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Theory of acoustic scattering by supported ridges at a solid-liquid interface
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We combine a general Green’s function formalism and an approach due to Nyorg. Nyborg, in
Acoustic Streaming, Physical Acoustieslited by W. P. MasofAcademic, London, 1965Vol. II B, Chap. 11
to calculate the first-order pressure and second-order pressure gradient fields in the vicinity of solid inhomo-
geneities at a solid/liquid interface. We treat the problem of scattering of an incident acoustic plane wave by a
single ridge and two parallel ridges separated by a trench on a planar substrate. The calculated vibrational
density of states shows the existence of resonances at low frequencies, especially in the case of a trench.
Excitation of a trench resonant vibrational mode enhances the magnitude of the first-order pressure and of the
second-order pressure gradient. The resonant frequencies of a trench decrease and the pressure enhancement
increases with increasing aspect ratio of the riddesght to width.
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[. INTRODUCTION methods for calculating linear and nonlinear solutions to the
acoustic wave equation is presented in some details in Sec.
The problem of the interaction between acoustic wavedl. The calculated vibrational density of states, first-order
and solid surfaces in contact with fluids has relevance to theressure, and second-order pressure gradient for several ge-
electronic industry. For instance, megasonic waves are exte@Mmetries of the surface inhomogeneities are reported in
sively used to remove contaminant particles from planar ané€c. Ill.
patterned silicon wafers immersed in a water-based solution
during processing of integrated circufts|. Il. FORMULATION
In a previous study, we employed a method based on a
Green'’s function formalism to solve the linear wave equa-
tion, to calculate the acoustic pressure field around an infinite In this paper, we consider two inhomogeneous systems,
ridge on a silicon wafer immersed in water subjected to acomposed of a rigid solid and a nonviscous fluid. These sys-
megasonic bearh2]. This study showed that the acoustic tems model rough interfaces with an infinite ridge and an
shear stress on a ridge has no detrimental effect on the integifinite trench composed of two parallel ridges, respectively.
rity of patterned silicon wafers. We then implemented aln the two cases the substrate fills the half spég€ 0 in the
methodology for determining the time-independent second€artesian coordinate syster® (X;,X,,X3). The axis of the
order solution to the nonlinear Navier-Stokes equafi®h  ridges is oriented parallel to th€, direction. In this study,
This approach was used to calculate the second-order streame assume that the ridge has a cross section with an expo-
ing force in a viscous fluid in the vicinity of a planar silicon/ nential shapésee Fig. 1a)] defined in the X;,0,X3) plane
water interface. Schlichting streaming or acoustic streamindy
in a narrow boundary layer was identified as a potential 4
mechanism for megasonic cleaning of silicon wafetk In Xo=F(X1)= A ex _(ﬁ
the present paper, we combine the Green’s function formal- 8 ! R/ |
ism for nonplanar solid/fluid interfaces of Rg¢2] and the
methodology for solving the nonlinear effects of Ref] to ~ We obtain a trench by constructing two exponential ridges
shed light on the first-ordeflinean and second-ordefnon-  [see Fig. 1b)]. The cross section of the trentouble ridge
linean pressure field in the vicinity of surface inhomogene-is given by
ities on a solid substrate in contact with a fluid. We focus on

A. Geometry

@

a single infinite ridge and two adjacent parallel ridges sepa-,, _ _ M_ B @
rated by a trench. We pay particular attention to conditions Xs=f(Xy)=Aex R 1.5/ 1+0.04 -2 R +6
associated with resonances for which variations in the first- X

order and sec_:ond—order pressure _f|elds are most significant. with —3<t<i3 @)
Our paper builds on previous studies of acoustic resonances R

of a protuberance or indentation on an elastic solid medium

[5,6] but focuses on resonances of fluid features. The rel- The linear term in the previous expression is added to the
evance of these resonant conditions to acoustic wave-basedponential function in order to elevate slightly the bottom
cleaning technologies used in the electronic industry are dissf the trench with respect to the planar interface. In the pre-
cussed in the conclusion. The formulation of the theoreticateding expressiong controls the height of the ridge arRl

1063-651X/2002/663)/0366017)/$20.00 65 036601-1 ©2002 The American Physical Society



A. KHELIF et al.

its width. We define the geometric aspect ratioAiZR. The
geometries expressed in Eq4) and (2) attempt to model
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time and space independent?), p®), and p*) are first-
order approximations to the nonlinear problem. These quan-

patterned silicon wafers encountered in integrated circuitgities follow harmonic motions with a time dependercé®!
although we have chosen the exponential shape for the saligherew is the pulsation. The second-order termig), p®,
of mathematical practicality. The fourth power in the expo-and (@ are time independent.

nential argument is chosen to mimick the nearly rectangular |nserting Eqs.(4), (5), and (6) into the nonlinear Euler

cross section of ridges in integrated circuits.

