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Phonon-magnon resonant processes with relevance to acoustic spin pumping
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The recently described phenomenon of resonant acoustic spin pumping is due to resonant coupling between an
incident elastic wave and spin waves in a ferromagnetic medium. A classical one-dimensional discrete model of
a ferromagnet with two forms of magnetoelastic coupling is treated to shed light on the conditions for resonance
between phonons and magnons. Nonlinear phonon-magnon interactions in the case of a coupling restricted to
diagonal terms in the components of the spin degrees of freedom are analyzed within the framework of the multiple
timescale perturbation theory. In that case, one-phonon-two-magnon resonances are the dominant mechanism
for pumping. The effect of coupling on the dispersion relations depends on the square of the amplitude of the
phonon and magnon excitations. A straightforward analysis of a linear phonon-magnon interaction in the case of
a magnetoelastic coupling restricted to off-diagonal terms in the components of the spins shows a one-phonon
to one-magnon resonance as the pumping mechanism. The resonant dispersion relations are independent of the
amplitude of the waves. In both cases, when an elastic wave with a fixed frequency is used to stimulate magnons,
application of an external magnetic field can be used to approach resonant conditions. Both resonance conditions
exhibit the same type of dependency on the strength of an applied magnetic field.
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I. INTRODUCTION

The production of spin polarized currents is of tremendous
importance for the transport of information in the form of
the spin instead of the charge of electrons. The process of
generation of spin currents is an essential component in the
development of spintronics. To date, several approaches have
been investigated to generate spin currents. The first one
utilizes nonlocal spin injection [1,2]: spin current is created by
electrons flowing in a ferromagnet and diffuses in an adjacent
normal metal. A second set of methods generates pure spin
currents from spin pumping. A precessing magnetization (e.g.,
driven into ferromagnetic resonance by an external magnetic
field) injects a nonequilibrium spin current into an adjacent
normal metal via spin angular momentum transfer [3–5]. An-
other popular method that currently fosters intense efforts is the
spin Hall effect (SHE), where unpolarized electrons flowing
in a normal metal are asymmetrically scattered via spin-orbit
coupled impurities, resulting in the generation of a transverse
pure spin current [6,7]. All the above methods seek to generate
pure spin currents from electrical voltages and electron flows.
In fact, recent developments in the field of spintronics have
demonstrated that heat (i.e., acoustic phonons) could be
used to pump spin currents from (insulating or metallic)
ferromagnets. The exploration of the spin Seebeck effect
(SSE) [8]—i.e., the generation of spin currents using heat—has
revealed that chargeless spin currents can be efficiently carried
by magnons in magnetic insulators such as yttrium iron
garnet (YIG) [9]. Combining elastic waves with magnons in
magnetic insulators offers opportunities for the development
of chargeless information control since no electrical voltages
or charge current flows are needed [10]. Elastic waves have

also been used recently to coherently excite the magnetization
of ferromagnets, induce ultrafast demagnetization, or reorient
the magnetization direction [11,12].

In this context, the role of phonon-magnon coupling is
particularly inspiring. Indeed, it has recently been shown that
the resonant absorption of elastic waves by a ferromagnet
can also drive a spin current [13]. This approach has been
termed acoustic spin pumping (ASP) [14]. Acoustic spin
pumping is a resonant equivalent of the SSE. The fundamental
mechanism underlying ASP results from the coupling between
an elastic wave (phonons) and spin waves (magnons) through
the magnetoelastic effect [15]. Of other significant relevance
is the role played by phonon-magnon interactions and the
magnetoelastic effect in the phenomenon of phonon drag
enhancement of SSE [16] or the development of the field of
spin caloritronics [17,18].

Several theories of the magnetoelastic effect have relied on
(a) approximating the ferromagnet as a continuum and (b) ap-
plying the quasistatic approximation whereby magnons are at
equilibrium with respect to the slower phonons [19–21]. More
recently, methods based on molecular and spin-dynamics have
been employed to investigate numerically phonon-magnon
interactions. These numerical methods simultaneously solve
the equations of motion for atoms and spins [22–24]. Some of
these studies have shown softening and damping of magnon
modes due to lattice vibrations and the existence of coupled
magnon-phonon modes with identical frequencies [22]. In
light of the importance of magnon-phonon interactions for a
wide range of emerging scientific and technical fields, we have
developed an analytical approach to shed light on resonant
magnon-phonon processes in models of ferromagnetic media.
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We focus on a one-dimensional model composed of atomic
sites that support lattice vibrations and spin precession. We
solve the coupled magnetoelastic equations of motion for the
spin degrees of freedom and the atomic displacement using
analytical mathematical methods. We have considered two
cases, namely a case with a nonlinear magnetoelastic coupling
and another one with linear coupling. While analyzing the
linear system is straightforward, the nonlinear system requires
the use of an approach based on the multiple time scale
perturbation theory [25]. This approach enables us to obtain an-
alytical solutions for the wave representation of the nonlinearly
interacting phonons and magnons. We derive the conditions for
resonance between a phonon and a magnon with an identical
wave number in both cases. Phonon-magnon resonance leads
to shifts in the dispersion bands of both excitations. We also
demonstrate that the condition for resonance is modified by
the application of an external magnetic field. The strength of
the applied field can be used to tune the ferromagnetic medium
to achieve resonance.

This paper is organized as follows. In Sec. II, we introduce
the Hamiltonian for a discrete one-dimensional atomic model
with two forms of magnetoelastic coupling. One form leads
to a nonlinear coupling between phonons and magnons. The
nonlinear phonon-magnon interactions arise from a coupling
contribution to the Hamiltonian restricted to diagonal terms
in the components of the spin degrees of freedom. A linear
phonon-magnon interaction is obtained in the case of a
coupling restricted to off-diagonal terms in the components of
the spins. The coupled equations of motion for the spin degrees
of freedom and the lattice vibrations in both cases are derived in
that same section. The multiple timescale perturbation method
is applied to analyzing the nonlinear equations of motion
in the Appendix. In the Appendix, we derive the sets of
equations of motion to zeroth, first, and second order in the
phonon-magnon coupling constant. We also find analytical
solutions to these sets of nonlinear equations. We show
that the mechanism for energy pumping between phonons
and magnons is a resonance involving one phonon and two
magnons. This leads to frequency shifts and modifications of
the dispersion relations that are proportional to the square of
the amplitude of the elastic and magnetic waves as discussed
in Sec. III. The effect of the magnetic and elastic physical
characteristics of the systems on the dispersion bands are
also discussed in terms of their softening and hardening in
Sec. III. We also consider the effect of an externally applied
magnetic field on the phonon-magnon resonance condition.
Even though an external field adds only a linear term in
the equations of motion of the spin degrees of freedom,
we show that the condition for phonon-magnon resonance
is sensitive to the strength of the external field. In Sec. IV,
we solve the set of equations of motions for the linearly
coupled phonons and magnons. We find in that case that a
single phonon interacts with a single magnon. The resonance
that drives energy pumping between phonons and magnons
is involving one phonon and one magnon. As expected, it
occurs when both excitations have the same phase velocity.
Modifications to the dispersion relations due to the resonance
are here independent of the amplitude of the waves. The effect
of an external magnetic field on the one-phonon-one-magnon
resonance condition leads to observations similar to those

made in the more complex nonlinear case. Finally, in Sec. V,
we summarize our findings and draw conclusions concerning
the observed phonon-magnon resonances in the context of
acoustic spin pumping.

