
of states can be understood by considering a fixed freque
and a variable ridge sizeR. Indeed at constant frequency, a
increasing reduced frequency, is only due to a loss of ma
in the fluid and, therefore, a loss in the number of vibratio
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states. Acoustic resonances appear in these figures as p
in the variation of the DOS. The most pronounced re
nances occur at relatively low reduced frequencies. The
served resonances are associated with vibrations in the fl
In the case of a patterned silicon wafer immersed in wa
the assumption of rigidity of the solid substrate is justifi
because of the strong contrast between the density and e
constants of silicon and water. Nevertheless this assump
when lifted should only affect the DOS spectrum by intr
ducing additional resonant peaks at high frequency owing
the larger speed of sound in a solid compared to a flu
These additional resonances would result from vibrations
the elastic solid ridges. In fact, it has been shown@9,11# that
the first resonance state of a solid ridge supported by a s
substrate occurs at a reduced frequencyvR/cs

t'1 wherecs
t

is the transverse speed of sound in the solid ridge. In the c
of a patterned silicon wafer immersed in water, this cor
sponds to a reduced frequencyvR/cl'4 very much larger
than those considered in acoustic cleaning. For the sin
rigid ridge system, the antisymmetric modes are more imp
tant than the symmetric ones. For the trench this tendenc
inverted with the dominant resonances associated with
symmetric modes. This may be explained by a coupling
tween the antisymmetric modes of the fluid around ea
ridge yielding an overall symmetric effect. The frequency
the resonances depends strongly on the aspect ratio o
surface inhomogeneities. For instance, the reduced frequ
of the antisymmetric resonances for the single ridge
creases from a value of 0.33 to 0.22 as the height is doub
Similarly, the reduced frequency of the predominant sy
metric resonant modes associated with the trench drops f
0.56 to 0.38 upon doubling the height of its constituti
ridges. It is worthy noticing that the reduced frequency of t
resonances nearly scales as the inverse of the square ro
the inhomogeneity height. This observation is reminiscen
the characteristic frequencies of simple harmonic oscillat

FIG. 2. Variation in density of states as a function of reduc
frequencyv* 5vR/cl for a single ridge with~a! A52R, ~b! A
54R, and a trench~dual ridges! for ~c! A52R and~d! A54R. The
solid lines and the dashed lines are for symmetric and antisymm
ric vibrational modes, respectively.
1-4
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THEORY OF ACOUSTIC SCATTERING BY SUPPORTED . . . PHYSICAL REVIEW E65 036601
scaling as the inverse of the square root of its mass.
amplitude of the resonant peak increases with increasing
pect ratio. This effect is more significant for a trench than
the ridge. Indeed, the problem of propagation of longitudi
waves in a nonviscous fluid bound by a rigid substrate w
two rigid ridges is isomorphic to the problem of propagati
of transverse waves in a semi-infinite elastic solid, bound
a vacuum, in which two trenches are cut. The elastic mate
separating the two trenches in that latter system is, there
equivalent to the trench filled with fluid that we study. Th
elastic material may be viewed as a single elastic ridge. It
been shown that an elastic ridge with an aspect ratio of
exhibits resonating vibrational modes near a reduced
quency of 0.5@12#. The trench filled with liquid will, there-
fore, resonate at the same reduced frequency. The numb
resonating modes increases with the depth of the trench

B. Acoustic pressure

In this section, we report on the amplitude of the fir
order acoustic pressure field in the vicinity of a tren
~double ridge!. Since the density of states at the reson
frequency of a trench is significantly higher than that o
single ridge, the effect on the pressure field is more p
nounced for the former geometry. For instance, in the cas
a single ridge with an aspect ratio 1:1, the first-order press
field differs only slightly from the pressure field in a sem
infinite liquid, namely, a standing wave varying such
cos(vcl /X3) for a normal incident waveu50. The first-order
pressure field is only distorted in the vicinity of the ridge
order to satisfy the continuity condition of the displaceme
at the solid/liquid interface along the ridge surface.

In Fig. 3, we have investigated the effect of the tren
aspect ratio and of the angle of incidence on the first-or
pressure field at the lowest characteristic resonant freque
The first-order pressure is reported in unit of the magnitu
of the incident waveW. Figure 3 represents two-dimension
contour maps of the real part of the first-order pressure fi
with the lines representing isobars. In the case of a nor
incidence@Figs. 3~a! and 3~b!#, the pressure amplitude in
creases beyond the incident wave amplitude as one
proaches the bottom of the trench, this being more signific
for a deeper trench. The real part of the pressure exceeds
of the incident wave by up to a factor of 5 inside the deep
trench studied. Even higher pressure amplitudes can be
tained inside the trench by changing the angle of the incid
wave@see Fig. 3~c!# and an enhancement by a factor of 10
observed at the bottom of the trench. This spectacular be
ior is best seen by contrasting the resonant case@Fig. 3~c!#
and the pressure field inside a trench under nonresonant
ditions, at a reduced frequency of 0.2@see Fig. 3~d!#. One
also notes that the resonant frequencies and hence the a
tic pressure are very sensitive to the geometric ratioA/2R of
the inhomogeneity and slightly depends on its shape. Ind
the resonant states of the ridge were obtained at similar
quencies than those of a parabolic shape raised feature@9#. A
different power of the exponential argument in Eqs.~1! and
~2! only leads to sharper resonances in the DOS spectru
03660
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C. Gradient of second-order pressure