B. Nonlinear and linear acoustic fields

equation, eliminating all terms of order greater than two,
averaging the remaining terms over several sonic cycles and
grouping the terms of the same order, yields the following

The nonlinear motion in a viscous fluid, in absence oféguations:

external forces, is governed by Navier-Stokes equation

=—Vp+uV3v+ V(V-v),
()

wherev is the velocity,p the density,u and u' the coeffi-

p

AN 2
o TV Vv ®T3

Vp=—p0—,

)

Vp@=— pO((vD. V)WV 4y OV D)y (8)

Equation(7) is formally equivalent to the equation of propa-

cients of shear and dilatation viscosity, apdhe pressure. gation of longitudinal waves in a nonviscous fluid. Equation
Since in this paper, for the sake of simplicity, we treat the(®) gives the second-order pressure gradient in terms of first-
case of nonviscous fluids. Navier-Stokes equation reduces fJder velocity field. The brackets indicate that a time av-
the nonlinear Euler equation. We briefly recall in this section€ad€ IS taken over several sonic cycles in order to retain
the method used for determining the time-independenPnly these terms that are time m(tg)ependent. In Nyborg’s ap-
second-order solution to the nonlinear Euler equation. FolProach, for nonviscous fluidsy p**’ represents a volumic
lowing Nyborg'’s approach7], one makes the approximation force directly relevant to the problem of acoustic cleaning

that the fluid velocity, the excess pressure, and the exce$3:7)- A contaminant particle adhering to the surface of a
density are written as the superpositions wafer may be removed provided this volumic force counter-

acts the adhesion force of this particle to the surface.

v=vD 4y (4) Since the fluid undergoes harmonic motion and consider-
ing complex notation(i.e., v(N=ReV(), the first-order
p—p@=pP+p?), (5)  velocity field is
p—pO=pD 1 p@ ©)

=i
v(l):wv‘p(l) ) 9)

. wp
Here, the term® and p(® are the static pressure and
the density of the fluid in absence of acoustic field and are With this, Eq.(8) may be written in complex notation as

(D)* ()* ()
25V G +5(1)(ﬁ1 +B(1)J53
LaX, 30X, LoooXs
2) 0)1
Vp@=—p 3R Parein potie x| (19
03 oL )73
30X 3 ax, 1oX,
|
where the superscrigt stands for the complex conjugate N 100 2
quantity. This equation enables us to calculate second-order AP~ pe Ry =ApY+ C—p(l)—o (12)
corrections to the acoustic pressure field from solutions to ! !
the linear acoustic wave equation. Thi tion i tin the f
In the limit of a fluid, such as water, with very low com- IS equation IS recast in Ihe form
pressibility, p is assimilated tp(®). Assuming that the lon- 12 R )
gitudinal speed of sound in the fluid,, is constant, taking 5| =zttt = P (X4,X3)=0. (13
P &Xl &Xs C|

'p(l>: ip(o)qsz .v(l), (12)

Since the solid is rigid, we must, therefore, solve Bd) for
the liquid motion subject to the boundary conditi®p®
=0 in the direction normal to the solid-liquid interface. For
this we employ a method based on Green’s functif8is

and in the case of irrotational motion of the fluid, E@)
becomes

036601-2



THEORY OF ACOUSTIC SCATTERING BY SUPPORTED. ..

»e %
Liquid
A
A& .
I AR %
(a) Solid (b) Solid

FIG. 1. Cross section dfa) a single exponential ridge ar@)
two exponential ridges separated by a trefithck line). A andR
measure the height and width of the inhomogeneity.