II. MODEL

A. Hamiltonian

We consider a one-dimensional discrete model of a medium
that can support coupled spin waves and elastic waves (see
Fig. 1). This is used as a model of a ferromagnetic material
with magnetoelastic coupling. This model is constituted of a
chain of atoms. Each atomic site n is characterized by a spin
�Sn and a displacement un. We assume that the model is limited
to first nearest neighbor interactions. The Hamiltonian for this
system is taking the form

H = −2
∑

n

∑
i,j=x,y,z

J
i,j

n,n+1 (un+1,un) Si
nS

j

n+1

+ 1

2

∑
n

β(un+1 − un)2. (1)

In this equation, the atoms are interacting elastically via a
harmonic potential with a uniform, constant stiffness β. The
remaining part of the Hamiltonian is that of a Heisenberg
model where the nearest neighbor spin exchange coupling
constant J

i,j

n,n+1 (un+1,un) depends on the displacement of the
atoms. The superscripts i and j run over all directions x, y,
and z.

We consider two cases for the magnetoelastic coupling,
namely case I [Eq. (2a)] and case II [Eq. (2b)]

J
i,j

n,n+1 (un+1,un) = Jn,n+1 (un+1,un)

= Jδij − K (un+1 − un) δij , (2a)

J
i,j

n,n+1(un+1,un) = Jδij − KT (un+1 − un)(1 − δij ). (2b)

In the first case, the coupling between the displacement and
the spins is limited to terms in the Hamiltonian of the form
Si

nS
i
n+1. In case I, the magnetoelastic coupling is restricted

to diagonal terms in the components of the spin degrees
of freedom to the same coordinates. Case II corresponds to
interactions limited to cross terms with respect to components
of the spin degrees of freedom. The magnetoelastic coupling
term in the Hamiltonian involves only terms of the form
Si

nS
j �=i

n+1. Here, J , K , and KT are positive constants. The minus
sign in Eqs. (2a) and (2b) indicates that the coupling between
adjacent spin weakens as the separation distance increases.

n-1 n n+1

z

Sn-1

z

Sn+1

z

Sn

x

y
z

FIG. 1. Schematic illustration of the one-dimensional discrete
atomic model supporting coupled spin waves and elastic waves. The
x axis is defined along the chain of atoms.
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The Hamiltonian for case I takes the specific form

H = −2
∑

n

Jn,n+1 (un,un+1) �Sn.�Sn+1 + 1

2

∑
n

β(un+1 − un)2.

(3)

This Hamiltonian, then, simplifies to

H = −2J
∑

n

�Sn.�Sn+1 + 2K
∑

n

(un+1 − un) �Sn.�Sn+1

+ 1

2

∑
n

β(un+1 − un)2. (4)

The second term in Eq. (4) represents the magnetoelastic
interactions between spin and displacement. As discussed
previously, magnetoelastic coupling is composed only of terms
diagonal in the components of the spin degrees of freedom;
that is, these interactions involve only pairs of components:
xx, yy, and zz by virtue of the dot product.

In case II considered here, the Hamiltonian is written as

H = −2J
∑

n

�Sn.�Sn+1 + 2KT

∑
n

(un+1 − un)

× (
Sx

nS
y

n+1 + Sy
nSx

n+1 + Sz
nS

x
n+1 + Sx

nSz
n+1

+ Sz
nS

y

n+1 + Sy
nSz

n+1

) + 1

2

∑
n

β(un+1 − un)2. (5)

The second term in Eq. (5) involves products of different
components of the spin degrees of freedom; that is, these
interactions involve only pairs of mixed components of the
type: xy, yz, and xz.

To relate the Hamiltonians given by Eqs. (4) and (5) to more
familiar forms, we refer to the continuum limit of the mag-
netoelastic energy for ferromagnetic materials (see Eq. (8) of
Ref. [26]). In general, this energy involves all possible products
of two components of the spins and all possible polarizations
of the displacement. For a cubic material, the magnetoelastic
energy reduces to two terms (see Eq. (10) of Ref. [26]). The
first term corresponds to the interaction between the diagonal
components of the strain and spins. This term is equivalent
to the discrete form of the magnetoelastic energy of Eq. (4).
The second term represents interactions between the shear
components of the strain with the mixed components of the
spins. This second term is isomorphic to that of Eq. (5). For
a cubic material, the scalar quantity un in Eq. (4) refers to a
longitudinal displacement, while in Eq. (5), it corresponds
to a transverse displacement (perpendicular to the chain).
For cubic symmetry, the Hamiltonian of Eq. (4) is therefore
modeling longitudinal waves/spin waves interactions, while
the Hamiltonian of Eq. (5) is used to describe shear waves/spin
waves interactions. We have separated these two contributions
in two Hamiltonians for the sake of analytical simplicity and
to unravel distinct characteristics of interactions between spin
waves and transverse and longitudinal phonons. We would
like to note that for noncubic symmetries, the Hamiltonian of
Eq. (5) may also be representative of the interactions between
longitudinal displacements and spin waves.

B. Equations of motion for the spin degrees of freedom

The dynamics of a spin are given by the Landau-Lifshitz
equation

∂ �Sn

∂t
= −γ �Sn × �hn, (6a)

where

�hn = 1

γ �
.
∂H

∂ �Sn

(6b)

is the effective magnetic field at site n. In Eq. (6), γ (>0)
and � stand for the atomic gyromagnetic ratio and the reduced
Planck’s constant, respectively. For the sake of simplicity, we
neglect magnetic damping.

Using the Hamiltonian of Eq. (4) that corresponds to case
I, the spin equation of motion becomes

∂ �Sn

∂t
= 2

J

�

�Sn × (�Sn−1 + �Sn+1) − 2
K

�
[(un+1 − un)�Sn

× �Sn+1 + (un − un−1)�Sn × �Sn−1]. (7)

We seek a solution in the form

�Sn = �So + �εn =
⎛
⎝ 0

0
S0

z

⎞
⎠ +

⎛
⎝εn,x

εn,y

εn,z

⎞
⎠ with

εn,x,εn,y, εn,z � S0
z . (8)

Here, �So is the magnetic moment of the spin and is oriented
along the z axis in the positive direction. Also, εn,z must be a
second-order term to satisfy the conservation of the norm of �Sn.

We expand terms of the form �Sn × �Sn−1 up to second order
in ε

�Sn × �Sn−1 ∼
⎛
⎝−S0

z (εn−1,y − εn,y)

+S0
z (εn−1,x − εn,x)

0

⎞
⎠

+
⎛
⎝ 0

0
εn,xεn−1,y − εn,yεn−1,x

⎞
⎠ . (9)

With this, Eq. (6a) expressed in component form becomes

∂εn,x

∂t
= −2

J

�
S0

z (εn+1,y − 2εn,y + εn−1,y)

+ 2
K

�
S0

z [(un+1 − un)(εn+1,y − εn,y)

+ (un − un−1)(εn−1,y − εn,y)], (10a)

∂εn,y

∂t
= +2

J

�
S0

z (εn+1,x − 2εn,x + εn−1,x)

− 2
K

�
S0

z [(un+1 − un)(εn+1,x − εn,x)

+ (un − un−1)(εn−1,x − εn,x)], (10b)

∂εn,z

∂t
= 2

J

�
[εn,x(εn−1,y + εn+1,y) − εn,y(εn−1,x + εn+1,x)].

(10c)

The first term on the right-hand side of Eqs. (10a) and (10b)
are the usual first-order terms that appear in the equations of
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motion of spin waves. All other terms that involve the constant
K are second-order terms resulting from the coupling between
displacement and spin. Equation (10c) is second order and
couples the directions x and y to direction z.

For case II, application of Eq. (6b) to the Hamiltonian given
by Eq. (5) results in

�hn = −2
J

�
(�Sn−1 + �Sn+1) + 2

KT

�
{(un+1 − un) �Vn+1

+ (un − un−1) �Vn−1}, (11)

where the vector �Vn is defined as (
S

y
n + Sz

n

Sx
n + Sz

n

Sx
n + S

y
n

). Using Eq. (8), we

approximate to the zeroth order this vector by the constant

vector (
S0

z

S0
z

0
). This vector is independent of location along the

chain of atoms. Using this, we obtain the equations of motion
for the x and y components to first order in displacement

∂εn,x

∂t
= −2

J

�
S0

z (εn+1,y − 2εn,y + εn−1,y)

+ 2
KT

�

(
S0

z

)2
(un+1 − un−1), (12a)

∂εn,y

∂t
= +2

J

�
S0

z (εn+1,x − 2εn,x + εn−1,x)

− 2
KT

�

(
S0

z

)2
(un+1 − un−1), (12b)

We do not have to consider an equation of motion for the
component εn,z since, in case II, all equations can be expressed
to first order only.

