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Abstract
Non-conventional topology of elastic waves arises frombreaking symmetry of phononic structures
either intrinsically through internal resonances or extrinsically via application of external stimuli.We
develop a spacetime representation based on twistor theory of an intrinsic topological elastic structure
composed of a harmonic chain attached to a rigid substrate. Elastic waves in this structure obey the
Klein–Gordon andDirac equations and possesses spinorial character.We demonstrate themapping
between straight line trajectories of these elastic waves in spacetime and the twistor complex space.
The twistor representation of theseDirac phonons is related to their topological and fermion-like
properties. The second topological phononic structure is an extrinsic structure composed of a one-
dimensional elasticmedium subjected to amoving superlattice.We report an analogy between the
elastic behavior of this time-dependent superlattice, the scalar quantum field theory and general
relativity of two types of exotic particle excitations, namely temporal Dirac phonons and temporal
ghost (tachyonic) phonons. These phonons live on separate sides of a two-dimensional frequency
space and are delimited by ghost lines reminiscent of the conventional light cone. Both phonon types
exhibit spinorial amplitudes that can bemeasured bymapping the particle behavior to the band
structure of elastic waves.

1. Introduction

Our past and current understanding of sound and elastic waves has been nourished essentially by the paradigm
of the planewave and its periodic counterpart (the Blochwave) in periodicmedia. This paradigm relies on the
four canonical characteristics of waves: frequency (ω); wave vector (k); amplitude (A); and phase (f). Over the
past two decades, the fields of phononic crystals and acousticmetamaterials have achieved significant advances
inwhich researchersmanipulate the spectral and refractive properties of phonons and soundwaves through
their hostmaterial by exploitingω and k [1]. The spectral properties of elastic waves include phenomena such as
the formation of stop bands in the transmission spectrumdue to Bragg-like scattering or resonant processes, as
well as the capacity to achieve narrow band spectral filtering by introducing defects in thematerial’s structure.
Negative refraction, zero-angle refraction and other unusual refractive properties utilize the complete
characteristics of the dispersion relations of the elastic waves,ω(k), over both frequency andwave number
domains.

More recently, renewed attention has been paid to the amplitude and the phase characteristics of the elastic
waves. For instance, when soundwaves propagate inmedia under symmetry breaking conditions, theymay
exhibit amplitudes A k A e k

0
i= q( ) ( ) that acquire a geometric phase q leading to non-conventional topologies [2]

and to analogies with theworld of quantummechanics. Here, we take topology to be the description of the shape
of themanifold that supports the amplitude solutions for the elastic equations considered. In particular, wewill
consider non-trivial topologies that arise frombroken symmetries. Examples of broken symmetries include
time-reversal symmetry, parity symmetry, chiral symmetry and particle–hole symmetry [2]. Symmetry breaking
can be achieved in twoways: (a) intrinsic topological phononic structures whereby symmetry breaking occurs

OPEN ACCESS

RECEIVED

29 January 2018

ACCEPTED FOR PUBLICATION

27March 2018

PUBLISHED

2May 2018

Original content from this
workmay be used under
the terms of the Creative
CommonsAttribution 3.0
licence.

Any further distribution of
this workmustmaintain
attribution to the
author(s) and the title of
thework, journal citation
andDOI.

© 2018TheAuthor(s). Published by IOPPublishing Ltd on behalf ofDeutsche PhysikalischeGesellschaft

https://doi.org/10.1088/1367-2630/aaba18
https://orcid.org/0000-0002-1088-7958
https://orcid.org/0000-0002-1088-7958
mailto:deymier@email.arizona.edu
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/aaba18&domain=pdf&date_stamp=2018-05-02
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/aaba18&domain=pdf&date_stamp=2018-05-02
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0


from structural characteristics such as internal resonances, and (b) extrinsic topological phononic structures
where external stimuli are applied. For example, elastic waves in an intrinsic topological structure composed of a
one-dimensional (1D) harmonic crystal withmasses attached to a rigid substrate through harmonic springs have
been shown to obey aDirac-like equation and to possess a spin-like topology [3, 4]. Extrinsic topological
phononic structures have been created by applying a periodic spatialmodulation of the stiffness of a 1D elastic
medium such that its directed temporal evolution breaks time-reversal and parity symmetries [5–11].

Considerable advances have beenmade in recent years by the exploration ofmechanical analogs of systems
that have displayed phase related behavior that leads to topological phononic phenomena.WhileDirac
factorization is one path that has been taken to obtain these insights, another avenue that has been explored uses
the Foucault pendulum as it exemplar [12]. The equations for the topological phononic system are then cast into
a form that is analogous to the Schrödinger equation of quantummechanics. It is noteworthy that the square
root of the dynamicalmatrix which appears in this Schrödinger-like equation also occurs in theDirac-like
equations for topological phononics.Work is ongoing in the development ofmodel systems for the exploration
of topological phononics [13] and it is in the spirit of thismodel development that we proceedwith the
exploration of other possible exemplars from the physics literature.

The general objective of this work is to establish the foundations for the development of analogies between
topological phononics and quantumfield theory and geometric spacetime formalisms. This work ismotivated
by recent and not so recent examples ofmechanical dynamical systems analogs of electromagnetic and quantum
phenomena. For instance,Maxwell in his seminal paper ‘Adynamical theory of the electromagnetic field’ [14]
sought an elasticmodel of electrical andmagnetic phenomena and electromagnetic waves.Mechanicalmodels
of quantumphenomena include the localization of ultrasoundwaves in two-dimensional [15] and three-
dimensional [16] disorderedmedia serving as analogs of Anderson localization of electrons. Tunneling of
classical waves through phononic crystal barriers established a correspondencewith its quantum counterpart
[17, 18]. Themotion of soundwaves in convergent fluidflow exhibits the same properties ofmotion as
electromagnetic waves in gravitational fields in space and time [18]. It has also been shown that dynamical
modulation of the dielectric properties of opticalmaterials achieves gaugefield analogs. These analogs enable the
control of neutral particles like photons [19–23] inways analogous to charged quantumparticles such as
electrons. Finally, analogs of superluminal particles such as tachyons, have been reported in unstablemechanical
systems [24].

More specifically, in this paper, we develop a spacetime representation of elastic waves supported by the two
types of topological phononic structures, namely intrinsic and extrinsic systems. The dynamical equations of
motion of the extrinsic structure composed of an infinite linear elastic chain attached to a substrate take on the
formof the relativistic Klein–Gordon equation. TheKlein–Gordon equation can beDirac factored revealing
that the side springs break time-reversal symmetry and parity symmetry separately. This intrinsic topological
elastic structure supports elastic waveswhich can be characterized by awave function that possesses both
spinorial and orbital components [3, 4]. The elastic wave functions solutions of theDirac equation effectively
represent quasi-standingwaves, i.e., a superposition of waves propagating in opposite directions. The spinorial
component of thewave function represents the relationship between the amplitude and phase in the space of
directions of propagation. In this representation, theseDirac phonons have spin-like properties and fermionic
character. In particular, they possess non-conventional topology inwave number space [2]. Here, we analyze the
properties of this intrinsic topological elastic structure by representing elastic wave solutions toKlein–Gordon
equation andDirac equations in terms of contour integrals [25].More specifically, we are able to derive a spin
eigenstate equation forDirac phonons in the intrinsic structure. Dirac phonons are shown to possess half-
integer spin eigen values. Furthermore, the contour integral approach enables us to develop a twistor theory [26]
of elastic waves.We demonstrate themapping between straight line trajectories of elastic waves in spacetime and
the twistor complex space.

We note, as an aside, that the development of a twistor theory of elastic waves uses the invocation of the
Riemann sphere which has been used for other purposes in the analysis of topologicalmaterials.Most
significantly, the implementation of a Riemann sphere analysis has been used for the determination of Chern
invariants in the context of photonicmedia [27]. The technique has also been applied to topological indices for
continuous photonicmaterials [28]. In the current context, the Riemann sphere is invoked as an instrument
toward the construction of an elastic wave twistor representation.

