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Wavelet-based spatial and temporal multiscaling:
Bridging the atomistic and continuum space and time scales
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A wavelet-based multiscale methodology is presented that naturally addresses time scaling in addition to
spatial scaling. The method combines recently developed atomistic-continuum models and wavelet analysis.
An atomistic one-dimensional harmonic crystal is coupled to a one-dimensional continuum. The methodology
is illustrated through analysis of the dispersion relation, which is highly dispersive at small spatial scales and,
as usual, nondispersive at large~continuum! scales. It is feasible to obtain the complete dispersion relation
through the combination of the atomistic and the continuum analyses. Wavelet analysis in this work is not only
used for bridging the atomistic and continuum scales but also for efficiently extracting the dispersion relation
from the solution of wave propagation problems.
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I. INTRODUCTION

Multiscaling has recently received increasing attention
several branches of physical science. In materials, a la
part of the work is devoted to modern simulation metho
involving coupling of length scales and sometimes tim
scales. Simulation methods for coupling length scales ca
characterized as either serial or concurrent. In serial meth
a set of calculations at a fundamental level~small length
scale! is used to evaluate parameters for use in a phen
enological model at a longer length scale. For example,
mistic simulations can be used to deduce constitutive beh
ior of finite elements, which are then used to simulate larg
scale problems.1 Several research groups are presen
working productively on such methods, and several appl
tions can be found.2–5

Concurrent methods rely on coupling seamlessly differ
computational methodologies applied to different regions
a material. For example, crack propagation is a problem
was tackled early on by multiscale methods.1,6 Atomic simu-
lation techniques~molecular dynamics! were used to mode
the crack tip where large deformations~even bond breakage!
occur and continuum approaches@finite-element~FE! meth-
ods# were used to model the region far away from the cra
tip.

Time scaling is of fundamental importance for ma
physical processes including diffusion or dynamics of m
romolecular systems. These are systems with relaxation
cesses with vastly different scales~e.g., bond vibration ver-
sus macromolecule conformational change!. Standard
atomistic simulation methods are constrained by the sho
of these time scales. Surface diffusion has been addre
rigorously by Voter and co-workers~review paper7!.8,9 Here,
based on transition-state theory, state-to-state transitions
obtained by several methodologies~accelerated dynamic
methods such as hyperdynamics, parallel replica dynam
temperature-accelerated dynamics!, enabling the simulation
of diffusion over extended time intervals. In Sec. V w
briefly discuss possible connections of these works to the
0163-1829/2003/68~2!/024105~8!/$20.00 68 0241
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reported herein. We also note attempts to use wavelet an
sis for detecting transitions, metastable structures, and
compressing data in such time-scaling works10 and for mo-
lecular dynamics simulations of polymer chains.11

A novel multiscale method based on wavelets has b
examined, up to now addressing spatial scales.12–15Here, the
inherent capabilities of wavelet analysis to represent obje
in a multiscale fashion are fully taken advantage of. T
wavelet-based approach establishes a bridge between
nomena at different scales. Let us explain the process w
respect to a ‘‘simple’’ material-related problem, i.e., consid
a material for which porosity is the~only! source of hetero-
geneity and it manifests itself differently at various scal
For illustration purposes, consider a two-scale heterogene
at a scale large enough only the spatial distribution
‘‘large’’ pores is observable, while at small scales that of t
‘‘small’’ pores can be seen. Even if the structure of the po
at these two distinct cases is fully specified or observed,
difficult to compare the role of the porosity at each of t
two scales on overall material properties. In other words,
say, mechanical or electrical breakdown~failure!, based
solely on the spatial distribution of pores, it is difficult t
decide whether the large or the small pores are of most
portance. Furthermore, when the spatial scales extend
yond two orders of magnitude, numerical simulations b
come, in general, impossible~with present computers!.

