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Wavelet-based spatial and temporal multiscaling:
Bridging the atomistic and continuum space and time scales
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A wavelet-based multiscale methodology is presented that naturally addresses time scaling in addition to
spatial scaling. The method combines recently developed atomistic-continuum models and wavelet analysis.
An atomistic one-dimensional harmonic crystal is coupled to a one-dimensional continuum. The methodology
is illustrated through analysis of the dispersion relation, which is highly dispersive at small spatial scales and,
as usual, nondispersive at largeontinuun) scales. It is feasible to obtain the complete dispersion relation
through the combination of the atomistic and the continuum analyses. Wavelet analysis in this work is not only
used for bridging the atomistic and continuum scales but also for efficiently extracting the dispersion relation
from the solution of wave propagation problems.
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[. INTRODUCTION reported herein. We also note attempts to use wavelet analy-
sis for detecting transitions, metastable structures, and for
Multiscaling has recently received increasing attention incompressing data in such time-scaling wdfkand for mo-
several branches of physical science. In materials, a larg€cular dynamics simulations of polymer chaffs.
part of the work is devoted to modern simulation methods A novel multiscale method based on wavelets has been
involving coupling of length scales and sometimes time€xamined, up to now addressing spatial sc&leS’Here, the
scales. Simulation methods for coupling length scales can b!@herent qapabilities .of wavelet analysis to represent objects
characterized as either serial or concurrent. In serial methodd @ Multiscale fashion are fully taken advantage of. The
a set of calculations at a fundamental levefall length wavelet-based approach establishes a bridge between phe-

scald is used to evaluate parameters for use in a phenon{]omena at different scales. Let us explain the process with

enological model at a longer length scale. For example, ator_espect _to a “simple” material-_related problem, i.e., consider
mistic simulations can be used to deduce constitutive behay: ma.tenal fof Wh'ch poroslty IS t_h(z)nly) source C.)f hetero-
ior of finite elements, which are then used to simulate Iargergem.alty an(_j it manifests |tself_ differently at various scales.
scale problems Seileral research groups are present For illustration purposes, consider a two-scale heterogeneity;

i ; Wat a scale large enough only the spatial distribution of
working productively on such methods, and several app"ca"large” pores is observable, while at small scales that of the

tions can be found™® _ _ “small” pores can be seen. Even if the structure of the pores

Concurrent methods rely on coupling seamlessly different; hese two distinct cases is fully specified or observed, it is
computational methodologies applied to different regions ofjifficult to compare the role of the porosity at each of the
a material. For example, crack propagation is a problem tha{yo scales on overall material properties. In other words, for,
was tackled early on by multiscale methddsAtomic simu- say, mechanical or electrical breakdowfailure), based
lation techniquegmolecular dynamigswere used to model solely on the spatial distribution of pores, it is difficult to
the crack tip where large deformatiofe/en bond breakage decide whether the large or the small pores are of most im-
occur and continuum approachimite-element(FE) meth-  portance. Furthermore, when the spatial scales extend be-
ods] were used to model the region far away from the crackyond two orders of magnitude, numerical simulations be-
tip. come, in general, impossiblgvith present computers