C. Equations of motion for the displacement

In case I, the force acting on an atom n is obtained as

Fn = − ∂H

∂un

= +β(un+1 − un) − β(un − un−1)

+ 2K(�Sn.�Sn+1 − �Sn−1.�Sn). (13)

Assuming that each atom has the same mass m, their motion
is described by the equation

m
∂2un

∂t2
= β(un+1 − 2un + un−1) + 2K(�Sn.�Sn+1 − �Sn−1.�Sn).

(14)

Utilizing Eq. (8), Eq. (14) takes its final form

m
∂2un

∂t2
= β(un+1 − 2un + un−1) + 2K

(
S0

z (εn+1,z − εn−1,z)

+ εn,x(εn+1,x − εn−1,x) + εn,y(εn+1,y − εn−1,y)
)
.

(15)

When K = 0, one recovers the usual equation of motion
for a monoatomic one-dimensional harmonic chain. The
second term on the right-hand side of Eq. (15) models the
magnetoelastic coupling to the second order.

Equations (10a)–(10c) and (15) form the complete set of
equations describing the coupled motion of spins and atoms in
case I. In this case, the magnetoelastic coupling is nonlinear,
and we will solve these equations within the context of multiple
timescale perturbation theory [25]. The method and results are
detailed in the Appendix.

In case II, limiting the interaction terms to the first order in
the spin degrees of freedom, one gets the equation of motion
for the displacement

m
∂2un

∂t2
= β(un+1 − 2un + un−1)

+ 2KT S0
z ((εn+1,x − εn−1,x)

+ (εn+1,y − εn−1,y)). (16)

Equations (12a), (12b), and (16) are used to model the
dynamics of the displacement and the spin degrees of freedom
in case II. Because these equations are linear, solutions are
straightforward and will be derived in Sec. IV.

III. DISCUSSION OF RESULTS FOR CASE I

A. Dispersion with magnon-phonon interactions

First of all, we summarize the findings of the Appendix. We
have seen that the dispersion relations of the magnons and of
the phonons are shifted due to their mutual interaction. Both
dispersion relations are re-expressed in the form

ω′∗
0 (k) = ω′

0(k) − K2 2

�
S0

z α
2
0[P (k)]pv, (17)

ω∗
0 (k) = ω0 (k) + K2

4
�
S0

z

mω2
M

λ2
0[P (k) Q (k)]pv. (18)

Here, ω′
0 and ω0 are the frequencies of the magnons and

phonons in absence of interactions. Also, ω′
0
∗ and ω0

∗ are
the frequencies of magnons and phonons when they interact

nonlinearly. In Eq. (18), ωM stands for
√

β

m
. The frequency shift

of the phonons depends on the square of the amplitude of the
magnons and vice versa. The amplitudes of the magnons and
phonons are given by λ0 and α0, respectively. In Eqs. (17) and
(18), the corrected dispersion relations involve two functions
of the wave number

P (k) = sin (2ka) − 2sin (ka)

sin2 (ka) − sin2
(

ka
2

) − ρ sin
(

ka
2

) ,

and

Q (k) = sin (2ka) − 2sin (ka)

sin2 (ka) − sin2
(

ka
2

) − ρ sin
(

ka
2

) ×
1
2 (cos (ka) − cos (2ka)) sin (ka) + ρsin

(
ka
2

)
(sin (2ka) − sin (ka))

sin2
(

ka
2

) ,

with the dimensionless quantity ρ defined as ρ = 2
√

β/m
8J
�

S0
z

. The

sign of these functions determines whether the frequencies

of the nonlinear coupled system are softened or hardened
compared to the dispersion of the noninteracting phonons
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FIG. 2. (Color online) (a) Denominator of functions P and Q

versus reduced wave number ka for different values of the parameter
ρ. The inset represents the magnon (dotted line) and the phonon
(solid line) dispersion curves at ρ = 1. The condition for resonance
ω′

0 (2k) = (ω0 (k) + ω′
0 (k)) is highlighted with vertical lines. (b) P

and (c) Q as functions of ka and ρ.

and magnons. In Fig. 2, we plot these functions along with
the denominator of these very same functions. We vary ka

in the positive region of the Brillouin zone (BZ): [0, π ]. The
parameter ρ = 2

√
β/m

8J
�

S0
z

measures the relative value of the cutoff

frequencies of the magnons and the phonons in the chain of
atoms. We investigate the cases: ρ = 4,2,1,0.4,0.04.

Figure 2(a) illustrates the condition for phonon-magnon
resonance as a function of the reduced wave number ka and
ratio of cutoff frequencies ρ. When ρ > 1, at a given ka, the
frequency of a phonon is always larger than that of a magnon.
The denominator of the functions P and Q is always nonzero
and negative. P is positive over the entire BZ, leading to a
softening of the magnon frequency [see Eq. (17)]. Also, Q

is positive for small ka and changes sign beyond a threshold
wave number. Phonon-magnon coupling hardens the phonons
at low ka and softens them beyond the threshold. At ρ = 1,
a transition occurs. This corresponds to phonon and magnon
bands with the same cutoff frequency. The denominator takes
on a value approaching 0 at a nonvanishing wave number
(ka = 1.047). A near resonance condition is reached when
a phonon with frequency ω0(ka = 1.047) and a magnon
with frequency ω′

0(ka = 1.047) interact to create a magnon
of frequency ω′

0(ka = 2.094) = ω0(ka = 1.047) + ω′
0(ka =

TABLE I. Values of the parameter ρ = 2
√

β/m
8J
�

S0
z

= 1
4

TD

TC
for some

representative ferromagnetic materials.

Material TD(K) TC(K) ρ

YIG 600 550 0.2727
Ni 450 627 0.1794
Fe 470 1043 0.1126
Co 385 1388 0.0693

1.047). This resonance condition is illustrated in the inset
of Fig. 2(a). The function P remains positive but exhibits
a large maximum near ka = 1.047. The function Q also
shows a positive maximum near the resonance condition but
changes sign with increasing wave number. The frequencies
of the interacting magnons are softened over the complete BZ
[Eq. (17)]. The frequency of the phonons increases at small
wave number and decreases at larger ones in comparison to
the frequency of the noninteracting phonons [Eq. (18)]. As ρ

decreases below the value of 1, the denominator possesses two
zeros, one at low ka and one at large ka. These correspond
to two resonance conditions. The low ka resonance evolves
towards a longer wavelength as ρ decreases. The high ka

resonance moves towards the upper edge of the BZ. The
functions P and Q change sign several times over the complete
BZ. These are the conditions that may be representative of most
common ferromagnets, as will be discussed now.

The parameter ρ can be related phenomenologically to
the Curie temperature TC and the Debye temperature TD .
Ferromagnetic order breaks down at nonzero temperature for
a one-dimensional Ising model with nearest neighbor interac-
tions. However, a one-dimensional Ising model in the presence
of a small external field exhibits ferromagnetism at finite
temperature. At high temperature, the magnetic susceptibility
follows a Curie-Weiss form with a Curie temperature defined
as TC = 2J

kB
where kB is Boltzmann’s constant [27]. In the

preceding expression, the factor 2 relates the number of nearest
neighbors of a given spin site. This is the form of the Curie
temperature that would be obtained erroneously when the
one-dimensional system is treated with a mean field approach.
In spite of the inability of the mean field model to capture
the physics of the one-dimensional system, we employ this
temperature as a phenomenological measure of the thermal
equivalent of the energy of our magnetic excitations. Defining

the Debye frequency υD = 1
2π

2
√

β

m
enables us to introduce the

Debye temperature TD = hνD

kB
. With these, and taking S0

z = 1,
the parameter ρ can be expressed in terms of Curie and Debye
temperatures as ρ = 1

4
TD

TC
. In Table I, we report some values

of the parameter ρ for some representative ferromagnetic
materials.