In order to identify the role of microstructure~two-scale
porosity, extendable to more general cases! at each scale,
consider the statistics of the wavelet transform of, say,
strain field for a deformation problem at one of the tw
scales. This information forms part of the wavelet transfo
of the entire medium, i.e., that consisting of pores at b
distinct scales. By obtaining the wavelet transform at b
scales and compounding them together, we have the stati
of the wavelet transform of the medium at all scales. T
‘‘compound’’ wavelet transform contains information on th
entire medium, which can be used, for example, for cra
initiation studies; it accounts for full interaction betwee
scales. This process is used for identification of domin
scales13 and is extended to a medium with pores and inc
©2003 The American Physical Society05-1
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sions at diverse scales.14 Also, application to an aluminum
alloy, A356, is demonstrated,14 where the inclusions are th
silicon particles, while the pores or oxides are at a sc
much larger than those of the inclusions. Results from
work14 agree well with recent experimental reports on cra
initiation in A356 where the interplay of pores, inclusion
and boundaries is observed experimentally, yet not expla
on a fundamental basis. A similar process has been use
studying grain growth at various scales by bridging a m
lecular dynamics~MD! and a Potts statistical model for gra
growth, each applicable at two diverse range of spa
scales12 and for self-affine media.15

In short, the wavelet-based multiscaling compounds
wavelet coefficients produced from the microstructure a
appears at each scale. The compounded information
characterizes the microstructure and relevant variables ov
range of scales that is the union of the scales available.

This paper reports a study that extends the wavelet-ba
spatial multiscaling approach to temporal scaling. The ma
theme of the paper is time scaling. Recently develop
atomic-continuum~AC! models are very effective in analyz
ing certain problems with spatial scaling, yet they do no
inherently—address time scaling. The herein reported c
bination of AC with wavelet analysis makes time scali
possible, and this furnishes the central contribution of t
work.

The remainder of the paper first addresses issues a
time scaling, then reviews the wavelet-based multisca
method, and finally presents the approach to time scaling
results. The main purpose of the paper is to illustrate
time-scaling methodology, and this is done through a o
dimensional~1D! archetype problem. The existence of an
lytical solution for the problem examined herein, at both t
atomic and continuum scales, helps greatly in illustrating a
verifying the methodology in a lucid fashion. Extensions
other problems and the generality of the method are
cussed towards the end of the paper.

II. TIME SCALING ISSUES

Time scaling becomes important when the spatiotemp
scales to be linked in a multiscale framework extend fr
the atomic scale all the way to continuum ones. We fi
address why time scaling is important in such cases.

In continuum theories, the fundamental properties such
stress, strain, and constitutive parameters are thermo
chanical quantities. These quantities are defined such
they satisfy the thermodynamic and long-time limits. That
these quantities represent averages over a large enough
ber of atomic constituents and nearly infinite time. Calcul
ing some of these quantities from atomistic models does
present significant difficulties as long as large enough s
tems and long enough times are used. Problems in brid
continuum, e.g., FE and atomistic regions may arise w
the continuum or part of the continuum region is push
outside the thermodynamic and long-time limits. This m
be the case in many of the methodologies briefly review
above when the finite elements are reduced to ‘‘atomic’’
mensions. Even when this is not the case, other problems
02410
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present, and a clear demonstration of such problems ha
do with dispersion relations, where the atomistic and c
tinuum systems overlap only in the long wavelength limit16

Within the AC framework, atomistic simulations are used f
identifying the constitutive behavior of the FE and it is d
ficult to extract the dispersion relation for scales~wave-
lengths! spanning from interatomic distances to macrosco
~continuum! ones. Thus, in the AC models, for exampl
there should be time scaling in addition to the dynamic fe
ing of information from small scales~atomistic! to large ones
~continuum!. In other words, for short time scales one shou
look at atomistic simulations and for long ones at continu
ones, with a rigorous coupling of time scales.