Time scaling is of fundamental importance for many In order to identify the role of microstructuigwo-scale
physical processes including diffusion or dynamics of mac-orosity, extendable to more general casaseach scale,
romolecular systems. These are systems with relaxation pr@onsider the statistics of the wavelet transform of, say, the
cesses with vastly different scalés.g., bond vibration ver- strain field for a deformation problem at one of the two
sus macromolecule conformational changeStandard scales. This information forms part of the wavelet transform
atomistic simulation methods are constrained by the shortesif the entire medium, i.e., that consisting of pores at both
of these time scales. Surface diffusion has been addressdiktinct scales. By obtaining the wavelet transform at both
rigorously by Voter and co-workerseview papeh.2®Here,  scales and compounding them together, we have the statistics
based on transition-state theory, state-to-state transitions ao# the wavelet transform of the medium at all scales. This
obtained by several methodologi¢accelerated dynamics “compound” wavelet transform contains information on the
methods such as hyperdynamics, parallel replica dynamicgntire medium, which can be used, for example, for crack
temperature-accelerated dynamjosnabling the simulation initiation studies; it accounts for full interaction between
of diffusion over extended time intervals. In Sec. V we scales. This process is used for identification of dominant
briefly discuss possible connections of these works to the onscaled® and is extended to a medium with pores and inclu-
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sions at diverse scalé$Also, application to an aluminum present, and a clear demonstration of such problems has to
alloy, A356, is demonstrated,where the inclusions are the do with dispersion relations, where the atomistic and con-
silicon particles, while the pores or oxides are at a scaléinuum systems overlap only in the long wavelength litfit.
much larger than those of the inclusions. Results from thigVithin the AC framework, atomistic simulations are used for
work'* agree well with recent experimental reports on crackidentifying the constitutive behavior of the FE and it is dif-
initiation in A356 where the interplay of pores, inclusions, ficult to extract the dispersion relation for scalésave-
and boundaries is observed experimentally, yet not explaineléngthg spanning from interatomic distances to macroscopic
on a fundamental basis. A similar process has been used fécontinuum ones. Thus, in the AC models, for example,
studying grain growth at various scales by bridging a mo-there should be time scaling in addition to the dynamic feed-
lecular dynamicgMD) and a Potts statistical model for grain ing of information from small scalggtomistig to large ones
growth, each applicable at two diverse range of spatialcontinuum. In other words, for short time scales one should
scale$? and for self-affine medi& look at atomistic simulations and for long ones at continuum

In short, the wavelet-based multiscaling compounds thenes, with a rigorous coupling of time scales.
wavelet coefficients produced from the microstructure as it
appears at each scale. The compounded information then 1. WAVELET ANALYSIS AND THE COMPOUND
characterizes the microstructure and relevant variables over a WAVELET MATRIX
range of scales that is the union of the scales available. o )

This paper reports a study that extends the wavelet-based Wavelet analysis is key to this work, and there are several
spatial multiscaling approach to temporal scaling. The majoPublications on this subject. A variety of different wavelet
theme of the paper is time scaling. Recently developedlranSformS exists, yet in every case the wayelets are denyed
atomic-continuum(AC) models are very effective in analyz- from basic templates by taking scaled versions and putting
ing certain problems with spatial scaling, yet they do not—them in many different positions; choosing an appropriate
inherently—address time scaling. The herein reported comavelet family for a specific problem is, in many respects,
bination of AC with wavelet analysis makes time scalingSimilar to choosing an appropriate finite element for a FE
possible, and this furnishes the central contribution of thisaPplication. The complete family of an elementary function
work. contains large scale and fine scale wavelets. The major ad-

The remainder of the paper first addresses issues abo¥@ntage i_s that it (_enab_les one to see broad fea_tures ona wide
time scaling, then reviews the wavelet-based multiscalingcale while studying fine features one small piece at a time,
method, and finally presents the approach to time scaling antP that the interaction between small and large-scale features
results. The main purpose of the paper is to illustrate th&an be studied. _
time-scaling methodology, and this is done through a one- N one dimension(extendable to.hlghelr7 onga wavelet
dimensional(1D) archetype problem. The existence of ana-¥(X) transforms a fluctuating functiof(x)"".
lytical solution for the problem examined herein, at both the "
atomic and continuum scales, helps greatly in illustrating and W(a,b)= f f(X) ra p(X) AX. (1)
verifying the methodology in a lucid fashion. Extensions to —w '

other problems and the generality of the method are diSThe two-parameter family of functions, ¢, ,(x)
l a,

cussed towards the end of the paper. =(1/\/a) y(x—bla) is obtained from a single one; called
the mother wavelet, through dilatations by the scaling factor
Il. TIME SCALING ISSUES aand translations by the factbr The factor 1{/a is included
for normalization. The parametarcan take any positive real
Time scaling becomes important when the spatiotemporajajue, and the fluctuations 6fx) at positionb are measured
scales to be linked in a multiscale framework extend fromat the scalea. When discretized, wavelet analysis can be
the atomic scale all the way to continuum ones. We firsiperformed with fast algorithms.
address why time scaling is important in such cases. Given the wavelet coefficieni#/;(a,b) associated with a
In continuum theories, the fundamental properties such aginctionf, it is possible to reconstruétat a range of scales