The twistor representation of elastic waves is then used to characterize their phase properties relative to the
wave number and tie into the notion of Berry phase [29]. The second topological phononic structure is an
extrinsic structure composed of a 1D elasticmedia subjected to amoving superlattice. Thesemodulations are
known to break parity and time-reversal symmetry leading to bulk phononmodeswith non-conventional
topology [2]. The band structure of a spatio-temporallymodulated 1Dmedium exhibits spectral non-
reciprocity e.g., possesses band gaps that formon one side of the first Brillouin zone and not the other.Here, we
demonstrate an analogy between the 1Dphonons in the vicinity of symmetry breaking conditions (band gap
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asymmetry inmomentum space) and two types of particle excitations. These particles are not defined in the
conventional (1+1) spacetime but in a one space and two times domains (1+2). For that reason, we call these
excitations temporal Dirac phonons and temporal ghost phonons. Thewave function of these phonons has
spinorial character associatedwith fermionic behavior. TheDirac phonons possess the analog of a real ‘mass’
but, in contrast, the ghost phonons possess the equivalent of an imaginarymass. The temporal Dirac phonons
and ghost phonons exist on two sides of a limiting line in 2D timewhich is analogous to the speed of light in
conventional 2D spacetime. The behavior of temporal ghost phonons is analogous to that of tachyons [30].
There is a one-to-one correspondence between the dispersion relation of elastic waves in the time-dependent
superlattice and the spinorial components of the temporal Dirac and ghost phonons, thus enabling
measurement of the properties of these temporal particles. Finally, we illustrate additional properties of
temporal Dirac phonons and temporal ghost phonons through geometric representations onmanifolds in 2D
time.Wefinally address the geometrical description of the dynamics ofDirac and ghost phonons in the formof a
geodesic in a complex curved 2D spacetime.

In section 2, we develop the spacetime representation in the context of twistor theory for the intrinsic
topological phononic structure. Section 3 focuses on the extrinsic topological phononic structure and its
representation in terms of quantumfield theory and general relativity. Finally, in section 4, we draw conclusions
on the spacetime representation of topological elastic waves in terms ofDirac phonons, twistors, temporal Dirac
phonons and temporal ghost phonons. In particular, we address the possibility of analogies between topological
phononics, quantumfield theory and spacetime representations, which open new avenues for the investigation
of exquisite phenomena that previously have only been theorized.

2. Spacetime representation of intrinsic topological acoustic structure

2.1. Topological fermion-like elastic waves
Toput our current advances in context and for clarity, we recall some previously derived equations, particularly
equations of the same form as theKlein–Gordon andDirac equations, for the elastic structure composed of a 1D
harmonic crystal grounded to a rigid substrate (seefigure 1). Solutions to these equationswill be analyzed in the
twistor representation.

The dynamical equation takes the formof the discrete Klein–Gordon equation:

m
u

t
K u u u K u2 0. 1i

i i i I i

2

2 0 1 1
¶
¶

- - + + =+ -( ) ( )

Equation (1) involves the second derivatives with respect to continuous time and the discrete second
derivative of the displacement ui with respect to position along the crystal, i. In the longwavelength limit
equation (1) can be rewritten in the formof theKlein–Gordon equation:

u

t

u

x
u 0 2

2

2
2

2

2
2b a

¶
¶

-
¶
¶

+ = ( )

with K mI
2a = / and K m.2

0b = / Wenote, in passing, that the Klein–Gordon equation is time-reversal
invariant as the second time derivative appears in the equation, such that t→−t does not affect the formof the
equation.

Figure 1. Schematic illustration of the harmonic crystal grounded to a substrate via side springs. The stiffness of the springs in the
infinite chain and of the side spring are K0 and K ,I respectively. Themasses are all identical and equal tom.
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If we define X x ,b= / equation (2) takes on the simpler form:

u

t

u

X
u 0. 3

2

2

2

2
2a

¶
¶

-
¶
¶

+ = ( )

Making the change of variables:

t X
t X

i
i

4
l a
m a
=  -
=  +

⎧⎨⎩
⎫⎬⎭

( )
( ) ( )

it is straightforward to show that equation (3) reduces to:

u
u. 5

2

l m
¶
¶ ¶

= ( )

There exist an infinite number of solutions to equation (5)which take the general formof contour integral in
the complex plane [31]:

z
z,

1

2 i
2 e

1
d . 6n

z z
n

1

1

1
2j l m

p
= l m+

+∮ ( )( ) ( )

The functions given by equation (6) have the following property:

.
7

n n

n n

1
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l
j j
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j j
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=

¶
¶

=

-

-

⎧
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⎩
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Equation (7) represents theDirac factorization of theKlein–Gordon equation. Indeed, substituting the
variables t andX using equation (4) into (7) leads to theDirac-like equation [32]:

t X
Ii i 0, 8x ys sb a

¶
¶

+
¶
¶

Y =
⎡
⎣⎢

⎤
⎦⎥ ( )

where xs and ys are the 2×2 Paulimatrices: 0 1
1 0( ) and 0 i

i 0
-⎜ ⎟

⎛
⎝

⎞
⎠ and I is the 2×2 identitymatrix.

Note that taking t→−tnowdoes not recover the formof equation (8)nor does taking x→−x, however
taking both t→−t and x→−x recovers the twoDirac-like equations in equation (8). Hence, theDirac-like
equations break time-reversal (T) symmetry and parity (P) symmetry individually but do not break the product
PT symmetry. Symmetry breaking arises from the distinction between forward and backward propagating
modes and occurs for non-zero values of .a

The solutions of equation (8) are 2×1 spinors:

. 9n

n 1

j
jY =

-( ) ( )

The corresponding to the twoDirac-like equation (8) arises from the in equation (4).
We nowwrite the solutions in Fourier form:

k k, , e e , 10k k k k
t kXi ikw x wY = Y = w( ) ( ) ( )

where

a
a . 11k

n

n 1
x =

-( ) ( )

Inserting equations (10) and (11) into (8) (choosing the ‘−’ sign for illustrative purpose) gives the recursive
expressions:

k a a

k a a .
12n n

n n

1

1

w a
w a

- =
+ =

-

-

⎧⎨⎩
( )
( )

( )

The set of linear equation (12)has non-trivial solutions if the determinant of thematrix k
k

w a
a w
- -
- +

⎜ ⎟⎛
⎝

⎞
⎠

vanishes, this conditions leads to the dispersion relation:

k . 132 2w a=  + ( )

The elastic band structure of the harmonic chain attached to a rigid substrate exhibits a gap in its frequency
spectrum at k=0. This gapwas shown to result fromhybridization (or resonance) between the two 0a =
dispersion curves, kw = and k,w = - upon attachment of the harmonic chains to the substrate via side springs
with non-zero .a For the sake of simplicity, wewill limit ourselves fromnowon to positive .w
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Let us start the recursion relations (12) at n=1, we then have:

a
a a

k

k
, 141

0

w

w
=

+

-

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( ) ( )

where a is some constant. The breaking ofT orP symmetry in theDirac equation leads to a projection of the
solutions onto the space of directions of propagation. The spinorial solutions have forward and backward
propagating elastic waveswhich amplitudes are not independent of each other and are related according to
equation (14) for example.

For n=2 and using a a k ,1 w= + equation (12) reduces to a single equationwhich solution is

a a .k

k2 =
w
w
+
-

Inserting this solution into equation (12) for n=3, yields a a ,k

k2
3 2

= w
w
+
-

( ) /

etc. The general

solution takes the form:

a a
k

k
. 15n

n

n

2

1 2

w
w

=
+

- -

( )
( )

( )( )

/

/

The recurring solutions are therefore:

a
k

k
a . 16n n1

w
w

=
+

-
+ ( )

Let us now consider some additional properties of the solutions ,nj l m( ) (equation (6)). Bymaking the
change of variable z ,

y=
l
equation (6) can be rewritten as [31]:

y
y f,

1

2 i
2 e

1
d . 17n

n y y
n

n
n

1
2

1

1
j l m l

p
l lm= =lm+

+∮ ( )( ) ( ) ( )

In equation (17) fn is a function of the product .lm
This form reveals that nj must satisfy the spin eigenstates equation:

n . 18n nl
l

m
m

j j
¶
¶

-
¶
¶

=
⎛
⎝⎜

⎞
⎠⎟ ( )

Converting equation (18) back into conventional spacetime (X, t) and taking its two-dimensional Fourier
transform results in:

k
k

n

2
, 19n nw

w j j
¶
¶

-
¶
¶

=⎜ ⎟⎛
⎝

⎞
⎠ ˜ ˜ ( )

where k,n nj j w=˜ ˜ ( ) is the spatio-temporal Fourier transformof X t, .nj ( ) The solutions of theKlein–Gordon

equation, which are labeled by the index n, can therefore take on spin eigen values of 0, , 1, ,1

2

3

2
¼

However, if we apply the operator k
k

w-
w
¶
¶

¶
¶( )on the solutions of theDirac equations, a ,n onefinds that:

k
k

a n a
1

2
. 20n n

w
w

¶
¶

-
¶
¶
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⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠ ( )