We note that these values are less than 1 and fall within
the lower range of the cases we discuss in Fig. 2. Again,
we have used a one-dimensional-system mean field formula
for the Curie temperature. Should we have considered three-
dimensional structures, TC = zJ

kB
where z is the number of

nearest neighbors. This number would range from 6 to 8 to
12 for simple cubic, body-centered-cubic, and face-centered-
cubic structures, effectively increasing the value of ρ by factors
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of 3, 4, or 6, respectively. Even with such multiplicative
factors, the parameter ρ would remain less than 1 for common
ferromagnetic media.

B. Effect of an external magnetic field

We can also consider the nonlinear magnon-phonon in-
teractions in the presence of an external magnetic field �b
oriented along the z direction. In this case, Eq. (6b) becomes
�hn = �b + 1

γ �
. ∂H

∂ �Sn

. This adds the linear terms γ |bz|εn,y and
−γ |bz| εn,x to the right-hand sides of Eqs. (10a) and (10b),
respectively. Here, |bz| is the intensity of the external field.
These linear terms do not affect the form of the results
concerning the frequency shifts in the dispersion relations
obtained with the multiple timescale perturbation approach
used previously. To account for these linear terms, one
simply needs to replace the magnon dispersion relation given
by Eq. (A7) by ω′

0 = 8J
�

S0
z sin2

(
ka
2

) + γ |bz|. The external
field shifts the noninteracting magnon dispersion curve by a
constant proportional to the zth component of the field.

By employing this zeroth-order magnon dispersion relation,
we can rewrite the function d (k), defined by Eq. (A35), in the
form

d (k) = ω′
0(2k) − γ |bz| − (ω0(k) + ω′

0(k)) + iψ. (19)

In the absence of damping and a magnetic field, this
expression gives a condition for the divergence (resonance) of
the function f (k). This divergence corresponds to a process
involving a phonon with wave number k and frequency ω0 (k)
interacting with a magnon with the same wave number but a
frequency ω′

0 (k) to produce a magnon with wave number 2k

and frequency ω′
0(2k) = (ω0(k) + ω′

0(k)). This corresponds to
a single-phonon-two-magnon resonant process [28]. Keeping
this picture of phonon-magnon interactions as a basis for
our discussion, the application of an external magnetic field
effectively modifies the phonon resonant frequency to a value
given by ω0 (k) + γ |bz|. Therefore, using a fixed frequency
phonon to excite magnons, one can apply a variable external
field to reach resonance. On the other hand, one can apply
a fixed magnetic field and change the phonon frequency to
attain the resonance condition. This is illustrated by rewriting
Eq. (19) in the form of the following resonance condition

�ω′
0 = ω′

0 (2k) − ω′
0 (k) = ω0 (k) + γ |bz|. (20)

Note that, in this relation, the left-hand term is independent
of an applied magnetic field. Consider now that the phonon
frequency ω0 (k) is fixed. That is, we excite the system with
a device such as an interdigitated transducer that emits elastic
waves over a narrow band (i.e., produces monochromatic
elastic waves with a nearly fixed frequency and wave number).
In that case, the quantity �ω′

0 is also a constant. Let us
assume that the system is subjected to an applied field b0

z such
that the resonance condition is not met; that is, �ω′

0 (k) �=
ω0 (k) + γ |b0

z |. It is therefore possible to detune positively
or negatively the magnitude of the external field |b0

z | ± �b

to approach the condition for resonance given by Eq. (20). In
Ref. [13], Weiler et al. have studied the attenuation of a surface
acoustic wave (SAW) launched in a ferromagnetic cobalt
film as a function of the magnitude of an external magnetic
field applied in some specific direction. The frequency of

the SAW was constant and determined by the interdigitated
transducer that emitted it. These authors observed a resonant
absorption of the SAW at a distinct value of the magnetic
field strength in accordance with our one-phonon-two-magnon
resonant process prediction. In Ref. [15], a similar study was
conducted for a nickel film. The strength of the magnetic
field necessary to achieve resonance was shown to increase
with increasing SAW frequency. This could be explained in
the context of our one-phonon-two-magnon resonant process.
Indeed, in the long wavelength limit, �ω′

0 (k) increases rapidly
with increasing wave number owing to the quadratic form
of the magnon dispersion relation. In that same limit, the
frequency of the phonons increases linearly with the wave
number. One therefore needs to increase the value of γ |bz|
(i.e., the strength of the external field) as one increases the wave
number (i.e., phonon frequency) to maintain the condition for
resonance.

IV. ANALYSIS OF CASE II

In Sec. III, we have addressed the coupling between
phonons and magnons in case I, whereby the interactions
between these excitations are nonlinear. In this section, we
derive the solutions of the equations of motion in Eqs. (12a),
(12b), and (16), which correspond to a linear coupling between
phonons and magnons. The linear interactions arose from the
fact that we limited the magnetoelastic coupling to cross terms
in the components of the spin in the system’s Hamiltonian. In
this case, we assume that the spin degrees of freedom and the
displacement take a plane wave form

εn,x = εo,xe
iknaeiωt , (21a)

εn,y = εo,ye
iknaeiωt , (21b)

un = Aoe
iknaeiωt . (21c)

Inserting these solutions into the equations of motion leads
to a simple eigenvalue problem. The frequency of the linearly
coupled phonon and magnon is subsequently obtained as

ω2 = ω′2
0 + ω2

0

2
± 1

2

√(
ω′2

0 − ω2
0

)2 +
8
�
S0

z B
2

m
ω′

0, (22)

where B = 4KT S0
z sin (ka) .

In Eq. (22), we have used the expressions for the eigenvalues
of the phonons and magnons in the absence of interactions
given by Eqs. (A7) and (A10) (see Appendix). If an external
magnetic field is applied, the frequency ω′

0 is simply aug-
mented by the constant term γ |b0

z |. Equation (22) indicates
that a resonance between a single magnon and a single phonon
will occur when ω′

0 (k) = ω0 (k); that is, when the elastic
wave and the magnetic wave have identical phase velocities.
This resonance is more easily seen when performing a Taylor
expansion of Eq. (22) to the second order in KT

ω2 = ω′2
0 + ω2

0

2
± 1

2
sgn

{(
ω′2

0 − ω2
0

)}(
ω′2

0 − ω2
0

)

± sgn
{(

ω′2
0 − ω2

0

)} 2
�
S0

z B
2

m

ω′
0(

ω′2
0 − ω2

0

) . (23)
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Depending on the sign of ω′2
0 − ω2

0 (i.e., sgn{(ω′2
0 − ω2

0)}),
the first two terms give ω′2

0 and ω2
0. The third terms represents

the effect of the resonance. The effect of magnetoelastic
coupling on the dispersion relations of the phonons and
magnons in case II is independent of the amplitude of the
waves.

We can also consider the application of an external magnetic
field. In that case, an external magnetic field can be applied
to the ferromagnetic medium to tune the dispersion curve
of the magnons with the aim of achieving resonance under
the condition of a stimulating acoustic wave with a fixed
frequency. The observations concerning the dependence of
strength of the applied magnetic field on the frequency of
the acoustic wave made in Sec. III for the single-phonon-
two-magnon resonance also transpose to the case of a single-
phonon-single-magnon resonance.