stress, strain, and constitutive parameters are thermom@etweens, ands, (s;<s,) through the inversion formula
chanical quantities. These quantities are defined such that

they satisfy the thermodynamic and long-time limits. That is, 1 (s
these quantities represent averages over a large enough num- sl,sz(x) ~ . L f
ber of atomic constituents and nearly infinite time. Calculat- Vs
ing some of these quantities from atomistic models does naind settings;—0 ands,— . A two-dimensional wavelet
present significant difficulties as long as large enough systransform includes transforms in thedirection, they direc-
tems and long enough times are used. Problems in bridginton, and in the diagonak,y direction. For example, given
continuum, e.g., FE and atomistic regions may arise whe@an image of 51X 512 pixels, the wavelet transform consists
the continuum or part of the continuum region is pushedof three 256<256 matrices(one in each direction three
outside the thermodynamic and long-time limits. This may128x 128 matrices, and so on; each decomposition level is
be the case in many of the methodologies briefly reviewedt half the resolution from the previous one. The final level
above when the finite elements are reduced to “atomic” di-of decomposition represents the image at the coarsest
mensions. Even when this is not the case, other problems aresolution.

® da
fo(a:b)‘!’a,b(x)db¥ (2
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Given a function(e.g., the spatial distribution of a princi-
pal strain in a material with a hierarchical microstrucjures
features over a range of length scales can be studied with
wavelet analysis. Wavelets enable us to overcome the im-
mense difficulty of performing numerical simulations on (a)
problems containing features at scales spanning more than
two orders of magnitude. It is feasible, however, to perform x
appropriate simulations at various scales and thus obtain the y (¥
function as it appears at these scales. The information gained )
at each of the scales is then used to synthesize the complete \ \\
function. N

The compound wavelet matrixCWM) has been pre- \
sented in detail elsewhetéWe briefly present the CWM
here through an example relevant to the present work, for the (b)
sake of being as self-contained as possible; further, even \
though the example addresses spatial scaling only, it allows
for an easily understandable transition to time scaling.

Let us consider a two-dimensionéD) analysis for the
purpose of illustration; it ends up that forming the CWM for
2D spatial analysis is conceptually equivalent to performing
1D spatial analysis with time scaling. At a coarse scale, a ) .
problem, e.g., the grain growth problézrmr a wave propa- FIG. 1. Wavelet compound matrixa) wavelet cgeﬁ_‘lments from
gation problem such as that presented in the following sec® Small system(b) from a large system. Arrows indicate the sub-
tion, involving a “large” system is solved using continuum stitution of_me_ltrlces in forming th_e compound matrix. Only three
theories, e.g., FE. Next we consider a smaller system and thselzJCh substitutions are shown for illustration.
same problem is solved using molecular dynanigtD).
Within a statistical ensemble framework, the set of wavele
coefficients from each system represents the problem at t R ; !
different scale ranges. However, the large system does n b)], the compound matrix is filled in from the solution of

provide information on small scales and the small systenjiheI I_arge fsyr/]stem. ﬁ‘t fine S?.ﬁt'.al ;’:\nd ':emporsl sgales, the
does not provide information on large scales. Next the infor:30lution of the small system fill In the relevant oX OXES
the upper right part of Fig.(b)]. The process is statistical

mation gained from the large and small system is combined" - PE ! .
to form ?he “compounded V\g/]avelet matrix ”%n 2D. the wave- and will yield full information on the problem at hand. The

let transform comprises of one in theone in they, and one above process can pe extended to higher spatial dimensions.
in the x-y direction, as shown in Fig. 1; Fig.(& shows For example, a spatially 2D can be addressed, but, now, the
(schematically the wavelet coefficients, obtained from the SPatial/temporal compound wavelet matrix becomes three di-

@xis is the spatial variable of the problem. At large spatial
nd time scalefthe “boxes” at the lower left corner of Fig.

relevant analysis of the smaller system and Fidp) hows mensional.

those of the larger system.