The solutions of theDirac equations are a subset of the solutions of the Klein–Gordon equationwhich have
spin eigen values that aremultiples of .1

2
To shed light on themeaning of a 3/2 spin in the context of elastic

waves, wewrite the threeDirac-like equations for n=0, 1, 2 in spacetime, that is:
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Wecan recombine these equations in the form:

t X
ai 210 0

1

j j
aj

¶
¶

-
¶
¶

= - ( )

t X t X
b211 1 1 1j j j j¶

¶
+

¶
¶

=
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¶

-
¶
¶

- - ( )

t X t X
c210 0 2 2j j j j¶

¶
+

¶
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=
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¶
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t X
di . 211 1

2

j j
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¶
¶

+
¶
¶
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The spinor 1

2

j
j
-⎜ ⎟

⎛
⎝

⎞
⎠which has spin eigen values of−3/2 and+3/2 can be visualized as the superposition of

spin 1 (−1) objects combinedwith spin 1/2 (−1/2) objects. Considering planewave solutions in equation (21b),
the backward propagating 1j- is identical to the forward propagating, .1j Equation (21c) states that the forward

2j is identical to the backward propagating, .0j However, these two equations do not impose any relationship
(constraint) on the possible directions of propagation of 0j and .1j Equations (21a) and (21d) in contrast set
constraints on 1j- being equivalent to a forward propagating 0j and 2j being a backward propagating .1j The

amplitudes of the spinor 1

2

j
j
-⎜ ⎟

⎛
⎝

⎞
⎠ are therefore not independent of each other. They possess fermionic character

(spin eigen value1/2) [2]. It represents an elastic wavewhich is the superposition of a forward and a backward
propagatingwavewith amplitude related to each other. The quantities 0j and 1j do not form a spinor as their
amplitudes in the forward or backward directions of propagation are independent of each other. They possess
bosonic character and therefore spin eigen values 1. This argument can be extended to other solutions with
spin eigen values of 5/2, 7/2, etc with increasing number of boson-like elastic waves and still two fermion-like
waves.

2.2. Twistor space representation of topological elastic waves
In this section, we explore the spatio-temporal properties of the solutions of Klein–Gordon equation (aswell as
Dirac equations) given by equation (6).We rewrite equation (6) in terms of time, t, spaceX, and a new space-like
variable :z

t X
z

z, ,
1

2 i
2 e

1
d . 22n

z z t z z X

n

i 1 1 2

1

1
2f z

p
= a z+ - - 

+

⎡
⎣⎢

⎤
⎦⎥∮ ( ) ( )( ) ( )

In this form, nf is solution of the equation:

t X
0. 23n n n

2

2

2

2

2

2

f f f
z

¶
¶

-
¶
¶

-
¶
¶

= ( )

Because of the second derivative with respect to z in equation (23), the sign in front of the 2z in equation (22)
is arbitrary.Wewill use+in the rest of the section. In equation (23) z plays the role of a second spatial variable.
Equation (23) is the usual elastic equation for a two-dimensionalmedium. It represents amodel of the harmonic
chain attached to a substrate in a (2+1) spacetime.

The argument of the exponential in equation (22) can be rewritten in the formof a second-order polynomial
in z:

z
X t z X t z

z
i

1 1

2

1

2
i

1
. 242a z a h+ + - - =

⎡
⎣⎢

⎤
⎦⎥( ) ( ) ( )

The square bracket h takes the formof an incidence relation between spacetime x X x t x, ,1 2 3 z= = =( )
and twistor space [26]. Let us consider a directed line in x x x, ,1 2 3( ) as shown infigure 2.

The vectorOP
 

is given by:

OP v Lu , 25= +
    ( )

where L is a length along the line from the end of vector v

to the pointP.We also have the relations u v. 0=

 
and

u u. 1.=
 

All the orientation vectors u

can be illustrated on the unit sphere or Riemann sphere.We can now

consider the stereographic projection of the orientation unit vector u

from the north pole of the Riemann sphere

(see figure 3).
The coordinates of the projection vectorOQ

 
are x u

u1 1
1

3
=

-
and x .u

u2 1
2

3
=

-
If we complexify the plane

x x,1 2( ) by identifying the axis x2with the imaginary axis the stereographic projection of the unit vector u

can be

defined as:
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u
u u

u

i

1
. 261 2

3

s =
+
-

( ) ( )

Wenow introduce a parametric equation for the unit vector u s .
 ( ) The parameters defines a path followed by

the end of the vector u

on the Riemann sphere. The directional derivative of us

( ) takes the form:

s u

u

s u
v . 27h

s s s
=

¶
¶

=
¶
¶

¶
¶

=
¶
¶





 ( )

Figure 2. Schematic illustration of the spacetime x X x t x, ,1 2 3 z= = =( )with an oriented line. The unit vector u defines the
orientation of the line. The vector v


is perpendicular to the line. A point P ismarked on the line by the vector OP x x x, , .1 2 3

 
( )

Figure 3. Schematic illustration of the Riemann sphere. The vector OQ x x,1 2

 
( ) is the north pole stereographic projection of the unit

vector u.
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In equation (27) vu

s
=¶

¶


is a tangent vector to the parameterized path on the Riemann sphere. Using

equations (25)–(27), wefind the condition that gives the set of oriented lines going through a pointP. After a
lengthy set of algebraicmanipulations, one finds:

x x x x x
1

2
i

1

2
i . 281 2 3 1 2

2h s s= + + - -( ) ( ) ( )

Equation (28) is equivalent to the square bracket terms in equation (24). This incidence relationmaps the
spacetime x X x t x, ,1 2 3 z= = =( ) to the twistor space defined by the pair of complex numbers, , .s h( ) A line
in spacetime (i.e., a linear trajectory)maps into a point in twistor space. The set of all lines which go through a
pointP in spacetime becomes theRiemann sphere in twistor space.

2.3. Twistor space and topological phononics
2.3.1. Fourier representation of the incidence relation
By inserting equation (24) into (22), we can rewrite the solution of the elastic problem as:
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Wecan rewrite
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and redefine the complex z in terms of complex quantities on the unit circle
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⎨
⎪⎪

⎩
⎪⎪

( )

Equation (30) can be re-expressed in terms of the complex quantities e ,ig = q q X iz= + and their
complex conjugates e ig = q- and q X i :z= -

t X f t q q, ,
1

2 i
,

1

2

1

2
d . 33n nf z

p
g g g g= + +⎜ ⎟⎛

⎝
⎞
⎠∮( ) ( )

Wenowmake the connectionwith Fourier representation of elastic waves, that is, planewaves in our elastic
system.We rewrite the complex, g in the form:

k

k k
e i , 34i

2 2 2 2
g

a

a

a
= =

+
+

+
q ( )

where k is a wave number along the harmonic chain. The incidence relation in equation (33) then becomes:

t q q
k

k t kX
1

2

1

2

1
. 35

2 2

2 2g g
a

a az+ + =
+

+ + +( ) ( )

Since the dispersion relation for the harmonic chain attached to a rigid substrate is k ,2 2w a= + the term
in parenthesis of equation (35) becomes the usual exponent of a planewave t kXw az+ +( ) obeying
equation (23).

2.3.2. Spinor representation of the incidence relation
Equation (22) states that solutions to the elastic Klein–Gordon equation (and, by the same token, some of the
solutions to the elasticDirac equation), can be formulated as:

f z z
Z

z a, ,
1

2 i
,
1

2

1

2

1
i d . 36n nf l m z

p
l m az= + +⎜ ⎟⎛

⎝
⎞
⎠∮( ) ( )

Since the incidence relation appears in an exponent in equation (22), we can reformulate equation (22) in
terms of a product of exponential functions. Equation (36a) can then be rewritten in the form:
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f z z z z b, ,
1

2 i
, i , i d . 36n nf l m z

p
l az m az= + +∮( ) ( ) ( )

In equation (36b), we have redefined the incidence relations in terms of two quantities, z1
1

i
l zP = +

a
and

z,2
1

i
m zP = +

a
which form a spinor .1

2
P =

P
P

⎛
⎝⎜

⎞
⎠⎟ This spinor is effectively the product of a 2×2matrix with

another spinor z
1 .1

2
S =

S
S

=
⎛
⎝⎜

⎞
⎠⎟ ( ) The incidence relation becomes:

R
t X

t X

i

i
, 371

2

1

2

1

2

z l a
m a z

z
z

P =
P
P

=
S
S

=
-

+
S
S

= S
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ ( )

/

/

where,R, is the incidencematrix. If the oriented propagation of an acoustic wave, represented by ,P S{ } in
twistor space, passes through the point t X, , z( ) in spacetime, then the incidence relation (37) is satisfied.