III. WAVELET ANALYSIS AND THE COMPOUND
WAVELET MATRIX

Wavelet analysis is key to this work, and there are seve
publications on this subject. A variety of different wavel
transforms exists, yet in every case the wavelets are der
from basic templates by taking scaled versions and put
them in many different positions; choosing an appropri
wavelet family for a specific problem is, in many respec
similar to choosing an appropriate finite element for a
application. The complete family of an elementary functi
contains large scale and fine scale wavelets. The major
vantage is that it enables one to see broad features on a
scale while studying fine features one small piece at a ti
so that the interaction between small and large-scale feat
can be studied.

In one dimension~extendable to higher ones! a wavelet
c(x) transforms a fluctuating functionf (x)17:

Wf~a,b!5E
2`

`

f ~x!ca,b~x! dx. ~1!

The two-parameter family of functions, ca,b(x)
5(1/Aa)c(x2b/a) is obtained from a single one,c, called
the mother wavelet, through dilatations by the scaling fac
a and translations by the factorb. The factor 1/Aa is included
for normalization. The parametera can take any positive rea
value, and the fluctuations off (x) at positionb are measured
at the scalea. When discretized, wavelet analysis can
performed with fast algorithms.

Given the wavelet coefficientsWf(a,b) associated with a
function f, it is possible to reconstructf at a range of scales
betweens1 ands2 (s1<s2) through the inversion formula

f s1 ,s2
~x!5

1

cc
E

s1

s2E
2`

`

Wf~a,b!ca,b~x!db
da

a2 ~2!

and settings1→0 and s2→`. A two-dimensional wavelet
transform includes transforms in thex direction, they direc-
tion, and in the diagonalx,y direction. For example, given
an image of 5123512 pixels, the wavelet transform consis
of three 2563256 matrices~one in each direction!, three
1283128 matrices, and so on; each decomposition leve
at half the resolution from the previous one. The final lev
of decomposition represents the image at the coar
resolution.
5-2
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WAVELET-BASED SPATIAL AND TEMPORAL . . . PHYSICAL REVIEW B 68, 024105 ~2003!
Given a function~e.g., the spatial distribution of a princ
pal strain in a material with a hierarchical microstructure!, its
features over a range of length scales can be studied
wavelet analysis. Wavelets enable us to overcome the
mense difficulty of performing numerical simulations o
problems containing features at scales spanning more
two orders of magnitude. It is feasible, however, to perfo
appropriate simulations at various scales and thus obtain
function as it appears at these scales. The information ga
at each of the scales is then used to synthesize the com
function.

The compound wavelet matrix~CWM! has been pre-
sented in detail elsewhere.12 We briefly present the CWM
here through an example relevant to the present work, for
sake of being as self-contained as possible; further, e
though the example addresses spatial scaling only, it all
for an easily understandable transition to time scaling.

Let us consider a two-dimensional~2D! analysis for the
purpose of illustration; it ends up that forming the CWM f
2D spatial analysis is conceptually equivalent to perform
1D spatial analysis with time scaling. At a coarse scale
problem, e.g., the grain growth problem12 or a wave propa-
gation problem such as that presented in the following s
tion, involving a ‘‘large’’ system is solved using continuum
theories, e.g., FE. Next we consider a smaller system and
same problem is solved using molecular dynamics~MD!.
Within a statistical ensemble framework, the set of wave
coefficients from each system represents the problem at
different scale ranges. However, the large system does
provide information on small scales and the small syst
does not provide information on large scales. Next the in
mation gained from the large and small system is combi
to form the ‘‘compounded wavelet matrix.’’ In 2D, the wave
let transform comprises of one in thex, one in they, and one
in the x-y direction, as shown in Fig. 1; Fig. 1~a! shows
~schematically! the wavelet coefficients, obtained from th
relevant analysis of the smaller system and Fig. 1~b! shows
those of the larger system.