V. CONCLUSIONS

We considered the effect of coupling between elastic waves
and magnetic waves in a one-dimensional discrete model
system of a ferromagnetic medium. Two cases are addressed.
The first case corresponds to a system where the magnons
and phonons interact nonlinearly. The nonlinear interaction
is due to a displacement-dependent spin exchange coupling
constant that involves only diagonal terms in the components
of the spin, i.e., to the interaction between longitudinal
components of the strain and spins in a cubic material.
The second case leads to linear interactions resulting from
a displacement-dependent spin exchange coupling constant
that involves off-diagonal terms in the components of the
spin, i.e., to the interaction between shear components of
the strain and spins in a cubic material. We have developed
an approach based on the multiple timescale perturbation
method to calculate analytically the effect of the nonlinear
magnetoelastic coupling on the dispersion relation of magnons
and phonons. For the sake of mathematical tractability, we
have limited our paper to the interaction between magnons
and phonons with the same wave number. We have determined
the conditions that lead to magnon-phonon resonance. In the
absence of an external magnetic field, the resonance for the first
case is associated with a single-phonon-two-magnon process.
Such one-phonon-two-magnon processes are characteristic of
the interaction between longitudinal phonons with magnons
in nearest neighbor Heisenberg models where the exchange
coupling constant is modulated with respect to the lattice
displacements [29]. Our two-magnon-one-phonon resonance
leads to a frequency shift of the magnon and phonon bands that
depends on the magnitude of the elastic and magnetic waves.
The frequency shift also depends on the relative magnitude
of the cutoff frequencies of the two excitations. For the
second case (i.e., linear coupling), the resonance includes only
one phonon and one magnon. The effect of magnetoelastic
coupling results in modifications to the dispersion relations
that do not depend on the magnitude of the waves. We have
also investigated the effect of an external field on that linear
resonant condition. The behavior of the linear system with
respect to the strength of the magnetic field is similar to
that of the nonlinear system. We have demonstrated that,
similarly to observations reported in the literature concerning

the phenomena of resonant spin pumping with coherent elastic
waves [13,15], variation of the strength of an externally applied
magnetic field at a fixed frequency of the elastic wave can
be used to tune the system toward resonance. In addition,
the strength of the external field at resonance increases with
increasing acoustic wave frequency.

In Ref. [24], molecular dynamics simulations of coupled
lattice and spin dynamics in body-centered-cubic iron have
shown a softening of the magnons for all the wave vectors stud-
ied. In contrast, for iron (see Table I), we have observed soft-
ening of the spin waves for long and short wavelength waves
but a hardening for intermediate wavelengths [Fig. 2(b)].
The computational studies also conjectured the existence of
a resonance between longitudinal lattice vibrations and spin
waves of the same frequency and wave number. We have
shown that such a resonant condition arises in the case of linear
interaction between phonons and magnons (case II). However,
in this case, for cubic symmetries, the phonon polarization
is transverse and not longitudinal. We noted in Sec. II that,
for noncubic materials, such a coupling could arise with
longitudinal waves. Such a situation may occur in molecular
dynamics simulations through the instantaneous breaking of
the symmetry of the cubic model. However, direct comparison
with numerical simulations of ferromagnetic materials with
interactions between spin/lattice vibrations [22–24] is clouded
by the fact that computational results arise from the collective
effects of multiple phonon-magnon scattering processes with
differing wave numbers. Our analytical solutions are focused
on the interactions between elastic and spin waves with specific
wave numbers. Nevertheless, by providing analytical solutions
for the spin degrees of freedom and the lattice dynamics in
model ferromagnetic atomic systems, our paper enables a
deeper insight into the complex interplay between magnons
and phonons interacting via the magnetoelastic effect as a
mechanism for spin pumping. This insight offers perspective
in the design of ferromagnetic media that may optimize
the energy conversion between phonons and magnons. In
particular, one may be able to engineer the phonon and magnon
band structures of the ferromagnetic medium to control the
conditions of resonance. We have in mind composite structures
composed of ferromagnetic and normal materials that can be
tailored to exhibit band gaps in their magnon band structures
[30]. Similarly, these types of composites may also act as
phononic crystals that can simultaneously exhibit band gaps
in their phonon band structure [31]. Wave localization resulting
from these anomalous band structures may subsequently
be employed to enhance magnetoelastic interactions and
therefore the efficiency of energy conversion between phonon
and magnons in acoustic spin pumping devices.

APPENDIX

1. Multiple timescale perturbation method applied to case I

We apply the multiple timescale perturbation method [25] to
the nonlinear equations of motion of case I, given by Eq. (15).
We assume that the constant K that couples the spins and
the displacement is small. Subsequently, we expand the spin
degrees of freedom and the displacement in a power series of
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K up to the second order

εn,i = ε
(0)
n,i + Kε

(1)
n,i + K2ε

(2)
n,i , i = x,y,z, (A1a)

un = u(0)
n + Ku(1)

n + K2u(2)
n . (A1b)

The quantities ε
(0)
n,i , ε

(1)
n,i ,ε

(2)
n,i , u

(0)
n , u(1)

n , u(2)
n are functions of

three time-related variables defined as τ0 = t , τ1 = Kt , and
τ2 = K2t [25].

The first- and second-order time derivatives on the left-
hand side of Eqs. (10a)–(10c) and (15) are then rewritten
as

∂2un

∂t2
= ∂2u(0)

n

∂τ0
2

+ K

(
∂2u(1)

n

∂τ0
2

+ 2
∂2u(0)

n

∂τ0∂τ1

)

+K2

(
∂2u(1)

n

∂τ0
2

+ 2
∂2u(1)

n

∂τ0∂τ1
+ 2

∂2u(0)
n

∂τ0∂τ2
+ ∂2u(0)

n

∂τ1
2

)
,

(A2a)

∂ε

∂t
= ∂ε(0)

∂τ0
+ K

(
∂ε(1)

∂τ0
+ ∂ε(0)

∂τ1

)

+K2

(
∂ε(2)

∂τ0
+ ∂ε(1)

∂τ1
+ ∂ε(0)

∂τ2

)
, (A2b)

We insert Eqs. (A2a), (A2b), and (A1a), (A1b) into Eqs. (10)
and (15) and separate the terms that are independent of K

(zeroth-order terms in K), from the first-order terms in K ,
from the terms in K2. This operation leads to three sets of four
equations.

The equations of motion to the zeroth order in K are

∂ε(0)
n,x

∂τ0
= −2

J

�
S0

z

(
ε

(0)
n+1,y − 2ε(0)

n,y + ε
(0)
n−1,y

)
, (A3a)

∂ε(0)
n,y

∂τ0
= +2

J

�
S0

z

(
ε

(0)
n+1,x − 2ε(0)

n,x + ε
(0)
n−1,x

)
, (A3b)

∂ε(0)
n,z

∂τ0
= +2

J

�

(
ε(0)
n,x

(
ε

(0)
n+1,y + ε

(0)
n−1,y

)
− ε(0)

n,y

(
ε

(0)
n+1,x + ε

(0)
n−1,x

))
, (A3c)

∂2u(0)
n

∂τ0
2

= ω2
M

(
u

(0)
n+1 − 2u(0)

n + u
(0)
n−1

)
. (A3d)

We have introduced in Eq. (A3d) the characteristic frequency

ωM =
√

β

m
.