The incidencematrix can be reformulated in Fourier space as a differential operator, namely:

R k

k

. 38a w

w a

=

¶
¶

¶
¶

-
¶
¶

¶
¶

+
¶
¶

¶
¶

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
˜ ( )

In the previous section, we have shown that in Fourier space, the complex z, can be replaced by the quantity

,k

k

i
2 2

g = a

a

+

+
that is we canwrite 1 .gS = ( )˜ Wenote that because a represents effectively the stiffness of the side

springs of the elastic system, it is a constant. The complex quantity g spans half of the equator of the Riemann
sphere from−1 to+1when k , .Î -¥ +¥[ ] For k=0, i.g = Using equation (37), we obtain:

k k
0

i

0
. 392 2

g a
aP = -

¶
¶ =

-
+

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟˜ ( )

After calculating the product, i ,
k2 2PS = a

a+
˜ ˜ which is isomorphic to the Berry connection [29], we can

obtain the phase accumulated by elastic waves as k ,Î -¥ +¥[ ]using the equation:

k
k

ki d d . 40
2 2ò òd
a
a

p= PS =
+

=
-¥

+¥

-¥

+¥
˜ ˜ ( )

The elastic waves solutions of theKlein–Gordon equation accumulate a phase of p as onemoves along the
dispersion curve of the harmonic chain attached to a rigid substrate. Each direction of propagation k 0< and
k 0> contribute

2

p to the total phase [2].

3. Spacetime representation of an extrinsic topological phononic structure

3.1. Time-dependent superlattice
In considering the systemswith spatio-temporalmodulations, we note that the topic of spatial and temporal
modulation has seen a great deal of interest and activity in the context of electromagnetic interactionswith
modulatedmaterial [33–35]. Herewewill turn our interest to elastic systemswith spatio-temporalmodulations.

Themodel systemof an extrinsic topological acoustic system is a 1D elastic system subjected to a spatio-
temporalmodulation of its stiffness. This systemwas described elsewhere [5] and herewe review some of its
main features that will lead to this paper’s general relativistic description of its properties. In [5], we noted that,
for this system, the bulk elastic wave functions are supported in themomentum spacemanifold by a non-
conventional torsional topology of aMöbius stripwith a single twist. In the longwavelength limit, propagation
of longitudinal elastic waves in a 1Dmediumperturbed by a spatio-temporalmodulation of its stiffness, C x t, ,( )
obeys the following equation ofmotion:

u x t

t x
C x t

u x t

x
C x t

u x t

x

C x t

x

u x t

x

,
,

,
,

, , ,
. 41

2

2

2

2
r
¶

¶
=

¶
¶

¶
¶

=
¶

¶
+

¶
¶

¶
¶

⎜ ⎟⎛
⎝

⎞
⎠

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

In equation (41), u x t,( ) is the displacementfield and r is themass density of themedium. As opposed to the
systemoffigure 1, the side springs KI are not present and the stiffness of the continuous system ismodulated in
time and space.We consider a sinusoidal variation of the stiffness with position and time:

C x t C C Kx t, 2 sin , 420 1= + + W( ) ( ) ( )

where C0 and C1 are positive constants. K L

2= p where L is the period of the stiffnessmodulation. W is a
frequency associatedwith the velocity of the stiffnessmodulation,V .The quantities K andV are independent.
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The sign of W determines the direction of propagation of themodulation. In this representation, themaximum
stiffness of thematerial is C C C2 .11

max
0 1= + If C x t,( )were independent of position, then equation (41)would

be symmetric in position and time, however as C x t,( ) depends on position, there is a termon the right side of
equation (41) that is linear in position. This informs our choice of Blochwave solutions in the spatial coordinate.

The periodicity of themodulated 1Dmedium suggests that we should be seeking solutions of equation (41)
in the formof Blochwaves:

u x t u k g t, , , e , 43
k g

k g xiå å= +( ) ( ) ( )( )

where x L0, .Î [ ] Thewave number k is limited to the first Brillouin zone: ,
L L

p p-⎡⎣ ⎤⎦ and g m
L

2= p withm being

a positive or negative integer.With this choice of solution and inserting equation (43) into (41), the propagation
of longitudinal waves is nowdescribed by:

u k g t

t
v k g u k g t f k u k t h k u k t

,
, i , e , e , 44a

t t
2

2
2 2 i ie

¶ +
¶

+ + + = ¢ ¢ +  W - W( ) ( ) ( ) { ( ) ( ) ( ) ( ) } ( )

where f k Kk k ,2= +( ) h k Kk k ,2= -( ) k k g K¢ = + - and k k g K . = + + In this equation, we have

defined: va
C2 0=
r
and .C1e =

r
This equation is solved by using themultiple time scale perturbationmethod [36].

For the sake of analytical simplicity, e is treated as a perturbation andwewrite the displacement as a second-
order power series in the perturbation, namely:

u k g u k g u k g u k g, , , , , , , , , , , , . 450 1 2 0 0 1 2 1 0 1 2
2

2 0 1 2t t t t t t e t t t e t t t+ = + + + + +( ) ( ) ( ) ( ) ( )

In equation (45), ui with i 0, 1, 2= are displacement functions expressed to zeroth-order, first-order and
second-order in the perturbation. The single time variable, t , is also replaced by three variables representing
different time scales: t ,0t = t ,1t e= and t .2

2 2
0t e e t= = Wecan subsequently decompose equation (44) into

three equations: one equation to zeroth-order in ,e one equation tofirst-order in e and a third equation to
second-order in .e The zeroth-order equation represents the propagation of an elastic wave in a homogeneous
medium.

u k g
v k g u k g

, , ,
, , , 0. 46a

2
0 0 1 2

0
2

2 2
0 0 1 2

t t t
t

t t t
¶ +

¶
+ + + =

( ) ( ) ( ) ( )

Its solution is taking the formof the Blochwave:

u k g a k g, , , , , e 47k g
0 0 1 2 0 1 2

i 0 0t t t t t+ = + w t+( ) ( ) ( )( )

with the usual form: k g v k g .a0w + = +( ) ∣ ∣
Thefirst-order equation is used to solve for u .1

u k g
k g u k g

u k g

f k u k h k u k

, , ,
, , , 2

, , ,

i , , , e , , , e . 48

2
1 0 1 2

0
2 0

2
1 0 1 2

2
0 0 1 2

1 0

0 0 1 2
i

0 0 1 2
i0 0

t t t
t

w t t t
t t t

t t
t t t t t t

¶ +
¶

+ + + +
¶ +

¶ ¶
= ¢ ¢ +  t tW - W

( ) ( ) ( ) ( )

{ ( ) ( ) ( ) ( ) } ( )

The third term in equation (48) leads to secular terms and is set to zero by assuming that the displacement,
u k g , ,0 0 2t t+( ) is not a function of .1t The displacement at all orders of expansion is subsequently taken to be
independent of odd time scales. The solution to equation (48) is obtained in the formof the sumof
homogeneous and particular solutions:

u k g a k g
f k a k

k g k

h k a k

k g k

, , , e i
,

’ i
e

i
,

i
e . 49

k g k

k

1 0 2 1 2
i 0 2

0
2

0
2

i

0 2

0
2

0
2

i

0 0 0 0

0 0

t t t
t

w w j
t

w w j

+ = + +
¢ ¢

+ - + W +

+
 

+ -  - W +

w t w t

w t

+ ¢ + W

 -W

( ) ( ) ( ) ( )
( ) ( ( ) )

( ) ( )
( ) ( ( ) )

( )

( ) ( ( ) )

( ( ) )

A small damping term ij is introduced to address the divergence of the two resonances that occur at
k g k0

2
0

2w w+ = ¢ + W( ) ( ( ) ) and k g k .0
2

0
2w w+ =  - W( ) ( ( ) ) Wewill later take the limit 0.j  The

particular solutions introduce additional dispersion curves in the band structure of the time-dependent
superlattice obtained by shifting the zeroth-order band structure by .W This can be interpreted as the spatio-
temporalmodulation resulting in frequency splitting of amonochromatic incident signal that is analogous to
Brillouin scattering [7].
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Finally, the second-order equation ofmotion is given by:

u k g
k g u k g

u k g

f k u k h k u k

, ,
, , 2

, ,

i , , e , , e . 50

2
2 0 2

0
2 0

2
2 0 2

2
0 0 2

2 0

1 0 2
i

1 0 2
i0 0

t t
t

w t t
t t

t t
t t t t

¶ +
¶

+ + + +
¶ +

¶ ¶
= ¢ ¢ +  t tW - W

( ) ( ) ( ) ( )

{ ( ) ( ) ( ) ( ) } ( )

Inserting equation (49) into (50), leads to terms of the form e k gi 0 0w t+( ) in the right-hand-side of the equation.
These terms lead to secular behavior that can be canceled by equating them to the third term in the left-hand-
side of the equation. One obtains

u k g
M k g K a k g2

, ,
, , , e 51k g

2
0 0 2

2 0
0 2

i 0 0
t t

t t
t

¶ +
¶ ¶

= - + W + w t+( ) ( ) ( ) ( )( )

with

M k g K f k h k g
k k g

h k f k g
k k g

, ,
1

1
.