. SubmatrixA shpwn i_n Fi'g. 1b) represents details appear- IV. TIME SCALING ILLUSTRATION:
ing at a certain discretization scale of the small system. The DISPERSION RELATION

same discretization scale for the large system is shown as
submatrix A in Fig. 1(b). By making the substitutions as The wavelet-based multiscale method is not like the AC
indicated by the arrows, the compound matrix has informaones, where information at large scales is fed from small
tion at those scales not “seen” by the larger system, yet seen

by the smaller one. All the corresponding matridésose (a)

with corresponding scale and discretizaji@me substituted; e — N

for simplicity, only three such substitutions are shown in Fig. T .
1. Hence, the compound matrix is a representation of the [T [ | 7} 0N 4 xy
problem over a range of scales made by the union of the .
scales of the smaller and larger systems. Of course, the

small-scale and the large-scale systems should have mini- ) . ;

mum overlap such that the full compound matrix can be I %‘

built; this is addressed extensively elsewh€&lternatively, B

or equivalently, depending on the scales addressed by each X
system, the CWM can be built as shown in Fig. 2. L ©

The process can naturally be extended to include time
scaling. Consider a spatially 1D problem such as that de- FIG. 2. (a) Wavelet coefficients from small systerth) from
scribed above. The CWM, as the ones in Figs. 1 and 2, calarge system(c) CWM. For illustration, only a few schematic sub-
be built, but now the vertical axis is time, and the horizontalstitutions are indicated by the arrows in forming the CWM.
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FIG. 3. An illustrative representation of a 1D system consisting

of finite elements; the boxes represent finite elements, each corre-
sponding to a monatomic lattice cell. 100
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scales. The wavelet method possesses an important attribute

i.e., time scaling can be naturally embedded in the method, <2 )
something very difficult to do using seriéhC) multiscaling. Time Step
At the same time, when dynamic interaction between scales
is appropriate, the wavelet method combined with AC ones, .
provides a powerful multiscaling method. Here is what re-

sults by C9mb'f"”9 AC methods ar}d Wa\(elet-bas_ed o.nes, Ilt'he atomistic and the continuum analysis, it is demonstrated
lustrated in this paper thrqugh dispersion relations; Othehere that the actual probleffarge atomistic systejrcan be
problems can be handled similarly. ad)proximated satisfactorily,

The concepts are herein m_plemented and demonstrat_e Of course, for the illustrative purpose of this paper, we
through 1D |deaI|z_at|ons. For th's.‘ purpose, a 1D FE dynam!C’solve a large atomic system, and then verify that the com-
analysis of a bar is combined with the so-called mona‘tomqgoundeol information from sr’nall atomic systems and con-

Bravalls6 lattice analy3|s, appearing in solid state physics te nuum analysis can recover the dispersion relation.
books:® The Bravais lattice is in a sense a 1D molecular

dynamics(MD) analysis tool and consists of a 1D chain of
atoms each of magdd connected with linear springs of stiff-
nessK. Figure 3 illustrates the problem. 1. Dispersion relation: Atomistic model

The atomistic system in this case predicts a dispersion
relation of the form

FIG. 4. Signal received at atom 1500 from théunction exci-
on at atom 2000.