To the first order in K , we obtain

∂ε(1)
n,x

∂τ0
+ ∂ε(0)

n,x

∂τ1
= −2

J

�
S0

z

(
ε

(1)
n+1,y − 2ε(1)

n,y + ε
(1)
n−1,y

) + 2

�
S0

z

[(
u

(0)
n+1 − u(0)

n

)(
ε

(0)
n+1,y − ε(0)

n,y

) − (
u(0)

n − u
(0)
n−1

)(
ε(0)
n,y − ε

(0)
n−1,y

)]
,

(A4a)

∂ε(1)
n,y

∂τ0
+ ∂ε(0)

n,y

∂τ1
= +2

J

�
S0

z

(
ε

(1)
n+1,x − 2ε(1)

n,x + ε
(1)
n−1,x

) − 2

�
S0

z

[(
u

(0)
n+1 − u(0)

n

)(
ε

(0)
n+1,x − ε(0)

n,x

) − (
u(0)

n − u
(0)
n−1

)(
ε(0)
n,x − ε

(0)
n−1,x

)]
,

(A4b)

∂ε(1)
n,z

∂τ0
+ ∂ε(0)

n,z

∂τ1
= 2

J

�

[
ε(1)
n,x

(
ε

(0)
n+1,y + ε

(0)
n−1,y

) + ε(0)
n,x

(
ε

(1)
n+1,y + ε

(1)
n−1,y

) − ε(1)
n,y

(
ε

(0)
n+1,x + ε

(0)
n−1,x

) − ε(0)
n,y

(
ε

(1)
n+1,x + ε

(1)
n−1,x

)]
,

(A4c)

∂2u(1)
n

∂τ0
2

+ 2
∂2u(0)

n

∂τ0∂τ1
= ω2

M

(
u

(1)
n+1 − 2u(1)

n + u
(1)
n−1

) + 2

m
S0

z

(
ε

(0)
n+1,z − ε

(0)
n−1,z

)
+ 2

m

[
ε(0)
n,x

(
ε

(0)
n+1,x − ε

(0)
n−1,x

) + ε(0)
n,y

(
ε

(0)
n+1,y − ε

(0)
n−1,y

)]
, (A4d)

The equations to the order of K2 are

∂ε(2)
n,x

∂τ0
+ ∂ε(1)

n,x

∂τ1
+ ∂ε(0)

n,x

∂τ2
= −2

J

�
S0

z

(
ε

(2)
n+1,y − 2ε(2)

n,y + ε
(2)
n−1,y

) + 2

�
S0

z

[(
u

(0)
n+1 − u(0)

n

)(
ε

(1)
n+1,y − ε(1)

n,y

) + (
u

(1)
n+1 − u(1)

n

)(
ε

(0)
n+1,y − ε(0)

n,y

)
− (

u(0)
n − u

(0)
n−1

)(
ε(1)
n,y − ε

(1)
n−1,y

) − (
u(1)

n − u
(1)
n−1

)(
ε(0)
n,y − ε

(0)
n−1,y

)]
, (A5a)

∂ε(2)
n,y

∂τ0
+ ∂ε(1)

n,y

∂τ1
+ ∂ε(0)

n,y

∂τ2
= +2

J

�
S0

z

(
ε

(2)
n+1,x − 2ε(2)

n,x + ε
(2)
n−1,x

) − 2

�
S0

z

[(
u

(0)
n+1 − u(0)

n

)(
ε

(1)
n+1,x − ε(1)

n,x

)
+ (

u
(1)
n+1 − u(1)

n

)(
ε

(0)
n+1,x − ε(0)

n,x

) − (
u(0)

n − u
(0)
n−1

)(
ε(1)
n,x − ε

(1)
n−1,x

) − (
u(1)

n − u
(1)
n−1

)(
ε(0)
n,x − ε

(0)
n−1,x

)]
,

(A5b)

∂ε(2)
n,z

∂τ0
+ ∂ε(1)

n,z

∂τ1
+ ∂ε(0)

n,z

∂τ2
= 2

J

�

[
ε(2)
n,x

(
ε

(0)
n+1,y + ε

(0)
n−1,y

) + ε(0)
n,x

(
ε

(2)
n+1,y + ε

(2)
n−1,y

) + ε(1)
n,x

(
ε

(1)
n+1,y + ε

(1)
n−1,y

) − ε(2)
n,y

(
ε

(0)
n+1,x + ε

(0)
n−1,x

)
− ε(0)

n,y

(
ε

(2)
n+1,x + ε

(2)
n−1,x

) − ε(1)
n,y

(
ε

(1)
n+1,x + ε

(1)
n−1,x

)]
, (A5c)
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∂2u(2)
n

∂τ0
2

+ 2
∂2u(1)

n

∂τ0∂τ1
+ 2

∂2u(0)
n

∂τ0∂τ2
+ ∂2u(0)

n

∂τ1
2

= ω2
M

(
u

(2)
n+1 − 2u(2)

n + u
(2)
n−1

) + 2

m
S0

z

(
ε

(1)
n+1,z − ε

(1)
n−1,z

) + 2

m

[
ε(0)
n,x

(
ε

(1)
n+1,x − ε

(1)
n−1,x

)
+ ε(1)

n,x

(
ε

(0)
n+1,x − ε

(0)
n−1,x

) + ε(0)
n,y

(
ε

(1)
n+1,y − ε

(1)
n−1,y

) + ε(1)
n,y

(
ε

(0)
n+1,y − ε

(0)
n−1,y

)]
. (A5d)

2. Solutions of the equations of motion in case I

a. Zeroth order in K

Here, we solve the set of Eqs. (A3a)–(A3d). Equations
(A3a)–(A3c) and (A3d) are not coupled, so we can solve them
separately. For Eqs. (A3a) and (A3b), we assume that the x

and y components of the spin degree of freedom are expressed
as

ε(0)
n,x(τ0,τ1,τ2) = X(τ1,τ2)eiknae−iω′

0τ0 + X̄(τ1,τ2)e−iknaeiω′
0τ0 ,

(A6a)

ε(0)
n,y(τ0,τ1,τ2) = Y (τ1,τ2)eiknae−iω′

0τ0 + Ȳ (τ1,τ2)e−iknaeiω′
0τ0 .

(A6b)

In Eqs. (A6a) and (A6b), a stands for the spacing between
two atoms in the chain. Here, X̄ and Ȳ are the complex
conjugates of X and Y . Inserting Eqs. (A6a) and (A6b) into
Eqs. (A3a) and (A3b) yields two sets of linear equations of X

and Y and X̄ and Ȳ . The eigenvalues associated with these sets
of equations are given by

ω′
0 = 8

J

�
S0

z sin2

(
ka

2

)
. (A7)

In the limit of small wave number k, one recovers the usual
quadratic dispersion relation for spin waves or magnons in the
long wavelength. The eigenvectors are found to be Y = −iX

and Ȳ = iX̄. Then, the solutions in Eqs. (A6a) and (A6b) take
the specific form

ε(0)
n,x = εo(τ1,τ2)eiknae−iω′

0τ0 + ε̄0(τ1,τ2)e−iknaeiω′
0τ0 , (A8a)

ε(0)
n,y = −iεo(τ1,τ2)eiknae−iω′

0τ0 + iε̄0(τ1,τ2)e−iknaeiω′
0τ0 ,

(A8b)

where εo is some yet unknown function, and ε̄0 its complex
conjugate.

If one inserts Eqs. (A8a) and (A8b) into Eq. (A3c), the
right-hand side term is analytically zero, and one finds that
ε(0)
n,z is constant. It can be taken to be equal to zero.