To obtain more manageable values for the second-o
pressure gradient, we define a scaled pressure gradient“ p̂(2)

by “p(2)5“ p̂(2)(Cl
2W2/R)10220N m23. Figure 4 illus-

trates the spatial variations of the second-order pressure
dient in the two directionsX1 and X3 for the trenches with
aspect ratio 1:1 and 2:1 at the resonant frequency and no
incidence. The magnitude and direction of the component
the gradient are given as contour maps
sgn(“ip̂

(2))log10(u“ip̂
(2)u) with i 51, 3, and“ i representing

the i th component of the“ operator. A negative sign indi
cates that the gradient is oriented along the direction of
negativeX1 axis. For a symmetric excitation~normal inci-
dent wave! the second-order pressure gradient“1p(2) is an
antisymmetrical function ofX1 while “3p(2) is symmetrical.
The extreme magnitude of the components of the seco
order pressure gradient for the deep resonating trenc
nearly one order of magnitude larger than that of the shal
trench. The components of the pressure gradients vary
idly over very short distances and show complicated spa
patterns. These patterns are very sensitive to the angle
incident wave makes with the planar substrate but not
magnitude of the pressure gradient@see Fig.~5!#. In Fig. ~5!,
we compare the second-order pressure gradient fields f
deep trench~aspect ratio 2:1! stimulated with a grazing wave
under resonant and nonresonant conditions. It is clear
excitation of resonant modes raises the components,¹1p(2)

and“3p(2) by one order of magnitude in many locations.

FIG. 3. First-order pressure fields around the dual ridges sys
~trench! for ~a! A52R, a normal incident wave (u50), and at a
reduced resonant frequencyv* 50.56; ~b! A54R, u50, and at a
reduced resonant frequencyv* 50.38;~c! A54R, grazing incident
wave (u'90°), v* 50.38; ~d! A54R, grazing incident wave (u
'90°), and at a nonresonant reduced frequencyv* 50.2. The la-
bels on the isobars are in units ofW ~the pressure amplitude of th
incident wave!.
1-5
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IV. CONCLUSION

We have developed a theory of scattering of acou
waves by supported ridges at a solid/liquid interface. T
methodology enables us to calculate the first-order acou
pressure amplitude~i.e., solution to the linear acoustic wav
equation! as well as second-order corrections, solutions
the nonlinear Euler equation in the form of the tim
independent gradients of the second-order acoustic pres
Two systems are studied, namely, a single infinite rigid rid
and two parallel ridges~separated by a trench! supported by
a rigid substrate in contact with a nonviscous fluid. T
ridges have a exponential cross section and aspect r
~height to width! of 1:1 and 2:1. We have calculated th
vibrational density of states of these systems to identify
quencies at which resonances occur. At the resonant freq
cies, the trenches exhibit noteworthy behaviors whereby
magnitude of the first-order acoustic pressure and the gr
ent of the second-order pressure take on significantly la
values compared to nonresonant conditions. The dee
trench~i.e., two ridges with the largest aspect ratio! studied
shows the largest effect. The first-order pressure can bec
ten times larger than the amplitude of the incident wave
the confined space of the trench. A similar factor of 10 is a
calculated for the magnitude of the second-order pres

FIG. 4. Second-order pressure gradient field near a trench in
cases~a! A52R, v* 50.56, u50 ~left panel!; and ~b! A54R,
v* 50.38, u50 ~right panel! given as contour maps o
sgn(“ip̂

(2))/ log10(u¹ip̂
(2)u) for i 51 andi 53. Thick lines correspond

to zero gradients. A number with negative sign means that the
dient is oriented along the direction of the negativeXi ’s The number
indicates the largest order of magnitude of the scaled grad
“ i p̂

(2). The interval between two successive isolines is equal to
Note the difference in order of magnitude between panels~a! and
~b! due to the log scale.
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gradient. The observed resonant behavior of a trench
interesting implications on the optimal conditions for clea
ing integrated circuits using acoustic waves in water. In
previous study@3#, we showed that a small spherical co
taminant particle inside a trench is subjected in first appro
mation to an acoustic removal force proportional to t
second-order pressure gradient. The gain of up to 1 orde
magnitude in the value of the second-order pressure grad
upon tuning the acoustic wave frequency to that of a re
nance of the trench will produce a comparable enhancem
of the acoustic removal force on a contaminant particle. E
citation of resonant modes associated with a tenfold rise
the first-order pressure field inside a deep trench may lea
a pressure amplitude exceeding the cavitation threshold
the fluid. Nucleation of cavities in the confined space o
trench may provide sufficient energy concentration for eff
tive removal of contaminant particles@13#. These optimal
conditions may result in an increase in the efficiency of p
cesses using acoustic waves for cleaning inside d
trenches. However current acoustic-based cleaning techn
gies use very low frequencies in comparison with tho
needed to stimulate resonances of submicron size trench
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