SubmatrixA shown in Fig. 1~b! represents details appea
ing at a certain discretization scale of the small system.
same discretization scale for the large system is shown
submatrix A in Fig. 1~b!. By making the substitutions a
indicated by the arrows, the compound matrix has inform
tion at those scales not ‘‘seen’’ by the larger system, yet s
by the smaller one. All the corresponding matrices~those
with corresponding scale and discretization! are substituted;
for simplicity, only three such substitutions are shown in F
1. Hence, the compound matrix is a representation of
problem over a range of scales made by the union of
scales of the smaller and larger systems. Of course,
small-scale and the large-scale systems should have m
mum overlap such that the full compound matrix can
built; this is addressed extensively elsewhere.12 Alternatively,
or equivalently, depending on the scales addressed by
system, the CWM can be built as shown in Fig. 2.

The process can naturally be extended to include t
scaling. Consider a spatially 1D problem such as that
scribed above. The CWM, as the ones in Figs. 1 and 2,
be built, but now the vertical axis is time, and the horizon
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axis is the spatial variable of the problem. At large spa
and time scales@the ‘‘boxes’’ at the lower left corner of Fig.
1~b!#, the compound matrix is filled in from the solution o
the large system. At fine spatial and temporal scales,
solution of the small system fill in the relevant boxes@boxes
in the upper right part of Fig. 1~b!#. The process is statistica
and will yield full information on the problem at hand. Th
above process can be extended to higher spatial dimens
For example, a spatially 2D can be addressed, but, now,
spatial/temporal compound wavelet matrix becomes three
mensional.

IV. TIME SCALING ILLUSTRATION:
DISPERSION RELATION

The wavelet-based multiscale method is not like the A
ones, where information at large scales is fed from sm

FIG. 1. Wavelet compound matrix:~a! wavelet coefficients from
a small system;~b! from a large system. Arrows indicate the su
stitution of matrices in forming the compound matrix. Only thr
such substitutions are shown for illustration.

FIG. 2. ~a! Wavelet coefficients from small system;~b! from
large system;~c! CWM. For illustration, only a few schematic sub
stitutions are indicated by the arrows in forming the CWM.
5-3
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G. FRANTZISKONIS AND P. DEYMIER PHYSICAL REVIEW B68, 024105 ~2003!
scales. The wavelet method possesses an important attri
i.e., time scaling can be naturally embedded in the meth
something very difficult to do using serial~AC! multiscaling.
At the same time, when dynamic interaction between sc
is appropriate, the wavelet method combined with AC on
provides a powerful multiscaling method. Here is what
sults by combining AC methods and wavelet-based ones
lustrated in this paper through dispersion relations; ot
problems can be handled similarly.

The concepts are herein implemented and demonstr
through 1D idealizations. For this purpose, a 1D FE dyna
analysis of a bar is combined with the so-called monato
Bravais lattice analysis, appearing in solid state physics
books.16 The Bravais lattice is in a sense a 1D molecu
dynamics~MD! analysis tool and consists of a 1D chain
atoms each of massM connected with linear springs of stiff
nessK. Figure 3 illustrates the problem.

The atomistic system in this case predicts a dispers
relation of the form

c~v!5
auvu

sin21@12~M /2K !v2#
, ~3!

where a denotes the interatomic spacing,v denotes fre-
quency, andc is the phase velocity of the wave. In solid sta
physics literature, usually the dispersion relation is expres
as the dependence of frequency on wave number. From
dependence for the monatomic lattice,16 Eq. ~3! can be easily
derived. This relation yieldsc5const only for very small
frequencies, i.e., in the continuum limit. The AC meth
cannot predict this kind of dispersion since the atomis
simulations are used in this case for obtaining the cons
tive parameters. But, the combination of AC and wavel
analysis can.