Finally, we also chose a general solution for the zeroth order
displacement given by

u(0)
n (τ0,τ1,τ2)

= A0(τ1,τ2)eiknae−iω0τ0 + Ā0(τ1,τ2)e−iknaeiω0τ0 . (A9)

Inserting this expression into the zeroth-order equation of
motion in Eq. (A3d) yields the well-known eigenvalues for
elastic waves or phonons in a monoatomic harmonic chain

ω0 = 2ωM sin

(
ka

2

)
. (A10)

b. First order in K

We can now insert the zeroth-order solutions obtained in the
preceding subsection into the first-order Eqs. (A4a)–(A4d). By

doing this, we restrict our calculation to solutions whereby the
magnons and phonons that interact with each other have the
same wave number k. For instance, Eq. (A4d) can be rewritten
as

∂2u(1)
n

∂τ0
2

− (
u

(1)
n+1 − 2u(1)

n + u
(1)
n−1

)

= 2iω0

(
∂A0

∂τ1
eiknae−iω0τ0 + ∂Ā0

∂τ1
e−iknaeiω0τ0

)
. (A11)

The solution of the homogeneous equation (left-hand side
of the equation equal to zero) is of the form

u
(1)
n,h(τ0,τ1,τ2)

= B0(τ1,τ2)eiknae−iω0τ0 + B̄0(τ1,τ2)e−iknaeiω0τ0 . (A12)

The term in parenthesis on the right-hand side of Eq. (A11)
leads to secular terms unless one sets it to zero by imposing
∂A0
∂τ1

= 0 and ∂Ā0
∂τ1

= 0. This implies that the quantities A0 and
Ā0 are functions of τ2 only. This constrains the zeroth-order
solution [Eq. (A9)] to have the form

u(0)
n (τ0,τ2) = A0(τ2)eiknae−iω0τ0 + Ā0(τ2)e−iknaeiω0τ0 . (A13)

Similarly, the same constraint applies to the solution of the
homogeneous equation [Eq. (A12)]

u
(1)
n,h(τ0,τ2) = B0(τ2)eiknae−iω0τ0 + B̄0(τ2)e−iknaeiω0τ0 .

(A14)

We now solve the first-order equations of motion for the
spin degrees of freedom. We begin with Eq. (A4a). We rewrite
it in the form

∂ε(1)
n,x

∂τ0
+ 2

J

�
S0

z

(
ε

(1)
n+1,y − 2ε(1)

n,y + ε
(1)
n−1,y

)

= −∂ε(0)
n,x

∂τ1
+ 2

�
S0

z

[(
u

(0)
n+1 − u(0)

n

)(
ε

(0)
n+1,y − ε(0)

n,y

)
− (

u(0)
n − u

(0)
n−1

)(
ε(0)
n,y − ε

(0)
n−1,y

)]
. (A15)

The solution of the homogeneous equation is given by the
expression

ε
(1)
n,x,h = η0(τ1,τ2)eiknae−iω′

0τ0 + η̄0(τ1,τ2)e−iknaeiω′
0τ0 .

Inserting Eq. (A8a) into the first term of the right-hand side
of Eq. (A15) will lead to secular terms unless one imposes
the constraints εo(τ1,τ2) = εo(τ2) and ε̄0(τ1,τ2) = ε̄0(τ2). This
results in the reformulation of the zeroth-order solution

ε(0)
n,x = εo(τ2)eiknae−iω′

0τ0 + ε̄0(τ2)e−iknaeiω′
0τ0 (A16)

as well as the reformulation of the homogeneous solution

ε
(1)
n,x,h = η0(τ2)eiknae−iω′

0τ0 + η̄0(τ2)e−iknaeiω′
0τ0 . (A17)

We finally rewrite Eq. (A15) by calculating the term between
the square brackets. After lengthy algebraic manipulations,
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Eq. (A15) becomes

∂ε(1)
n,x

∂τ0
+ 2

J

�
S0

z

(
ε

(1)
n+1,y − 2ε(1)

n,y + ε
(1)
n−1,y

)

= 2
J

�
S0

z 2(sin(2ka) − 2sin(ka))(ε0A0e
2iknae−i(ω0+ω′

0)τ0

+ ε̄0Ā0e
−2iknaei(ω0+ω′

0)τ0 ). (A18)

We proceed in the same way for the equation of motion in
Eq. (A4b). We find that we need to reformulate the zeroth-order
solution

ε(0)
n,y = −iεo(τ2)eiknae−iω′

0τ0 + iε̄0(τ2)e−iknaeiω′
0τ0 (A19)

as well as the homogeneous solution

ε
(1)
n,y,h = −iη0(τ2)eiknae−iω′

0τ0 + iη̄0(τ2)e−iknaeiω′
0τ0 . (A20)

The equation of motion in Eq. (A4b) is rewritten in the
form

∂ε(1)
n,y

∂τ0
− 2

J

�
S0

z

(
ε

(1)
n+1,x − 2ε(1)

n,x + ε
(1)
n−1,x

)
= −2

J

�
S0

z 2i(sin(2ka) − 2sin(ka))(ε0A0e
2iknae−i(ω0+ω′

0)τ0

− ε̄0Ā0e
−2iknaei(ω0+ω′

0)τ0 ). (A21)

Particular solutions of Eqs. (A18) and (A21) can be introduced
in the form

ε(1)
n,x,p = X′(τ2)e2iknae−i(ω0+ω′

0)τ0 + X̄′(τ2)e−2iknaei(ω0+ω′
0)τ0 ,

(A22a)

ε(1)
n,y,p = Y ′(τ2)e2iknae−i(ω0+ω′

0)τ0 + Y ′(τ2)e−2iknaei(ω0+ω′
0)τ0 .

(A22b)

Inserting these particular solutions into Eqs. (A18) and
(A21) and solving for X′,Y ′,X′,Y ′ yields

X′ = −iε0A0f (k), (A23a)

Y ′ = −iX′ = −ε0A0f (k), (A23b)

X′ = iε̄0Ā0f (k), (A23c)

Y ′ = iX′ = −ε̄0Ā0f (k), (A23d)

where we define f (k) = 4
�

S0
z (sin(2ka)−2 sin(ka))

8J
�

S0
z sin2(ka)−(ω0+ω′

0)+iψ
. We have in-

troduced a damping term in the definition of f (k) since its
denominator may become zero. We will take the limit ψ → 0
at the end of our derivation.

Adding the homogeneous and particular solutions gives the
first-order solutions

ε(1)
n,x = η0(τ2)eiknae−iω′

0τ0 + η̄0(τ2)e−iknaeiω′
0τ0 − f (k)(iε0A0e

2iknae−i(ω0+ω′
0)τ0 − iε̄0Ā0e

−2iknaei(ω0+ω′
0)τ0 ), (A24a)

ε(1)
n,y = −iη0(τ2)eiknae−iω′

0τ0 + iη̄0(τ2)e−iknaeiω′
0τ0 − f (k)(ε0A0e

2iknae−i(ω0+ω′
0)τ0 + ε̄0Ā0e

−2iknaei(ω0+ω′
0)τ0 ). (A24b)

We can now address the solutions of the first-order Eq. (A4c). We have to set ∂ε
(0)
n,z

∂τ1
= 0 (i.e., make ε(0)

n,z independent of τ1) to
eliminate secular solutions. Inserting the zeroth- and first-order solutions into Eq. (A4) results in

∂ε(1)
n,z

∂τ0
= 8J

�
f (k)ε0ε̄0(cos(ka) − 2 cos(2ka))(A0e

iknae−iω0τ0 + Ā0e
−iknaeiω0τ0 ). (A25)

Solutions of Eq. (A25) are then easily obtained to within a constant of integration which may be taken equal to zero

ε(1)
n,z = 8J

�
f (k)ε0ε̄0(cos(ka) − 2 cos(2ka))

(
1

iω0

)
(−A0e

iknae−iω0τ0 + Ā0e
−iknaeiω0τ0 ). (A26)

c. Second order in K

We first deal with the Eq. (A5d) for phonons. The terms with derivatives with respect to τ1 are equal to zero. Inserting the
zeroth- and first-order solutions determined previously and after extensive algebraic manipulations we obtain

∂2u(2)
n

∂τ0
2

− ω2
M

(
u

(2)
n+1 − 2u(2)

n + u
(2)
n−1

) = −2
∂2u(0)

n

∂τ0∂τ2
− 8

m
f (k)g(k)ε0ε̄0

(
A0e

iknae−iω0τ0 + Ā0e
−iknaeiω0τ0

)
, (A27)

where the function g(k) is given by the expression

g(k) = 4J

�
S0

z

1

ω0
(cos(ka) − cos(2ka)) sin(ka) + sin(2ka) − sin(ka). (A28)