A. Results

For the “large” atomic system we consider 4000 atoms in
a monatomic lattice using periodic boundary conditions.
al w| Typically, the dispersion relation would be obtained from
C(w)= =17 el () such a system by exciting a certain frequency at a point and
sin” [1—(M/2K) ] L . : i
receiving the traveling wave at another point. The arrival
where a denotes the interatomic spacing, denotes fre- time would then provide the phase velocity for that specific
guency, ana is the phase velocity of the wave. In solid state frequency. Repeating the process for several frequencies
physics literature, usually the dispersion relation is expressedould yield the dispersion relation. Here, however, we take
as the dependence of frequency on wave number. From thatlvantage of the properties of the wavelet transform and
dependence for the monatomic lattiéEq. (3) can be easily avoid such a tedious process. We excite a point in a lattice by
derived. This relation yielde=const only for very small a &function displacement, thus propagating all frequencies,
frequencies, i.e., in the continuum limit. The AC methodreceive the signal at some distance from that point and use
cannot predict this kind of dispersion since the atomisticwavelet analysis to deduce the dispersion relation.
simulations are used in this case for obtaining the constitu- We use unit values fa, M, anda, and excite the atom at
tive parameters. But, the combination of AC and waveletgosition 2000 by X 10~ 2 units of displacement, for the first
analysis can. time increment only, i.e., we impose &function at atom
Before presenting results, we comment that the process @000. Using a time increment of>610 3 we receive the
combining wavelet analysis and AC does not change the AGignal at the atom in position 1500. Figure 4 shows the re-
procesgminor adjustments to the size of the finite elementsceived signal.
and the time steps for efficient overlapping in building the The signal contains 65 53626 points; thus there are 16
compound wavelet matrix should be implementékhe big  scales available. We use biorthogonal spline wavelets of or-
difference with performing an AC analysis alone is that nowder 10 and 4Ref. 17 and Fig. 5 shows the wavelet coeffi-
information from the atomic system in each finite element iscients in scale versus time plot. Note that the majority of
retained(in addition to the constitutive parameterghich is  significant coefficients is concentrated in the lowevarsey
used in building the compound wavelet matrix. scales. Figure 6 shows the coefficients for scale 7 and scale
The dispersion relatiof3) for a monatomic lattice for a 10.
set of atoms of masM distributed along a line at points Each scale in the wavelet transform represents the details
separated by distan@eand connected by springs of stiffness that appear in the range from the previous scale to the next
K is analytical. The goal of this paper is to compound infor-one. Thus, the wavelet coefficients, e.g., those in Fig. 7, rep-
mation from the lattice and from continuum analysis in orderresent the wave propagated within the corresponding range
to obtain the complete dispersion relation. Thus, we considesf frequencies. Then, since we have a range of frequencies,
a problem such that in Fig. 3, that is too large to be solved byny velocity measured from such wavelet coefficients is the
the atomic model. Yet, by compounding information from group velocity rather than the phase velocity of a fixed
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2l 2 FIG. 7. Plot of scal&k vs 1k, . Dot line, as identified from the
1 1 wavelet coefficients at several scalesSolid line, from analytical
| solution.
0 5000 10000 15000 20000 25000 30000
Time Step 1
Ty /1S= llcgz—. (4)
FIG. 5. Plot of the wavelet coefficients obtained from the signal ayl-— %wz

shown in Fig. 4. The gray scale ranges from the maximum positive
value (white) to the maximum negative valuglack).
From the wavelet coefficients, we identify the first peak in

frequency:® In order to identify the dispersion relation from the signal at each scale which exceeds a cutoff chosen to be
the wavelet coefficients, it is convenient to express it in10-9 for the present problem. This process leads to Fig. 7,
terms of frequency as a function of the time of arrival of the\\here scald (such that #~ w) is plotted against t},. Note
signal at a fixed distance, proportional t®d/ cq denoting  hat for scale greater than 14 the wavelet coefficients are
the group velocity. Witts denoting such a fixed distance and nactically null, indicating that the group velocities at the
for M, K equal to unity, the dispersion relation is expressed;qresponding frequencies tend to zero, which is true when
as the wavelength approaches the interatomic distaa&mall
scales(low frequencies quickly approach the continuum
A limit where the group velocity is the same as the phase ve-
locity; those waves arrive first as is clear from Fig. 7. Also,
in Fig. 7 we compare the wavelet-based results to analytical
Scaled Time Step ones(detailed above, i.e., Eqn).4At this stage it is noted
that we have used the wavelet transform of a single wave
propagation problem to identify the dispersion relation nu-
@) merically. This process is severely advantageous to “usual”
-8 methods that solve a large number of wave propagation
problems, i.e., at a large number of single frequency or nar-
row band pulses and measuring the time of arrival of the
wave at a fixed distance.