Equation(13) may be written in the formHp®=0, where
the differential operatoH is defined as
1 ( ? 5 w2> 14
=0 |2t =
@1 ax2 " ox2
The Green'’s functiols(X;,X3;X1,X3|w) is the solution of
an equation similar to Eq13), namely,

1 32 3? w? ' ’
T aet G(X1,X3: X1, X3 @)
= 5(Xy— X}) 8(Xg—X}) (15

with again the appropriate boundary conditions. Analytical
solutions of Eq.(15) are known in the following two cases:
an unbounded fluid and a fluid bounded by a planar rigid
surface. The Green’s functioB” of an infinite unbounded

fluid is given by

in0

oo ! ! Ip w !
G™(X1,X3; X1, X5 w) = — THE)D[CT[(XZ_XOZ

+(X3— xg)zll’z] : (16)

whereH{" is a Hankel function of the first kind. The Green’s
function gy, for the semi-infinite fluid bounded by a rigid
0, is also known and takes the form

planar surface aXz=

Op(X1,X3; X1, X35 )
p(o) L
=T 1 [H( )<_[(X1 1)2+(X3_Xé)2]1/2)

+Hgl)(cﬂl[(xl—xi)%(x3+x§)2]1/2)]. 17)
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fined as (1Y) (d/4,), where ¢/9,) means the normal de-
rivative at the boundaries. The cleavage operator is, there-
fore, only operating in the spadé of the interface being cut.
Here M represents the surface of the raised inhomogeneity.
We obtain the Green’s functiogy of the fluid in which one
has made a cut from the relatid8],

gf(M,M)[l(M,M)+V(M,M)Qb(M,M)]=9b(M,M)(,18)

wherel (M, M) is the unit matrix. Equatiori18) is an inte-
gral equation, with integration over the solid/fluid interface
spaceM. Once the interface elements@f are known in the
spaceM, we can deduce the Green'’s function in the space
encompassing the entire fluid via

9¢(D,D)=0g,(D,D)+gu(D,M)[g,*
—1(M,M)]gp *(M,M)gyp(M,D).

The first term on the right-hand side of E(L9) is the
Green’s function of the fluid bounded by a planar interface.
The second term represents a correction to the Green’s func-
tion of the fluid with a planar interface that accounts for the
presence of the raised inhomogeneity. This term arises from
scattering of the acoustic waves by the inhomogeneity. From
Eqg. (19 it is convenient to define a scattering function
T(M,M) as the expression

(M,M)g¢(M,M)
(19

T(M,M)=

[gp H(M,M)gi(M,M)=1(M,M)]g, *(M,M).

(20

Then, by analogy with Eq(19), the linear pressure field

PA(D) in the fluid bounded by a surface supporting an in-

homogeneity can be written in the form
PH(D)=P(D)+gp(D,M)T(M,M)P(M).  (21)
From a pratical point of view, we consider the case of an

incident compression wave of pulsatiantraveling towards
the surface with an incident angte

_ w iw )
p“(xl,X3|w)=Eex C—(Xlsma—xscosa), (22
|

whereW/2 is the amplitude of the compression wave. In the

absence of an inhomogeneity, the acoustic wave is solely
reflected by the rigid planar surface. The linear pressure field

P(D) in the semi-infinite liquid bounded by a planar surface

takes the following representation:

The Green'’s function for the fluid in contact with a rigid
planar solid supporting a rigid raised inhomogen€iyg.,
ridge) is not known analytically but it can be constructed
mathematically by cutting out of the semi-infinite fluid the
volume occupied by the inhomogeneifyig. 1) and applying
the boundary condition on that additional interface. This
mathematical operation is achieved by the application of avhere the second term gives the compression wave reflected
cleavage operatov onto g,,. The cleavage operator is de- from the perfect planar surface.

w i
P(Xq,X3|lw)= (exp{—(xl sin — X5 coso)

iw
+ exp{c—(xl sin 6+ X3 cosh) ] , (23
[
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C. Density of states 1 T T T T F T T T

a e b) T
The density of state@OS) inside the fluid, can be cal- © . ®
culated from the Green’s function of the solid/fluid system
with a surface inhomogeneity; [9]. Here we report the
variation of the total density of states due to the presence o
the inhomogeneity onto the planar surface. It is defined by

)
g

An(w)

1 d .
An(w)= ; %{arQ[de(gf (M,M))]

—ard detg, ((M,M))1}. (24)

An(®)
An(w®)