We subsequently define

A0(τ2) = α(τ2)e−iϕ(τ2),

and

Ā0(τ2) = α(τ2)e+iϕ(τ2).
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With this definition, the term

− 2
∂2u(0)

n

∂τ0∂τ2
= −2

(
−iω0

∂A0(τ2)

∂τ2
eiknae−iω0τ0 + iω0

∂Ā0(τ2)

∂τ2
e−iknaeiω0τ0

)

= eiknae−iω0τ0 2ω0e
−iϕ

(
∂ϕ

∂τ2
α + i

∂α

∂τ2

)
+ e−iknaeiω0τ0 2ω0e

iϕ

(
∂ϕ

∂τ2
α − i

∂α

∂τ2

)
. (A29)

The homogeneous equation (i.e., left-hand term of Eq. (A27) set equal to zero) has solutions of the form eiknae−iω0τ0

and e−iknaeiω0τ0 ; so to avoid secular terms, the right-hand side of Eq. (A27) must be equal to zero. This gives the two
relations

2ω0e
−iϕ

(
∂ϕ

∂τ2
α + i

∂α

∂τ2

)
= 8

m
f (k)g(k)ε0ε̄0αe−iϕ,

and

2ω0e
iϕ

(
∂ϕ

∂τ2
α − i

∂α

∂τ2

)
= 8

m
f (k)g(k)ε0ε̄0αeiϕ.

Since ε0ε̄0 is real, one must have ∂α
∂τ2

= 0, and α = α0 is a constant. Both preceding equations give the same relation

∂ϕ

∂τ2
= 4

mω0
f (k)g(k)ε0ε̄0.

This equation leads to a linear dependency of ϕ on the time τ2 to within an arbitrary constant (which is taken to be zero)

ϕ = 4

mω0
f (k)g(k)ε0ε̄0τ2 = 4

mω0
f (k)g(k)ε0ε̄0K

2τ0 = K2h(k)τ0. (A30)

This implies that the zeroth-order solution given by Eq. (A13) for the displacement includes a frequency shift. The complete
zeroth-order solution for the displacement is now

u(0)
n (τ0,τ2) = α0e

iknae−i(ω0+K2h(k))τ0 + ᾱ0e
−iknaei(ω0+K2h(k))τ0 . (A31)

The frequency of the phonon is shifted from ω0 to ω0 + K2h(k).
We now address the second-order equations of motion for ε(2)

n,x and for ε(2)
n,y ; that is, Eqs. (A5a) and (A5b). For this, we

need to insert the expressions for the complete zeroth-order displacement [Eq. (A31)] and the first-order displacement given
by Eq. (A14). We also need the zeroth-order solutions for ε [Eqs. (A16) and (A19)] and their first-order expressions given by
Eqs. (A24a) and (A24b). Both equations of motion become

∂ε(2)
n,x

∂τ0
+ 2

J

�
S0

z

(
ε

(2)
n+1,y − 2ε(2)

n,y + ε
(2)
n−1,y

)

= −∂ε(0)
n,x

∂τ2
− 4

�
S0

z (sin(2ka) − 2 sin(ka))[(η0A0 + ε0B0)ei2knae−i(ω0+ω′
0)τ0 − (η̄0Ā0 + ε̄0B̄0)e−i2knaei(ω0+ω′

0)τ0 ]

− i
4

�
S0

z f (k)(sin(3ka) − sin(2ka) − sin(ka))
(
ε0A

2
0e

i3knae−i(2ω0+ω′
0)τ0 − ε̄0Ā

2
0e

−i3knaei(2ω0+ω′
0)τ0

)

− i
4

�
S0

z f (k)A0Ā0(sin(2ka) − 2sin(ka))(−εoe
iknae−iω′

0τ0 + ε̄0e
−iknaeiω′

0τ0 ), (A32a)

∂ε(2)
n,y

∂τ0
− 2

J

�
S0

z

(
ε

(2)
n+1,x − 2ε(2)

n,x + ε
(2)
n−1,x

)

= −∂ε(0)
n,y

∂τ2
− i

4

�
S0

z (sin(2ka) − 2 sin(ka))[(η0A0 + ε0B0)ei2knae−i(ω0+ω′
0)τ0 − (η̄0Ā0 + ε̄0B̄0)e−i2knaei(ω0+ω′

0)τ0 ]

− 4

�
S0

z f (k)(sin(3ka) − sin(2ka) − sin(ka))
(
ε0A

2
0e

i3knae−i(2ω0+ω′
0)τ0 + ε̄0Ā

2
0e

−i3knaei(2ω0+ω′
0)τ0

)

+ 4

�
S0

z f (k)A0Ā0(sin(2ka) − 2sin(ka))(εoe
iknae−iω′

0τ0 + ε̄0e
−iknaeiω′

0τ0 ). (A32b)
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Only the terms in eiknae−iω′
0τ0 and e−iknaeiω′

0τ0 will give secular solutions. To eliminate these solutions, we set

0 = −∂ε(0)
n,x

∂τ2
− i

4

�
S0

z f (k)A0Ā0(sin(2ka) − 2sin(ka))(−εoe
iknae−iω′

0τ0 + ε̄0e
−iknaeiω′

0τ0 ),

0 = −∂ε(0)
n,y

∂τ2
+ 4

�
S0

z f (k)A0Ā0(sin(2ka) − 2sin(ka))(εoe
iknae−iω′

0τ0 + ε̄0e
−iknaeiω′

0τ0 ).

Using the expressions previously derived for ε(0)
n,x and ε(0)

n,y , these two conditions reduce to

∂ε0

∂τ2
= i

4

�
S0

z f (k)A0Ā0(sin(2ka) − 2sin(ka))ε0(τ2),

∂ε̄0

∂τ2
= −i

4

�
S0

z f (k)A0Ā0(sin(2ka) − 2sin(ka))ε̄0(τ2).

Similarly to finding the second-order solution for the displacement, we define ε0(τ2) = λ(τ2)e−iϕ′(τ2) and ε̄0(τ2) = λ(τ2)eiϕ′(τ2).
Inserting these expressions into the preceding conditions leads to taking λ(τ2) = λ0 (i.e., a constant) and

ϕ′(τ2) = −4

�
S0

z f (k)α2
0(sin(2ka) − 2 sin(ka))τ2 = K2h′(k)τ0. (A33)

To arrive at that equation, we have assumed that the constant of integration is zero.
Equation (A33) introduces a correction to the zeroth-order solutions for ε(0)

n,x and ε(0)
n,y which become

ε(0)
n,x = λoe

iknae−i(ω′
0+K2h′(k))τ0 + λ̄0e

−iknaei(ω′
0+K2h′(k))τ0 , (A34a)

ε(0)
n,y = −iλoe

iknae−i(ω′
0+K2h′(k))τ0 + iλ̄0(τ2)e−iknaei(ω′

0+K2h′(k))τ0 . (A34b)

Similarly to the phonons, the magnons are frequency shifted.
The denominator of the function f (k) was written as

d(k) = 8
J

�
S0

z sin2(ka) − (ω0 + ω′
0) + iψ (A35)

The introduction of the small damping iψ enables us to overcome the divergence at the resonance. Indeed, we can take the
following limit using Sokhotski’s formula [32]

limψ→0
1

d(k)
= limψ→0

1

8 J
�
S0

z sin2(ka) − (ω0(k) + ω′
0(k)) + iψ

=
[

1

8 J
�
S0

z sin2(ka) − (ω0(k) + ω′
0(k))

]
pv

− iπδ

(
8
J

�
S0

z sin2(ka) − (ω0(k) + ω′
0(k)

)
.

In the previous equation, the bracket []pv means Cauchy’s principal value.
The shift in frequency of the magnons and phonons becomes finite with a damping at the resonance. The imaginary term with

the delta function leads to a finite lifetime for the phonon and magnon excitations at the resonance.
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