Before presenting results, we comment that the proces
combining wavelet analysis and AC does not change the
process~minor adjustments to the size of the finite eleme
and the time steps for efficient overlapping in building t
compound wavelet matrix should be implemented!. The big
difference with performing an AC analysis alone is that n
information from the atomic system in each finite elemen
retained~in addition to the constitutive parameters! which is
used in building the compound wavelet matrix.

The dispersion relation~3! for a monatomic lattice for a
set of atoms of massM distributed along a line at point
separated by distancea and connected by springs of stiffne
K is analytical. The goal of this paper is to compound inf
mation from the lattice and from continuum analysis in ord
to obtain the complete dispersion relation. Thus, we cons
a problem such that in Fig. 3, that is too large to be solved
the atomic model. Yet, by compounding information fro

FIG. 3. An illustrative representation of a 1D system consist
of finite elements; the boxes represent finite elements, each c
sponding to a monatomic lattice cell.
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the atomistic and the continuum analysis, it is demonstra
here that the actual problem~large atomistic system! can be
approximated satisfactorily.

Of course, for the illustrative purpose of this paper, w
solve a large atomic system, and then verify that the co
pounded information from small atomic systems and c
tinuum analysis can recover the dispersion relation.

A. Results

1. Dispersion relation: Atomistic model

For the ‘‘large’’ atomic system we consider 4000 atoms
a monatomic lattice using periodic boundary condition
Typically, the dispersion relation would be obtained fro
such a system by exciting a certain frequency at a point
receiving the traveling wave at another point. The arriv
time would then provide the phase velocity for that spec
frequency. Repeating the process for several frequen
would yield the dispersion relation. Here, however, we ta
advantage of the properties of the wavelet transform
avoid such a tedious process. We excite a point in a lattice
a d-function displacement, thus propagating all frequenc
receive the signal at some distance from that point and
wavelet analysis to deduce the dispersion relation.

We use unit values forK, M, anda, and excite the atom a
position 2000 by 131023 units of displacement, for the firs
time increment only, i.e., we impose ad function at atom
2000. Using a time increment of 531023 we receive the
signal at the atom in position 1500. Figure 4 shows the
ceived signal.

The signal contains 65 5365216 points; thus there are 16
scales available. We use biorthogonal spline wavelets of
der 10 and 4~Ref. 17! and Fig. 5 shows the wavelet coeffi
cients in scale versus time plot. Note that the majority
significant coefficients is concentrated in the lower~coarser!
scales. Figure 6 shows the coefficients for scale 7 and s
10.

Each scale in the wavelet transform represents the de
that appear in the range from the previous scale to the n
one. Thus, the wavelet coefficients, e.g., those in Fig. 7, r
resent the wave propagated within the corresponding ra
of frequencies. Then, since we have a range of frequenc
any velocity measured from such wavelet coefficients is
group velocity rather than the phase velocity of a fix

g
re-

FIG. 4. Signal received at atom 1500 from thed-function exci-
tation at atom 2000.
5-4
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WAVELET-BASED SPATIAL AND TEMPORAL . . . PHYSICAL REVIEW B 68, 024105 ~2003!
frequency.18 In order to identify the dispersion relation from
the wavelet coefficients, it is convenient to express it
terms of frequency as a function of the time of arrival of t
signal at a fixed distance, proportional to 1/cg , cg denoting
the group velocity. WithSdenoting such a fixed distance an
for M, K equal to unity, the dispersion relation is express
as

FIG. 5. Plot of the wavelet coefficients obtained from the sig
shown in Fig. 4. The gray scale ranges from the maximum posi
value ~white! to the maximum negative value~black!.

FIG. 6. Wavelet coefficients for scale 7~a! and 10~b!.
02410
d

Tg /S51/cg5
1

aA12 1
4 v2

. ~4!