52
0
2

0
2

0
2

0
2

w w

w w

+ W = ¢ +
¢ - + - W

+  +
 - + + W

⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎫
⎬
⎭

( ) ( ) ( )
( ) ( ( ) )

( ) ( )
( ) ( ( ) )

( )

Introducing an amplitude of the form, a k g k g, e ,0 2 0
i 2t a+ = + gt( ) ( ) onemay rewrite u k g , ,0 0 2t t+( )

as

u k g k g k g k g, , e e e e .k g k g k g
0 0 2 0

i i
0

i
0

i2 0 0 0
2

0 0 0*t t a a a+ = + = + = +gt w t w ge t w t+ + + +( ) ( ) ( ) ( )( ) [ ( ) ] ( )

Then one obtains a correction to k g ,0w +( ) leading to a frequency shift. This frequency shift ismost
pronounced for values of thewave number leading to strong resonances and is given by:

k g k g k g
k g

M k g K
2

, , . 53pp pp0 0 0
2

2

0

*dw w w e g
e

w
+ = + - + = =

+
+ W( ) ( ) ( ) ( )

( )
( ) ( )

The symbol (,)pp in this expression represents Cauchy’s principle part that results from taking the limit:
0.j  This frequency shift is the signature of the formation of hybridization band gaps between the zeroth-

order dispersion relation andfirst-order Brillouin scatteredmodes. The denominators of the resonance
conditions: k k g 00

2
0

2w w¢ - + - W =( ) ( ( ) ) and k k g 00
2

0
2w w - + + W =( ) ( ( ) ) determine the location of

the formation of the hybridization gaps. These conditions predict hybridization gapswhere the lowestfirst-

order dispersion branch g 0=( ) and second lowest branch g
L

2= p( ) intersect afirst-order Brillouin scattered
dispersion curve. The two gaps formonly on one side (positive or negative side) of thefirst Brillouin zone
depending on the sign of W (i.e., the direction of propagation of themodulation of the stiffness). These two gaps
occur at the samewave number: k .g This leads to a band structure that does not possessmirror symmetry about
the frequency axis. The band structure nowpossesses a center of inversion, the origin, rather than amirror plane.
When M k g K, , 0,+ W >( ) one has k kg> andwhen M k g K, , 0,+ W <( ) one has k k .g<

We illustrate this effect schematically infigure 4.

3.2. Temporal phonon dirac equation and temporal ghost phonons
Our starting point is equation (51)which combinedwith equation (47) yields:

u k g
M k g K u k g

, , 1

2
, , , , . 54

2
0 0 2

2 0
0 0 2

t t
t t

t t
¶ +

¶ ¶
= - + W +

( ) ( ) ( ) ( )

It is also important to note that equation (51) is not a stand-alone equation but it is complemented by the
zeroth-order equation of propagation (equation (46)).

We now introduce two new temporal variables,W andV such that:

W V
W V .

550

2

t
t

= -
= +{ ( )

These new variables can be expressed as:

W t

V t

1

2

1

2
1

1

2

1

2
1

56
0 2

2

0 2
2

t t e

t t e

= + = +

= - + = - -

⎧
⎨
⎪⎪

⎩
⎪⎪

( ) ( )

( ) ( )
( )

and represent a dilated time and the negative of a compressed time respectively.
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With this change in variables, equation (54) takes the form:

u k g W V

W

u k g W V

V
M k g K u k g W V

, , , ,
2 , , , , 0. 57

2
0

2

2
0

2 0
¶ +

¶
-

¶ +
¶

+ + W + =
( ) ( ) ( ) ( ) ( )

Equation (57) is the usual relativistic Klein–Gordon equationwhen M k g K, ,+ W( ) is positive with the two
temporal variablesW andV playing the roles of ‘temporal’ and ‘spatial’ variables in the conventional; Klein–
Gordon equation. M2 is playing the role of ‘mass’. In the case of M k g K, , 0,+ W <( ) then equation (57) is
Klein–Gordon equationwith an imaginary ‘mass’ Mi 2 .∣ ∣

3.3. TemporalDirac phonons
This subsection addresses the behavior of the time-dependent superlattice when M k g K, , 0.+ W >( ) In this
case, followingDirac [32], equation (57) can be factored

I
W V

ai i 0, 58x ys s a y
¶

¶
-

¶
¶

- =
⎡
⎣⎢

⎤
⎦⎥ ( )

I
W V

bi i 0, 58x ys s a y
¶

¶
-

¶
¶

+ =
⎡
⎣⎢

⎤
⎦⎥ ( )

where again xs and ys are the 2×2 Paulimatrices: 0 1
1 0( )and 0 i

i 0
-⎜ ⎟

⎛
⎝

⎞
⎠ and I is the 2×2 identitymatrix.We

have renamed M2 .a = These equations are isomorphic to equation (8).
We note that taking the complex conjugate of equation (58a) results in equation (58b), indeed thefirst two

terms are real and only the last term changes sign. In particular, this results from the negative sign of the second
term in theKlein–Gordon equation (57)which requires themultiplicative imaginary number ‘i’ on the second
termof theDirac equations. Then .*y y= Sowhile y is a solution of equation (58a), its complex conjugate is
not a solution of (58a). y is solution of equation (58b). In the language of quantum field theory, y and y
represent the two different physical entities, namely ‘particles’ and ‘antiparticles.’

Figure 4. (a) Schematic illustration of the band structure of a one-dimensional elasticmedium subjected to a sinusoidal spatio-
temporalmodulation of its stiffness. The interaction between elastic waves with frequency 0w and a spatio-temporalmodulation of
the elastic constants leads to a frequency splitting that resembles Brillouin scattering. The frequency of the scatteredmodes contains

harmonics of the frequency associatedwith themovingmodulation: n ,n 0w w=  W where 2 .V

L
pW = The particular solution in

equation (49) is afirst-order harmonic (n=1). These scatteredmodes appear as dashed lines parallel to the folded bands of the static
superlattice (solid line). The scatteredmodes hybridize with the static folded bands to formband gaps (blue and red curves). The gaps
form asymmetrically with respect to the wave number origin. For instance, the gaps A andA′ result from the hybridization between a
first-order harmonic (n=1) and thefirst and second bands of the static system (see equation (53)). These gaps occur in the positive
wave number side of the Brillouin zonewithout equivalent in the negative side. (b)Magnification of the gapA. The frequency change

0dw is negative on the left of the gap and positive on the other side (thin arrows). This sign change is controlled by the quantity:
M k g K, ,+ W( ) (see equation (53)).
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Wewrite our solutions in the form: , , e eW V
1 2 1 2

i i1 2y w w x w w= w w ( ) ( ) ( ) ( ) and

, , e eW V
1 2 1 2

i i1 2y w w x w w= w w ( ) ( ) ( ) ( ) where
a
a
1

2
x = ( )and a

a
1

2
x = ⎜ ⎟⎛

⎝
⎞
⎠ are two by one spinors. Inserting the

various forms for these solutions in equations ((58a), (58b)) lead to the ‘dispersion’ relation:

. 591
2

2
2 2w w a= + ( )

This is the equation of an orthochronous hyperbola in the ,1 2w w( ) plane as illustrated infigure 5.However,
as we have stated earlier, the pair ,1 2w w( ) needs to also be compatible with the zeroth-order equation (46). For
this, wewrite:

W V
2 2

. 601 2 0
1 2

2
1 2w w t

w w
t

w w
+ =

-
+

+⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠ ( )

Since u k g a k g, , , e ,k g
0 0 2 0 2

i 0 0t t t+ = + w t+( ) ( ) ( ) the pairs of frequencies ,1 2w w( ) need to satisfy the
condition:

2 . 611 2 0w w w- = ( )

Inserting the condition given by equation (61) into (59) yields the additional condition:

M
. 621 2

0

w w
w

+ = ( )

The graphical construction of the solutions of equations (58a), (58b) and (46) is given infigure 5. The
solutions ,1 2* *w w( ) evolve with thewave number, k, as both 0w and a varywith k. By varying k over the interval

k,
L g- -p⎡⎣ ⎤⎦– k , ,g L

p⎡⎣ ⎤⎦ and following the branch of the dispersion relation that possesses non-zero positiveM k ,( )

k0w ( ) spans positive and negative values in the interval k k,
L g g0 0w w- -p⎡⎣ ⎤⎦( ) ( ) – k , .g L0 0w w p⎡⎣ ⎤⎦( )( )

Spanning this range enables us to explore the different positive and negative values of 1*w and ,2*w i.e., both
top and bottombranches infigure 5. The spinor parts x and x for the different ‘orbital’ parts, e ei W i V1 2w w ( ) ( ) are
collected in table 1 below.