Owing to the symmetry of the geometry, the Green’s func-
tion may be separated into its symmetric and antisymmetric
parts allowing for the calculations of the contributions of the
symmetric and antisymmetric vibrational modes to the den-
sity of states.

oR/c, ®R/c,

FIG. 2. Variation in density of states as a function of reduced
frequency w* = wR/c, for a single ridge with(a) A=2R, (b) A
=4R, and a trenctidual ridge$ for (c) A=2R and(d) A=4R. The

In order to obtain the scattering functidifM,M) and the  solid lines and the dashed lines are for symmetric and antisymmet-
first-order pressure field® (D), one solves numerically the ric vibrational modes, respectively.
integral Egs.(18), (20), and (21). For this, we discretize

space that transforms these equations into discrete matritates. Acoustic resonances appear in these figures as peaks
relations. For this purpose, the axi§ is divided into N i the variation of the DOS. The most pronounced reso-
intervals having their middle at the poink§, such thatX,  nances occur at relatively low reduced frequencies. The ob-
=(n+1/2)AX with n=—N, —N+1,... N=1 and AX  served resonances are associated with vibrations in the fluid.
=R/N. In this way, the continuous curve delimiting the in- |n the case of a patterned silicon wafer immersed in water,
terfacial spaceM is divided into small segments. The dis- the assumption of rigidity of the solid substrate is justified
cretization of the interface domain for the ridge and thepecause of the strong contrast between the density and elastic
trench (dual ridgesg is done withN=300 andN=500 in  constants of silicon and water. Nevertheless this assumption
order to have a good balance between convergence and cohen lifted should only affect the DOS spectrum by intro-
putation time. The matrig:;(M,M), is then calculated from ducing additional resonant peaks at high frequency owing to
known matrices using Eq18). It is then inserted into Eq. the larger speed of sound in a solid compared to a fluid.
(10) to obtain the scattering matrik(M,M), which in turns  These additional resonances would result from vibrations in
is used into Eq.21) to determine the first-order pressure the elastic solid ridges. In fact, it has been shg@i1] that

field in the fluid. Further details of the calculation as well asthe first resonance state of a solid ridge supported by a solid
the numerical procedure are given in R¢fi)] and[11]. The  substrate occurs at a reduced frequen&/cS~1 wherecS,
gradient of the second-order pressure is obtained from firsis the transverse speed of sound in the solid ridge. In the case
and second-order derivatives of the first-order pressure. Albf a patterned silicon wafer immersed in water, this corre-
derivatives in the computational method are calculated witlsponds to a reduced frequenaR/c,~4 very much larger

D. Practical implementation

a finite difference method. than those considered in acoustic cleaning. For the single
rigid ridge system, the antisymmetric modes are more impor-
Ill. RESULTS tant than the symmetric ones. For the trench this tendency is

inverted with the dominant resonances associated with the
symmetric modes. This may be explained by a coupling be-
Figure 2 displays the variation of the total density oftween the antisymmetric modes of the fluid around each
statesAn(w) due to the presence of the ridge or the trenchridge yielding an overall symmetric effect. The frequency of
onto the planar surface as function of the reduced frequencthe resonances depends strongly on the aspect ratio of the
o* =wR/c,. In panels(a) and(b), these DOS are calculated surface inhomogeneities. For instance, the reduced frequency
for a single ridge with two heightd=2R andA=4R. The of the antisymmetric resonances for the single ridge de-
same aspect ratios are considered for the trefduble creases from a value of 0.33 to 0.22 as the height is doubled.
ridge) in panels(c) and(d). The variation in density of states Similarly, the reduced frequency of the predominant sym-
exhibits for all graphs an overall decrease in the backgrounehetric resonant modes associated with the trench drops from
with increasing reduced frequency. This reduction in densityd.56 to 0.38 upon doubling the height of its constitutive
of states can be understood by considering a fixed frequenaydges. It is worthy noticing that the reduced frequency of the
and a variable ridge sizZR. Indeed at constant frequency, an resonances nearly scales as the inverse of the square root of
increasing reduced frequency, is only due to a loss of mattethe inhomogeneity height. This observation is reminiscent of
in the fluid and, therefore, a loss in the number of vibrationalthe characteristic frequencies of simple harmonic oscillators