From the wavelet coefficients, we identify the first peak
the signal at each scale which exceeds a cutoff chosen t
1029 for the present problem. This process leads to Fig
where scalek ~such that 2k;v) is plotted against 1/cg . Note
that for scalesk greater than 14 the wavelet coefficients a
practically null, indicating that the group velocities at th
corresponding frequencies tend to zero, which is true w
the wavelength approaches the interatomic distancea. Small
scales~low frequencies! quickly approach the continuum
limit where the group velocity is the same as the phase
locity; those waves arrive first as is clear from Fig. 7. Als
in Fig. 7 we compare the wavelet-based results to analyt
ones~detailed above, i.e., Eqn. 4!. At this stage it is noted
that we have used the wavelet transform of a single w
propagation problem to identify the dispersion relation n
merically. This process is severely advantageous to ‘‘usu
methods that solve a large number of wave propaga
problems, i.e., at a large number of single frequency or n
row band pulses and measuring the time of arrival of
wave at a fixed distance.

l
e

FIG. 7. Plot of scalek vs 1/cg . Dot line, as identified from the
wavelet coefficients at several scalesk. Solid line, from analytical
solution.

FIG. 8. d-function signal.
5-5
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G. FRANTZISKONIS AND P. DEYMIER PHYSICAL REVIEW B68, 024105 ~2003!
2. Dispersion relation: Continuum model

Continuum theories show no dispersion for homogene
media, i.e., the phase velocity is identical to the group vel
ity and they are both independent of frequency. Thus, a d
function type of disturbance propagates as is. Numerica
we consider a problem similar to the one for the monatom
lattice above, but it is now solved within a continuum fram
work. For a homogeneous system, AC processes provide
needed elasticity modulus, a constant for the simple cas
hand. It is interesting to see whether the wavelet anal
process captures the dispersion relation appropriately.
consider then a delta function signal arriving at the sa
fixed distance as in the monatomic lattice and perform
wavelet transform of the signal. For comparison, we util
the same number of discretization points as in the monato
lattice, and Fig. 8 shows the relevant signal.

Figure 9 shows the wavelet coefficients in scale time a
Fig. 10 shows the coefficients for scale 8 and scale 10. U
the same process for identifyingTg as in the monatomic

FIG. 9. Plot of the wavelet coefficients obtained from the sig
shown in Fig. 8. The gray scale ranges from the maximum posi
value ~black! to the maximum negative value~white!.
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lattice case, the wavelet coefficients yield a constant valu
Tg , i.e., independent of scalek.

B. Compounding the atomistic and continuum analyses

The atomistic and continuum analyses presented in
two previous subsections can be compounded as dem
strated in this section. The idea is that, in general, atomi
models address small systems~within the capability of com-
puters! while continuum models address large ones. Th
when a problem such as that of Fig. 3 is solved using an
multiscale framework, the atomistic simulations in each
can provide the variables needed for solution of the c
tinuum ~large! problem. For the illustration problem ad
dressed herein, such a variable is the elasticity modulus.
obtaining the dispersion relation of the medium, for examp
would require solution of the entire or of a large enou
medium ~Fig. 3! using the atomistic model. This, howeve
is, in general, impossible; if it were possible, there would
no need to use AC processes. Of course, for the illustra
purposes of this work a large atomistic one-dimensional s
tem that yields the complete dispersion relation is solva
~Sec. IV A!. Yet, we formulate and examine the compoun
ing process for this problem in order to be able to comp
results from a large atomistic system to those from inform
tion by compounding the atomistic and continuum system

The CWM can be constructed as illustrated in Fig. 1 or
but now the vertical axis denotes time and the horizontal a
denotes the spatial variable of the problem,x. However, for
the illustrative purpose of this paper, i.e., for determining
dispersion relation of the system, time scaling can be eff
tively demonstrated by compounding a signal such as tha
Fig. 4 with that of Fig. 8. The extent of a signal, such as t
in Fig. 4, depends on the size of the atomistic systems u
which are embedded in each of the finite elements, as we
on the number of time steps used in the atomistic syst
Thus, the size of the atomistic system that can be sol
efficiently dictates the size of the finite elements. Further,
total number of time steps used in the atomistic system m
be such that the compound information yields the dispers
relation satisfactorily. This is explained further in the follow
ing.