Since both 1 2w w- and 1 2w w+ are real positive quantities, the spinors in table 1 are real. Let us consider, as

an example, the first entry in table 1 (i.e., the orbital part is e eW Vi i1 2w w+ + ), the spinor: .
1 2

1 2
x

w w
w w

=
-

- +

⎛
⎝⎜

⎞
⎠⎟

Inserting equations (61) and (62) yields
2

.A M

0

0

x
w

=
-

w

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ Considering the orbital part e e ,W Vi i1 2w w+ - the spinor

Figure 5. Schematic illustration of the orthochronous hyperbolic temporal dispersion relation 1
2

2
2 2w w a= + (thick solid line). The

pair ,1 2* *w w( ) satisfies both equations (58a), (58b) and (6) as it is the intersection of the condition 21 2 0w w w- = (see equation (61)),
represented by the dotted line and the dispersion relation.
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component becomes
2

.B

M

0

0x
w

=
-

w

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ In the limit of a small perturbation, M k 0( ) and

a
0

2

0
A

1 0x w= =
⎛
⎝⎜

⎞
⎠⎟( ) and a

0 0
2

.B 2 0
x w= = -

⎛
⎝⎜

⎞
⎠⎟( ) A andB correspond to points along the right and left

asymptotes of the top curve infigure 5. Under these conditions the orbital parts ofA andB reduce to e i 0 0w t+ and

e .
Mi
0 2w t+ PointA corresponds to an unperturbed solution of thewave equation i.e., solution in a homogeneous

mediumwithoutmodulation. PointB represents the effect of the perturbation. The components of a general

spinor
a
a
1

2
x = ( )measure the ‘amount’ of correction relative to the unmodulated solution in the space of the

two time scales 0t and .2t
Relations (61) and (62) enable us to express the spinors in terms of thewave number k. The parameter k (and

simultaneously, k0w ( )), leads tomeasurable and subsequently tunable spinors x and .x
Wenowdefine the quantity s .1

2
= w

w
¶
¶

Using equation (59), we can obtain the following expression for the two
frequencies 1w and :2w

s a1 631
2 2w a g ag= + = ( )

s b, 632w ag= ( )

where .
s

1

1 2
=

-
As noticeable infigure 5, for every solution ,1 2* *w w( ) the quantity s is always less than 1 and g is

isomorpohic to a Lorentz factor. Therefore, the temporal Dirac phonons described here behave like particles for
which the quantity smust be less than 1.

3.4. Temporal ghost phonons
When M k g K, , 0.+ W <( ) Equations (58a), (58b) become

I
W V

ai 0 64x y Gs s a y
¶

¶
-

¶
¶

+ ¢ =
⎡
⎣⎢

⎤
⎦⎥ ( )

I
W V

bi 0, 64x y Gs s a y
¶

¶
-

¶
¶

- ¢ =
⎡
⎣⎢

⎤
⎦⎥ ( )

where M2 .a¢ = ∣ ∣ These correspond toDirac equations with an imaginary ‘mass’ i .a a= ¢ These equations
describe temporal ghost phonons also referred to as tachyons [30]. Seeking solutions in the form:

, ,G G1 2 1 2y w w x w w=( ) ( ) e eW Vi i1 2w w ( ) ( ) and c, ,G G1 2 0 1 2y w w x w w=( ) ( ) e eW Vi i1 2w w ( ) ( ) where Gx and Gx are
also two by one spinors. Inserting the various forms for these solutions in equations (64a), (64b) lead to the
‘dispersion’ relation:

. 651
2

2
2 2w w a= - ¢ ( )

This is the equation of an anti-chronous hyperbola in the ,1 2w w( ) plane. Figure 6 shows this dispersion
relation aswell as the condition (61) thatmakes temporal ghost phonon solutions that are compatible with the
zeroth-order equation (46).

Inserting equation (61) into (65) produces the condition:

M
. 661 2

0

w w
w

+ = -
∣ ∣ ( )

Again, the solutions ,1 2* *w w( ) for temporal ghost phonons evolvewith thewave number, k, as both 0w and a
varywith k. The temporal ghost phonons can be investigated by varying k over the intervals k k,g g-[ ] and
following the branch of the dispersion relation that possesses non-zero negative M k .( ) Spanning this range
enables us to explore the different positive and negative values of 1*w and ,2*w i.e., both left and right branches in
figure 6. The spinor parts Gx and Gx for the different ‘orbital’ parts, e eW Vi i1 2w w ( ) ( ) are collected in table 2 below.

Table 1.Two by one spinor solutions of equations (58a) and (58b) for the different
‘orbital’ forms.

e eW Vi i1 2w w+ + e eW Vi i1 2w w- + e eW Vi i1 2w w+ - e eW Vi i1 2w w- -

x 1 2

1 2

w w
w w
-

- +

⎛
⎝⎜

⎞
⎠⎟

1 2

1 2

w w
w w

+
-

⎛
⎝⎜

⎞
⎠⎟

1 2

1 2

w w
w w
+

- -

⎛
⎝⎜

⎞
⎠⎟

1 2

1 2

w w
w w

-
+

⎛
⎝⎜

⎞
⎠⎟

x 1 2

1 2

w w
w w

-
+

⎛
⎝⎜

⎞
⎠⎟

1 2

1 2

w w
w w

- +
-

⎛
⎝⎜

⎞
⎠⎟

1 2

1 2

w w
w w

+
-

⎛
⎝⎜

⎞
⎠⎟

1 2

1 2

w w
w w

- -
+

⎛
⎝⎜

⎞
⎠⎟
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Inserting equations (61) and (66) into thefirst entry of table 2, for example:
i

G
2 1

2 1
x

w w
w w

=
-

+

⎛
⎝⎜

⎞
⎠⎟ yields

Mi

2

.G

0

0

x
w

w

=
-

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟∣ ∣ The spinors in table 2 are purely imaginary. They are
2

p out of phase compared to the spinors

of table 1.
Relations (61) and (66) enable us to express the spinors in terms of thewave number k. The parameter k (and

simultaneously, k0w ( )), leads tomeasurable and subsequently tunable spinors Gx and .Gx
Weagain use the quantity s 1

2
= w

w
¶
¶

to characterize the properties of the ghost phonons. Using equation (65),
we can obtain the following expression for the two frequencies 1w and :2w

s ai 1 i 671
2 2w a g a g= ¢ + = ¢ ( )

s bi , 672w a g= ¢ ( )

where again .
s

1

1 2
g =

-
However, here, as seen infigure 6, s is always greater than 1 for every solution , .1 2* *w w( )

The γ factor is subsequently an imaginary number
s

i

12
g =

-
whichmakes 1w and 2w real quantities. The ghost

phonons described here behave like particles for which the quantity s is larger than 1. The lines 1 2w w=  in
figures 5 and 6 serve as boundaries between temporal Dirac phonons and temporal ghost phonons i.e., particles
with s 1< and particles with s 1.> Equivalently, we can say thatwe can approach the band gap fromone side
or the other inmomentum space without being able to cross the gap. The temporal ghost phonons are
metaphors for superluminal particles while temporal Dirac phonons can be visualized as particles that do not
exceed the ‘speed’ s=1.

The temporal Dirac phonons and temporal ghost phonons discussed here obey aDirac-like equation in a
two-dimensional temporal space (compressed time and dilated time). These ‘particles’ possess Fermion

Figure 6. Schematic illustration of the anti-chronous hyperbolic dispersion relation, 1
2

2
2 2w w a= - ¢ (thick solid line). The pair

,1 2* *w w( ) satisfies both equations (64a), (64b) and (46) as it is the intersection of the condition 21 2 0w w w- = (see equation (61))
(dotted line) and the dispersion relation.