A. Density of states

036601-4



THEORY OF ACOUSTIC SCATTERING BY SUPPORTED. .. PHYSICAL REVIEWG5 036601

scaling as the inverse of the square root of its mass. The
amplitude of the resonant peak increases with increasing as
pect ratio. This effect is more significant for a trench than for
the ridge. Indeed, the problem of propagation of longitudinal
waves in a nonviscous fluid bound by a rigid substrate with
two rigid ridges is isomorphic to the problem of propagation
of transverse waves in a semi-infinite elastic solid, bound by
a vacuum, in which two trenches are cut. The elastic material
separating the two trenches in that latter system is, therefore
equivalent to the trench filled with fluid that we study. This
elastic material may be viewed as a single elastic ridge. It has
been shown that an elastic ridge with an aspect ratio of 1:1
exhibits resonating vibrational modes near a reduced fre-
qguency of 0.512]. The trench filled with liquid will, there-
fore, resonate at the same reduced frequency. The number «
resonating modes increases with the depth of the trench.

&

B. Acoustic pressure 1 © 1] 03 4
L 9 L (@)
In this section, we report on the amplitude of the first- ;& 1 2 T T
order acoustic pressure field in the vicinity of a trench X,R X,/R

(double ridge. Since the density of states at the resonant

frequency of a trench is significantly higher than that of a FIG. 3. First-order pressure fields around the dual ridges system
single ridge, the effect on the pressure field is more pro{trench for (8 A=2R, a normal incident wave#=0), and at a
nounced for the former geometry. For instance, in the case ¢fduced resonant frequenay” =0.56; (b) A=4R, 6=0, and at a

a single ridge with an aspect ratio 1:1, the first-order pressurreelelceOI resonant frequenay =0.38; (c) A=4R, grazing incident

. . . . . . wave (0~90°), w* =0.38; (d) A=4R, grazing incident wave {
field differs only slightly from the pressure field in a semi- ~90°), and at a nonresonant reduced frequenty-0.2. The la-

infinite liquid, namely, ‘?‘ §tanding wave Varyir.lg such @Spels on the isobars are in units \bf (the pressure amplitude of the
cos(wc; /X3) for a normal incident wavé=0. The first-order  jncident wave.

pressure field is only distorted in the vicinity of the ridge in .
order to satisfy the continuity condition of the displacement C. Gradient of second-order pressure

at the solid/liquid interface along the ridge surface. To obtain more manageable values for the second-order
In Fig. 3, we have investigated the effect of the trenchpressure gradient, we define a scaled pressure gradjsAt
aspect ratio and of the angle of incidence on the first-ordepy Vp(z):Vf)(z)(CleZ/R)lo’ZON m~3. Figure 4 illus-
pressure field at the lowest characteristic resonant frequencitates the spatial variations of the second-order pressure gra-
The first-order pressure is reported in unit of the magnitudelient in the two directions,; and X5 for the trenches with
of the incident wavaN. Figure 3 represents two-dimensional aspect ratio 1:1 and 2:1 at the resonant frequency and normal
contour maps of the real part of the first-order pressure fielihcidence. The magnitude and direction of the components of
with the lines representing isobars. In the case of a normahe gradient are given as contour maps of
incidence[Figs. 3a) and 3b)], the pressure amplitude in- sgniV;p)log,(|V:p®)) with i=1, 3, andV; representing
creases beyond the incident wave amplitude as one aphe ith component of thé&V operator. A negative sign indi-
proaches the bottom of the trench, this being more significargates that the gradient is oriented along the direction of the
for a deeper trench. The real part of the pressure exceeds thaggativeX; axis. For a symmetric excitatiotnormal inci-
of the incident wave by up to a factor of 5 inside the deepestlent wave the second-order pressure gradi&hp® is an
trench studied. Even higher pressure amplitudes can be antisymmetrical function oX; while V3p® is symmetrical.
tained inside the trench by changing the angle of the incidenthe extreme magnitude of the components of the second-
wave[see Fig. &)] and an enhancement by a factor of 10 isorder pressure gradient for the deep resonating trench is
observed at the bottom of the trench. This spectacular behawearly one order of magnitude larger than that of the shallow
ior is best seen by contrasting the resonant ¢&sg 3(c)]  trench. The components of the pressure gradients vary rap-
and the pressure field inside a trench under nonresonant coialy over very short distances and show complicated spatial
ditions, at a reduced frequency of J&ee Fig. &)]. One  patterns. These patterns are very sensitive to the angle the
also notes that the resonant frequencies and hence the acoussident wave makes with the planar substrate but not the
tic pressure are very sensitive to the geometric rafeR of ~ magnitude of the pressure gradi¢see Fig.(5)]. In Fig. (5),
the inhomogeneity and slightly depends on its shape. Indeede compare the second-order pressure gradient fields for a
the resonant states of the ridge were obtained at similar fredeep trencliaspect ratio 2;Istimulated with a grazing wave
guencies than those of a parabolic shape raised feg@lird  under resonant and nonresonant conditions. It is clear that
different power of the exponential argument in E¢l9.and  excitation of resonant modes raises the compon&hs?)
(2) only leads to sharper resonances in the DOS spectrum.and V3p(® by one order of magnitude in many locations.