10 15 20 25 30

Amplitude

0.05 | M | g o1
ER ,.,.‘.,,.l,l,wxnH11xgmll11lH|lmmli\UW!M
SR I
< 0.5} N
®) 10000 20000 30000 40000 50000 60000
oLt Scaled Time Step Time Step
FIG. 6. Wavelet coefficients for scale(@ and 10(b). FIG. 8. &function signal.
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lattice case, the wavelet coefficients yield a constant value of

16 Ty, i.e., independent of scale

BRG&
&

B. Compounding the atomistic and continuum analyses

The atomistic and continuum analyses presented in the
two previous subsections can be compounded as demon-
strated in this section. The idea is that, in general, atomistic
models address small systefmgthin the capability of com-
puterg while continuum models address large ones. Thus,
when a problem such as that of Fig. 3 is solved using an AC
multiscale framework, the atomistic simulations in each FE
can provide the variables needed for solution of the con-
tinuum (large problem. For the illustration problem ad-
dressed herein, such a variable is the elasticity modulus. Yet,
obtaining the dispersion relation of the medium, for example,
5000 10000 15000 20000 25000 30000 would require solution of the entire or of a large enough

Time Step medium (Fig. 3 using the atomistic model. This, however,
is, in general, impossible; if it were possible, there would be

FIG. 9. Plot of the wavelet coefficients obtained from the signalno need to use AC processes. Of course, for the illustration
shown in Fig. 8. The gray scale ranges from the maximum positivgourposes of this work a large atomistic one-dimensional sys-

Scale, £

&R

wa.hmc\qm\os'js
wa.hmmqm\osﬁb

o

value (black to the maximum negative valugvhite). tem that yields the complete dispersion relation is solvable
(Sec. IVA). Yet, we formulate and examine the compound-
2. Dispersion relation: Continuum model ing process for this problem in order to be able to compare

gesults from a large atomistic system to those from informa-
media, i.e., the phase velocity is identical to the group veloctio" Py compounding the atomistic and continuum system.

ity and they are both independent of frequency. Thus, a delta "€ CWM can be constructed as illustrated in Fig. 1 or 2,
function type of disturbance propagates as is. Numericallyl?u'[ now the vertlgal axis denotes time and the horizontal axis
we consider a problem similar to the one for the monatomicdenotes the spatial variable of the problemHowever, for
lattice above, but it is now solved within a continuum frame-the illustrative purpose of this paper, i.e., for determining the
work. For a homogeneous system, AC processes provide th#ispersion relation of the system, time scaling can be effec-
needed elasticity modulus, a constant for the simple case &vely demonstrated by compounding a signal such as that of
hand. It is interesting to see whether the wavelet analysifig. 4 with that of Fig. 8. The extent of a signal, such as that
process captures the dispersion relation appropriately. W& Fig. 4, depends on the size of the atomistic systems used,
consider then a delta function signal arriving at the sameavhich are embedded in each of the finite elements, as well as
fixed distance as in the monatomic lattice and perform then the number of time steps used in the atomistic system.
wavelet transform of the signal. For comparison, we utilizeThus, the size of the atomistic system that can be solved
the same number of discretization points as in the monatomiefficiently dictates the size of the finite elements. Further, the
lattice, and Fig. 8 shows the relevant signal. total number of time steps used in the atomistic system must

Figure 9 shows the wavelet coefficients in scale time ande such that the compound information yields the dispersion
Fig. 10 shows the coefficients for scale 8 and scale 10. Usingelation satisfactorily. This is explained further in the follow-
the same process for identifyin§y as in the monatomic ing.

Continuum theories show no dispersion for homogeneou

0.02 o0l
o .
E 0.015 -qg) 0.008
E‘ = 0.006
< o g'
(@) < oo (b)
0.005 0.002
| . .
10 20 30 40 50 60 50 100 150 200 250
Scaled Time Step Scaled Time Step

FIG. 10. Wavelet coefficients for scaléaB and 1Qb).
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FIG. 11. Comparison of dispersion curve obtained from the compounded wavelet coefficients and that of(@ign812, (b) m
=11, (c) m=8. Solid line, as identified from the compounding process. Dot line, as identified from the wavelet coefficients at several scales
k, Fig. 8.