Table 2.Two by one spinor solutions of equations (64a), (64b) for the different ‘orbital’
forms.

e eW Vi i1 2w w+ + e eW Vi i1 2w w- + e eW Vi i1 2w w+ - e eW Vi i1 2w w- -

Gx i 2 1

2 1

w w
w w

-
+

⎛
⎝⎜

⎞
⎠⎟

i 2 1

2 1

w w
w w

+
-

⎛
⎝⎜

⎞
⎠⎟

i 2 1

2 1

w w
w w

+
- -

⎛
⎝⎜

⎞
⎠⎟

i 2 1

2 1

w w
w w

-
- +

⎛
⎝⎜

⎞
⎠⎟

Gx i 2 1

2 1

w w
w w

-
- +

⎛
⎝⎜

⎞
⎠⎟

i 2 1

2 1

w w
w w

- +
-

⎛
⎝⎜

⎞
⎠⎟

i 2 1

2 1

w w
w w

+
-

⎛
⎝⎜

⎞
⎠⎟

i 2 1

2 1

w w
w w

-
+

⎛
⎝⎜

⎞
⎠⎟
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character i.e., obey a constraint reminiscent of Pauli’s exclusion principle. That constraint relates to the

interdependence of the components of the spinor
a
a .1

2( ) Following section 2, one can verify easily that spinors in

tables 1 and 2 satisfy the spin
1

2
eigenstate equation:

a
a

a
a

1

2
.2

1
1

2

1

2

1

2
w

w
w

w
¶
¶

+
¶

¶
=

⎛
⎝⎜

⎞
⎠⎟( ) ( )

3.5.Metrics and geodesics
In this section, we illustrate some additional properties of temporal Dirac phonons and temporal ghost
phonons. In particular, we address their description in the context of amulti-dimensional curved temporal
space.

3.5.1. Temporal metrics
In the case of a dynamical system that obeys a general second-order hyperbolic partial differential equation that
supports wave excitations:

F x , , , 0. 68f f f¶ ¶ ¶ =m m n m( ) ( )

It is possible to obtain a geometrical description by defining an effectivemetric [37].
Linearizing equation (68) around some solution:

x t x t x t, , , 690 1f f ef= + + ¼m m m( ) ( ) ( ) ( )

yields

F F F
0. 70

0

1

0

1
0

1f
f

f
f

f
f

¶
¶ ¶ ¶

¶ ¶ +
¶

¶ ¶
¶ +

¶
¶

=
m n

m n
m

m( ) ( ) ( )
( )

Equation (69) can be rewritten as:

F F F F
0. 71

0

1

0 0

1
0

1f
f

f f
f

f
f¶

¶
¶ ¶ ¶

¶ +
¶

¶ ¶
- ¶

¶
¶ ¶ ¶

¶ +
¶
¶

=m
m n

n
m

m
m n

m
⎪

⎪

⎪

⎪
⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎫
⎬
⎭

⎧
⎨
⎩

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎫
⎬
⎭( ) ( ) ( ) ( )

( )

It is therefore possible to define the contravariantmetric tensor

f g g
F

. 72
0

f
= =

¶
¶ ¶ ¶

mn mn

m n
∣ ∣

( )
( )

The second and third terms in equation (71)may be viewed as forming the analog of a vector potential and a
scalar potential, respectively.

We can now reconstruct the perturbative series of thewave equation of themodulated system in terms of
solution corrected to second-order. For this, wemultiply equation (54) by 2e and combine it with equation (46).
We also rename u0 by u0¢ to reflect the corrected nature of the solution i.e., this is the solution that satisfies both
the zeroth-order equation (46) and (54)which imposes corrections due to second-order effects. Thewave
equation including second-order corrections becomes:

u k g u k g
v k g M k g K u k g

, ,
2

, ,
, , , , 0.

73

a

2
0 0 2

0
2

2
2

0 0 2

2 0

2 2 2
0 0 2

t t
t

e
t t

t t
e t t

¶ ¢ +
¶

+
¶ ¢ +

¶ ¶
+ + + + W ¢ + =

( ) ( ) { ( ) ( )} ( )

( )

For reasons thatwill be apparent in the upcoming derivations, we divide throughout equation (73) by 1
2e
and

obtain:

u k g u k g u k g

v k g M k g K u k g

1 , , , , , ,

1
, , , , 0. 74a

2

2
0 0 2

0
2

2
0 0 2

2 0

2
0 0 2

0 2

2
2 2

0 0 2

e
t t

t
t t

t t
t t

t t

e
t t

¶ ¢ +
¶

+
¶ ¢ +

¶ ¶
+

¶ ¢ +
¶ ¶

+ + + + W ¢ + ={ }
( ) ( ) ( )

( ) ( ) ( ) ( )

Expanding equation (74) around a phonon vacuum i.e., no elastic displacement, then u0¢ plays the role of .1f
Wecan then define the contravariantmetric tensor using relation (72).
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Wefind:

f
1

1

1 0
. 752e=mn

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟[ ] ( )

The determinant of thatmatrix is−1, sowe can define the contravariantmetric tensor:

g
1

1

1 0
. 762e=mn

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟[ ] ( )

We take the inverse of gmn[ ] to obtain the covariantmetric tensor:

g
0 1

1
1 . 77
2e

=
-

-mn

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟[ ] ( )

The temporal line element in the ,0 2t t( ) space is then calculated as:

sd d , d
0 1

1
1

d
d

1
d 2d d . 782

2 0
2

2

0
2 0

2
0 2t t

e

t
t e

t t t=
-

- = -
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛
⎝⎜

⎞
⎠⎟( ) ( )

The off-diagonal terms in themetric tensor lead to a line element that is characteristic of a non-Euclidian
,0 2t t( ) space.
If we focus on the part of the line element (equation (77)) that arises from the off-diagonal terms of

equation (78), namely d d ,0 2t t we can express it in terms of the temporal variablesW andV using equation (55):

W V W V W Vd d d d d d d d .0 2
2 2t t = - + = -( )( )

This is a line element in a two-dimensional temporalMinkowski space with an analog to the speed of light
taken as ‘1.’

3.5.2. Space-multiple times (1+2) geometrical model
Weconsider the purely geometrical interpretation of the propagation of elastic waves in the time-dependent
superlattice. That is, we introduce the potential into the curvature of spacetime.We start with equation (73)
which is reformulated as:

k g k g
N k g K k g a

, ,
2

, ,
, , , , , 0, 79

2
0 2

0
2

2
2

0 2

2 0
0 2

y t t
t

e
y t t

t t
e y t t

¶ +
¶

+
¶ +

¶ ¶
+ + W + =

( ) ( ) ( ) ( ) ( )

where N k g K v k g M k g K, , , , , .a
2 2 2e e+ W = + + + W( ) { ( ) ( )} It is worth noting that N is always a positive

quantity.While M k g K, ,+ W( ) is positive for the temporal Dirac phonons, it is negative for the temporal
ghost phonons. In the latter case, if k g+( ) (or kg) is not too close to the origin, the small coefficient 2e makes
M k g K, ,2e + W( ) small compared to v k ga0

2 2 2w = +( ) enforcing N>0.
In equation (78), we have replaced the symbol u0¢ by y for ease of notation.Wewant to derive equation (78)

frompurely geometrical arguments. In the three-dimensional spacetime , , ,0 2y t t( ) wedefine the line element:

l N bd d
1

1
d

1
d . 792 2 2

2 0
2

2 2
2y y

e
t

e
t= -

-
-⎜ ⎟⎛

⎝
⎞
⎠ ( )

Weconsider a curve between twofixed point A and B.The length along the curve is:

L l N Fd
1

1

1
d d . 80

A

B

A

B

A

B2
2

2
0

2

2
2

2

ò ò ò
y
l

y
e

t
l e

t
l

l l= =
¶
¶

-
-

¶
¶

-
¶
¶

=⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝⎜
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎞
⎠⎟ ( )

In equation (80) the curve is described in terms of the parameter, .l Tofind aminimumof the length,
L 0,d = we utilize the Euler–Lagrange equation:

F F F F F F
0 81

0 2 0 2l y
l

l t
l

l t
l

y t t
¶
¶

¶

¶
¶
¶

+
¶
¶

¶

¶
¶
¶

+
¶
¶

¶

¶
¶
¶

-
¶
¶

-
¶
¶

-
¶
¶

=
⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎛

⎝

⎜⎜⎜⎜ ⎛
⎝

⎞
⎠

⎞

⎠

⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜ ⎛
⎝

⎞
⎠

⎞

⎠

⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜ ⎛
⎝

⎞
⎠

⎞

⎠

⎟⎟⎟⎟
( )