036601-5



A. KHELIF et al. PHYSICAL REVIEW E 65 036601

=

R %

FIG. 4. Second-order pressure gradient field near a trench inthe 1 5 Same as Fig. 4 but fde) A=4R, 9~90°, w* =0.38
cases(a) A=2R, w’_‘zo.56, =0 {Ieft pane); and (b) A=4R, (resonant mode and (b) A=4R, #~90°, w* =0.2 (nonresonant
®*=0.38, #=0 (right panel given as contour maps of mode.
sgn(V;p@)/ log,o(|Vp?|) for i=1 andi=3. Thick lines correspond
to zero gradients. A number with negative sign means that the gra-

dient is oriented along the direction of the negafiyis The number ] .
indicates the largest order of magnitude of the scaled gradierradient. The observed resonant behavior of a trench has

V,p®@. The interval between two successive isolines is equal to 0.2interesting implications on the optimal conditions for clean-
Note the difference in order of magnitude between paf@lsind  ing integrated circuits using acoustic waves in water. In a
(b) due to the log scale. previous study{3], we showed that a small spherical con-
taminant particle inside a trench is subjected in first approxi-
mation to an acoustic removal force proportional to the
second-order pressure gradient. The gain of up to 1 order of

We have developed a theory of scattering of acoustighagnitude in the value of the second-order pressure gradient
waves by supported ridges at a solid/liquid interface. Thigipon tuning the acoustic wave frequency to that of a reso-
methodology enables us to calculate the first-order acoustigance of the trench will produce a comparable enhancement
pressure amplitudé.e., solution to the linear acoustic wave of the acoustic removal force on a contaminant particle. Ex-
equation as well as second-order corrections, solutions tccitation of resonant modes associated with a tenfold rise in
the nonlinear Euler equation in the form of the time- the first-order pressure field inside a deep trench may lead to
independent gradients of the second-order acoustic pressute.pressure amplitude exceeding the cavitation threshold of
Two systems are studied, namely, a single infinite rigid ridgehe fluid. Nucleation of cavities in the confined space of a
and two parallel ridge¢separated by a trengsupported by  trench may provide sufficient energy concentration for effec-
a rigid substrate in contact with a nonviscous fluid. Thetive removal of contaminant particldd 3]. These optimal
ridges have a exponential cross section and aspect ratiggnditions may result in an increase in the efficiency of pro-
(height to width of 1:1 and 2:1. We have calculated the ggses using acoustic waves for cleaning inside deep
vibrational density of states of these systems to identify fretrenches. However current acoustic-based cleaning technolo-
guencies at which resonances occur. At the resonant frequeg-res use very low frequencies in comparison with those

cies, the trenches exhibit noteworthy behaviors whereby theeeded to stimulate resonances of submicron size trenches.
magnitude of the first-order acoustic pressure and the gradi-

ent of the second-order pressure take on significantly larger
values compared to nonresonant conditions. The deepest
trench(i.e., two ridges with the largest aspect rat&udied
shows the largest effect. The first-order pressure can become This research was supported in part by a grant from the
ten times larger than the amplitude of the incident wave inCenter for Microcontamination Control at the University of
the confined space of the trench. A similar factor of 10 is alsArizona. Three of ugA.K., Ph.L, and P.A.D.would like to
calculated for the magnitude of the second-order pressuracknowledge the “Laboratoire de Dynamique et Structures
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