We compound the wavelet transforms, i.e., that of Fig. 5and it was found to be 0.89¢orrelation coefficient equal to
and that of Fig. 9. For small scal&swe use Fig. 9, and for 1 indicates identical signalsSome of the high amplitudes
large k we use Fig. 5. Letn denote the value of that scale are “filtered out” in the process, yet, overall, the basic char-

such that for acteristics of the signal are reconstructed well. Ror 11
this correlation coefficient reduces to 0.528, andrfdarger
ksm (5 than that the coefficient of correlation drops quickly.
the wavelet coefficients from the continuum formulation are
used, and for V. CONCLUSIONS, EXTENSIONS, LIMITATIONS,

AND FUTURE WORK
k>m (6)

the wavelet coefficients from the atomistic system are useq.r i

The value ofm depends on the time steps in the atom'St'Cspatiotemporal multiscale framework. This is illustrated in

system which, in turn, depends on its spatial simember of h by add ing the di ; lation i

atoms since the restriction here is computer power. For ex—t € present paper by addressing the dispersion relation in an
o : ) atomistic and in a continuum system, both in one spatial

ample,m=9 implies that only time scales greater than 9 can

be captured by the atomistic system, and for all lower time

Wavelets and the formation of the compound wavelet ma-
x allow for a natural way to address time scaling within a

]
. s o3
is not statistical, as would be the general case, e.g., dealing 2
with problems in higher spatial dimensions with nonhomo- "g‘_
-0.1
<

scales the continuum system applies. 0.2
Figure 11 compares the dispersion curve obtained from )
the compounded wavelet coefficients and that of Fig. 8. Note 0.1 ' Il HITHI :”%‘j M T
that the above process of compounding wavelet coefficients ﬂl ””I““I |”|HM ”| ﬂl‘
™ ¥ Gl e |

[
M ity
il
ML

geneous material structure. For the homogeneous material
case examined, and for the dispersion relation, it is possible
to perform the inverse wavelet transform of the compounded

wavelet coefficients and thus obtain a signal, i.e., the re-

ceived wave at a certain position. Figure 12 shows the signal
evaluated this way fom= 8. The correlation coefficient be- FIG. 12. Signal produced by the inverse wavelet transform of
tween this signal and that of Fig. 4 has also been evaluatetie compounded wavelet coefficients foe= 8.

1% m B

-0.2

-0.3

024105-7



G. FRANTZISKONIS AND P. DEYMIER PHYSICAL REVIEW B68, 024105 (2003

dimension. Even though this problem is relatively simple toputer power limits the time and spatial scales to relatively
address, especially since the analytical expression for the dismall ones. At the same time, continuum diffusion theories
persion relation is known, the purpose of the paper is taan address problems of larger spatiotemporal scales; in ad-
illustrate the time scaling process. When dynamics are imgdition, MD simulations can feed information to the con-
portant, the method can be naturally combined with ACtinuum theories dynamically. As noted in this paper, bridging
models. The process of combining wavelet analysis and AGtomistic time scale to continuum time scales using the
does not change the AC processinor adjustments to the  c\wM method requires that there is overlapping in space and
size of the finite elements and the time steps for efficientime petween the atomistic and the continuum simulations.
overlapping in building the compound wavelet matrix shouldfForcing the continuum discretization to atomic scales may
be implementeyd The big difference with performing an AC  |ead to unrealistic behavior. In contrast, accelerated atomistic
analysis alone is that now information from the atomic sys-simulation techniqués® could be used efficiently with the
tem in each finite element is retainéth addition to the \avelet-based multiscale methodology. These accelerated
constitutive parametersvhich is used in building the com-  techniques can reach simulation times up to seconds or even
pound wavelet matrix. The process is extendable to nonhtoyrs in certain casésAchieving time overlap between ac-
mogeneous systems in one and higher spatial dimensiongglerated atomistic simulations and continuum diffusion
where the statistical nature of the proceSS and the problemsﬁﬁode|s provides the necessary Condition for app|y|ng the
addresses has to be stressed. Obvious extensions are h|gmﬁ/M method to diﬁusion prob|ems_ The Wave'et_based ap_
spatial dimensions for wave propagation problems with approach will then yield a model of diffusion from the atomic,
plications in shock-wave physics, nondestructive materiato |arge structures spatial and temporal scales.

evaluation, high frequency acoustic microscopy, acoustic
medical imaging, etc. In addition to wave propagation, the
wavelet-based approach presented here can address several
physical problems where vastly different time scales play an
important role. We briefly discuss such an extension to the Support from NSF Grant No. CMS-9812834 to G.F. is
simulation of diffusion in particular. Diffusion problems can acknowledged. P.D. was supported in part by NSF Grant No.
often be studied with molecular dynami@d4D) where com-  9980015.
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