17

New J. Phys. 20 (2018) 053005 PADeymier et al



N N

G

G
N
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1

1

1
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1

1

1

1

2

1
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1

1

1
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2
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2

2
2

0
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2
2
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2
2
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t
l e
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l
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y
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-
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-
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¶

+
-

¶
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-
¶
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-
¶
¶
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-
-

¶
¶

-
¶
¶

=

⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎜ ⎟

⎧⎨⎩
⎛
⎝

⎞
⎠

⎫⎬⎭
⎛
⎝⎜
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎞
⎠⎟

⎧⎨⎩
⎛
⎝

⎞
⎠

⎫⎬⎭ ( )

Wehave definedG F .2= Wenow chose ld dl = such that F G 1= = and 0.G =
l

¶
¶

Equation (82) reduces

to thefirst two terms. Expanding the derivative, ,
l
¶
¶

one gets:

l
N

l l l
N

l l

N
l l
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1

1
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1

1

1

2
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1

1
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2
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¶
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¶ -

¶
¶

-
¶
¶

-
-

¶
¶

-
¶
¶

+
-

¶
¶

-
¶
¶

=

⎜ ⎟

⎜ ⎟ ⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
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⎛
⎝⎜
⎛
⎝

⎞
⎠
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⎝

⎞
⎠

⎞
⎠⎟ ( )

This is the equation of a geodesic. Along the geodesic l v td d= with a constant v. Furthermore, we recall
that t0t = and t.2

2t e= Inserting these into equation (82) results in:

t
N N2 0. 84

2

2

2

0
2

2
2

0 2

y
y

y
t

e
y

t t
y

¶
¶

+ =
¶
¶

+
¶

¶ ¶
+ = ( )

Equation (84) is indeed (78). To obtain equation (84), we used the following:

l l v t t v

1 1 1 1
1

1
00

2
2 0

2
2

2
2t

e
t t

e
t

e
e

¶
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¶
¶

=
¶
¶

-
¶
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⎠
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- =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
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⎠
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⎠⎟
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⎠

The later approximationmaintains equation (84) to second-order in .e Wenote that it is the introduction of
two time scales ,0 2t t which enables us to obtain equation (84) from L 0.d =

To second-order (see equation (53))

N k g K k g, , , . 850
2*e w+ W ~ +( ) ( ( )) ( )

The line element given by equation (79a) can then be rewritten as:

l k gd d
1

1
d

1
d . 862 2 2

0
2

2 0
2

2 2
2*y y w

e
t

e
t= - +

-
-⎜ ⎟⎛

⎝
⎞
⎠( ( )) ( )

This line element defines themetric tensor in the three-dimensional space , , ,0 2y t t( )

g
k g

k g

1 0 0

0
1

1
0

0 0
1 1

1

. 87
2

0
2

2

2
2

0
2

2

*

*

y w
e

e
y w

e

=
- +

-

+
-

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
[ ]

( ( ))

( ( ))

( )

Equation (86) is reminiscent of the usual line element in polar coordinates, , :r q( )

sd d d2 2 2 2r r q= +

with the role of the radial variable, ,r played by y (i.e., the amplitude of the elastic wave). The angular variable is
related to the two temporal variables scales ,0 2t t via:

k gd
1

1
d

1
d . 882

0
2

2 0
2

2 2
2*q w

e
t

e
t= - +

-
-⎜ ⎟⎛

⎝
⎞
⎠( ( )) ( )

This result is different from equation (77) as the line element of equation (86) includes the effect of the

potential:V N k g K
1

2
, , , 2y e y= + W( ) ( ) in the geometrical description.

We also note thatwith td d0t = and td d ,2
2t e= the line element k g td d2

0
2 2*q w= - +( ( ))

(i.e., i k g td d0*q w= +( ) ). The line element (86) reduces to the line element in the complex plane in polar
coordinates.
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Wecan see this from another point of view.We can rewrite equation (88) as a non-EuclidianMinkowski-like
metric with two time-related variables:

X Xd d
1
d 892

0
2

2 2
2q

e
= - ( )

with X k gi0 0
1

1
02

*w t= +
e-

( ) and X k gi .2 0
1

1
22

*w t= +
e-

( ) The space spanned by the variables X0 and X2 is

conical:

X X
1

0 900
2

2 2
2

e
- = ( )

which implies ;2
2

0t e t=  the positive solution being the one that defined .2t
Equation (86) becomes

ld d d . 912 2 2 2y y q= - ( )

Again, this is the polar coordinate representation in the complex plane of: , i .y q( ) The temporal variation of
y was found to be: k g e .k g ti 0*y a= + w +( ) ( ) This is a normalmode of the time-dependent superlattice with
second-order correction to the frequencywhich follows a nonlinear trajectory in the t,y( ) plane. One can
describe these solutionswith a geometric approach. For instance, we can obtain thewave equation (84) from a
purely geometrical argument in the space of y by introducing the line element:

s E Vd 2 d . 922 2y y= -( ( )) ( )

This wave equation is the equation of a geodesic in a 1D curved space, ,y with the
metric g E V2 .y= -( ( ))

The dynamics of the elasticmedium subjected to a spatio-temporalmodulation of its stiffness was shown to
be describable with a complexmetric tensor. Scalar fields corresponding to complexmetric tensors are known to
possess tachyonic solutions [38].

4. Conclusions

Wehave developed spacetime representations of elastic waves in intrinsic and extrinsic topological phononic
systems. Time-reversal and parity symmetries are broken individually in an intrinsic topological phononic
structure through internal resonances. This is accomplished by attaching everymass in a 1Dharmonic chain to a
rigid substrate via side springs. The dynamical equations then take the formof theKlein–Gordon equation
whichwhenDirac factored reveals the spinor nature of the elastic waves. TheseDirac phonons possess fermion-
like topologies and can be describedwithin the context of quantumfield theory [2]. Dirac phonon states are
analogous to the usual spin but with states projected on the directions of propagation of the elastic waves along
the harmonic chain.Dirac phonons behave like pseudospins.We explore the solutions of the dynamical
equations in the formof contour integrals which enables us to connect thefield theoretical description of
topological elastic waves, their spacetime representation and the twistor theory.We have also considered an
extrinsic topological phononic system composed of a 1D elasticmedium supporting a spatio-temporal
modulation of its stiffness. Spatio-temporalmodulations break both parity and time-reversal symmetry leading
to spectral non-reciprocity and the formation of band gaps in the elastic band structure that are asymmetric with
respect tomomentum. In the context ofmultiple time scale perturbation theory, we demonstrate an analogy
between the longitudinal phonons in the vicinity of an asymmetric gap and two types of particle excitations,
namely temporal Dirac particles and temporal ghost particles. These particles are defined in a two-dimensional
time space. TheDirac phonons have a real ‘mass’ and the ghost phonons possess an imaginary ‘mass.’Thewave
function of both types of phonons has amplitude that takes the formof (2×1) spinors. The spinors of ghost
phonons, however, are phase shifted by

2

p with respect to their Dirac counterparts.We show that these two types

of temporal phonons live on two separate sides of ghost lines. The ghost lines are analogous to introducing a
limiting ‘velocity’ such as the speed of light in conventional spacetime.Wemap the spinor characteristics of
temporal Dirac and ghost phonons to the dispersion curves in the elastic band structure. The spinor of each type
of phonon is thereforemeasurable and tunable. Finally, we develop a purely geometric description of temporal
Dirac and ghost phonons in curved 2D time.We show that the dynamics ofDirac and ghost phonons can be
represented in the formof a geodesic in a complex spacetime.

The analogies between topological phononic systems, quantumfield theory and spacetime representations
open new avenues for the simultaneous investigation of both scalar quantum field and general relativistic
analogs in a single experiment. The twistor space representation ofDirac phonons but also temporal Dirac
phononswith pseudospin characteristics presents opportunities to study the relationship between twistor
theory and quantumfield theories. The introduction of temporal ghost phonons also creates new approaches to
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both themodeling andmeasurement of analog tachyonic behavior. It can be further noted that the investigation
of these elastic analogs and their parameters is entirely at the choice of the experimenter. Hence, we see that the
analogy between the elastic behavior of intrinsic and extrinsic topological phononic structures and the scalar
quantumfield theory and general relativity allows for the experimental exploration of a number of concepts and
of exotic particle excitations that previously have only been theorized.
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