l
e

FIG. 10. Wavelet coefficients for scale 8~a! and 10~b!.
5-6
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FIG. 11. Comparison of dispersion curve obtained from the compounded wavelet coefficients and that of Fig. 8.~a! m512, ~b! m
511, ~c! m58. Solid line, as identified from the compounding process. Dot line, as identified from the wavelet coefficients at severa
k, Fig. 8.
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We compound the wavelet transforms, i.e., that of Fig
and that of Fig. 9. For small scalesk we use Fig. 9, and for
large k we use Fig. 5. Letm denote the value of that sca
such that for

k<m ~5!

the wavelet coefficients from the continuum formulation a
used, and for

k.m ~6!

the wavelet coefficients from the atomistic system are us
The value ofm depends on the time steps in the atomis
system which, in turn, depends on its spatial size~number of
atoms! since the restriction here is computer power. For
ample,m59 implies that only time scales greater than 9 c
be captured by the atomistic system, and for all lower ti
scales the continuum system applies.

Figure 11 compares the dispersion curve obtained fr
the compounded wavelet coefficients and that of Fig. 8. N
that the above process of compounding wavelet coefficie
is not statistical, as would be the general case, e.g., dea
with problems in higher spatial dimensions with nonhom
geneous material structure. For the homogeneous mat
case examined, and for the dispersion relation, it is poss
to perform the inverse wavelet transform of the compoun
wavelet coefficients and thus obtain a signal, i.e., the
ceived wave at a certain position. Figure 12 shows the sig
evaluated this way form58. The correlation coefficient be
tween this signal and that of Fig. 4 has also been evalu
02410
5
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and it was found to be 0.897~correlation coefficient equal to
1 indicates identical signals!. Some of the high amplitude
are ‘‘filtered out’’ in the process, yet, overall, the basic ch
acteristics of the signal are reconstructed well. Form511
this correlation coefficient reduces to 0.528, and form larger
than that the coefficient of correlation drops quickly.

V. CONCLUSIONS, EXTENSIONS, LIMITATIONS,
AND FUTURE WORK

Wavelets and the formation of the compound wavelet m
trix allow for a natural way to address time scaling within
spatiotemporal multiscale framework. This is illustrated
the present paper by addressing the dispersion relation i
atomistic and in a continuum system, both in one spa

FIG. 12. Signal produced by the inverse wavelet transform
the compounded wavelet coefficients form58.
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G. FRANTZISKONIS AND P. DEYMIER PHYSICAL REVIEW B68, 024105 ~2003!
dimension. Even though this problem is relatively simple
address, especially since the analytical expression for the
persion relation is known, the purpose of the paper is
illustrate the time scaling process. When dynamics are
portant, the method can be naturally combined with A
models. The process of combining wavelet analysis and
does not change the AC process~minor adjustments to the
size of the finite elements and the time steps for effici
overlapping in building the compound wavelet matrix shou
be implemented!. The big difference with performing an AC
analysis alone is that now information from the atomic s
tem in each finite element is retained~in addition to the
constitutive parameters! which is used in building the com
pound wavelet matrix. The process is extendable to non
mogeneous systems in one and higher spatial dimens
where the statistical nature of the process and the problem
addresses has to be stressed. Obvious extensions are h
spatial dimensions for wave propagation problems with
plications in shock-wave physics, nondestructive mate
evaluation, high frequency acoustic microscopy, acou
medical imaging, etc. In addition to wave propagation,
wavelet-based approach presented here can address s
physical problems where vastly different time scales play
important role. We briefly discuss such an extension to
simulation of diffusion in particular. Diffusion problems ca
often be studied with molecular dynamics~MD! where com-
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