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Abstract. We develop a novel first-principle molecular dynamics method based on the
discretized path integral formalism of quantum mechanics. This method which includes quantum
exchange is used to simulate the behavior of liquid potassium at high temperature. We compute
the energy as well as the electronic and atomic structural properties of the liquid metal. These
results compare favorably with previous calculations and experimental results.

1. Introduction

Molecular dynamics is a useful technique for the study of solids and liquids [1]. Over the
past decade, there has been a great deal of effort and progress directed toward implementing
first-principle molecular dynamics. For example, the Car and Parrinello method [2] based
on density functional theory has been successfully employed to simulate a large variety of
systems. Among these, liquid alkali metals have received a good deal of attention [3, 4].
Alkali metals are good prototypes of free-electron systems which offer a particular challenge
due to the intimate relation and cooperative evolution of the atomic and electronic structure.

It is easy for liquids to undergo local density fluctuations in response to some electronic
change [5]. For instance, a metal/non-metal transition in expanded alkali metals can be seen
near the liquid–gas critical density [6]. It has been speculated that density inhomogeneities in
the form of clusters are associated with such transitions [7]. The strong correlation between
the structure of the liquid and the electronic structure necessitates a theoretical study that is
capable of determining the correlated electronic structure. Furthermore, the possibility for
the electronic structure to change from delocalized electrons to localized electrons suggests
the use of a method based on a complete set of states such as in a position representation.
This method should also allow for the study of finite temperature properties including ionic
motion.

We report in this paper an investigation of the structure of liquid potassium using a
new molecular dynamics method which incorporates the above-mentioned requirements.
In our system, which is composed of ionic and electronic degrees of freedom, the ionic
degrees of freedom are described classically. The electronic degrees of freedom, meanwhile,
are described via the path integral formulation of quantum statistical mechanics. In the
discretized path integral formulation the quantum problem is shown to be isomorphic to an
appropriate classical problem [8]. In absence of exchange each electron is mapped onto a
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closed necklace composed ofP nodes interacting through appropriate harmonic forces. The
necklace is isomorphic to the path of the electron in imaginary time. In order to simulate
exchange between electrons, the direct simulation of fermionic degrees of freedom using
the discretized path integral representation should include crosslinking of the necklaces [9].
The simulation of fermionic systems is complicated by the negative weights in the partition
function resulting from the crosslinking of even numbers of necklaces corresponding to
even permutations of electrons. Recently, Hall proposed an approximate form of the many-
electron short time propagator used in path integral simulations that includes the effects of
exchange [10–12]. Similar to the approach of Hall, an effective classical potential, which
includes the effects of exchange, is implemented in the molecular dynamics algorithm. This
effective potential gives rise to a repulsive barrier between isospin electrons which ensures
that the Pauli exclusion principle is upheld. The calculated electronic structure of the liquid
metal is characterized by a spin-dependent pair distribution function as well as the kinetic
energy of the electrons. We demonstrate that our exchange potential is quite effective in
enforcing spatial exclusion of isospin electrons resulting in more localized states. Our results
also show reasonable agreement between the calculated K–K pair distribution function and
experimental ones.

The paper is organized as follows. In section 2, we derive an effective exchange
potential which allows the simulation of indistinguishable quantum particles with the method
of molecular dynamics. Both the model system and details on the practical implementation
of this method are given in this section. Section 3 contains the results of our simulations
of liquid potassium as well as a discussion of the liquid and electronic structures. Finally,
some conclusions are drawn regarding the applicability of the technique to other systems.

2. Method and model

2.1. Method

The quantum statistical partition function for a single particle may be written as [13]

Z =
∫

dr1 〈r1|e−βHop|r1〉 ≈ lim
P→∞

∫
dr1 〈r1|(e−βHop/P )P |r1〉 (1)

where Hop is the Hamiltonian operator for our system and is a sum of the kinetic and
potential operators.β is 1/kT . By substitutingτ = −ih̄β in equation (1), one can think of
the Boltzmann factor, exp(−βHop), as the time evolution operator of the classical particle
in imaginary time space.

Upon introducing (P − 1) intermediate states inZ, we obtain the path integral
representation of the partition function

Z ≈
∫

dr1 dr2 . . . drP 〈r1|e−εHop|r2〉〈r2|e−εHop|r3〉 . . . 〈rP |e−εHop|r1〉 (2)

whereε = β/P .
In equation (2), the first term represents the path fromr1 to r2, the second connectsr2

to r3, and so on. Notice that the last term in this equation connectsrP to r1, thus closing
the overall path. In other words, the single quantum particle is now transformed to look like
a polymeric necklace consisting ofP beads or nodes. With the periodic boundary condition
(cyclic condition)

rP+1 = r1. (3)
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We can rewrite the partition function in a more compact form

Z ≈
∫ P∏

n=1

drn 〈rn|e−εHop|rn+1〉. (4)

Using the Trotter formula, the propagator could be approximated as follows [14]:

〈rn|e−εHop|rn+1〉 ≈ 〈rn|e−εTope−ε8op|rn+1〉 (5)

whereTop is the kinetic energy operator and8op is a potential operator. In the case of a
local potential operator and introducing the closure relation in equation (5), the partition
function of a single particle becomes [14]

Z ≈
∫ P∏

n=1

drn 〈rn|e−εTop|rn+1〉 exp

[
− β

P

P∑
i=1

8(ri )

]
. (6)

In equation (6),8(r), represents some potential function of the position. The term in
brackets is simply the free-particle density matrix [13], which may be written as

〈rn|e−βTop/P |rn+1〉 =
[

Pm

2πβh̄2

]3/2

exp

[
−β

Pm

2β2h̄2 (rn − rn+1)
2

]
(7)

with m being the mass of the particle.
The quantum partition function is isomorphic to a classical partition function which

takes the form

Z ≈
[

Pm

2πh̄2β

]3P/2 ∫ P∏
n=1

drn exp(−βVeff(r1, . . . , rP )) (8)

with

Veff(r1, . . . , rP ) =
P∑∗

i=1

[
Pm

2h̄2β2
(ri − ri+1)

2 + 1

P
8(ri )

]
. (9)

The ‘∗’ denotes the cyclic condition. The quantum particle may, therefore, be represented by
a necklace ofP nodes such that a point in the necklace interacts with its first neighbors in the
chain through a harmonic potential of spring constantC = (Pm/h̄2β2). The isomorphism
between the quantum and classical representations becomes more accurate asP → ∞.

Equation (8) can be generalized to represent more than one quantum particle. The
partition function of a collection ofN , interacting quantum particles in absence of quantum
exchange, is written as

Z ≈
[

1

N !

]P [
Pm

2πh̄2β

]3NP/2 ∫ N∏
j=1

P∏
i=1

dr
(j)

i exp

[
− β

N∑
j=1

P∑∗

i=1

Pm

2h̄2β2
(r

(j)

i − r
(j)

i+1)
2

]

× exp

[
− β

P

N∑
j=1

P∑
i=1

8(r
(j)

i )

]
× exp

[
− β

P

N∑
j>k

P∑
i=1

9jk(r
(j)

i − r(k)
i )

]
. (10)

The potential9jk(r
(j)

i −r(k)
i ) accounts for the interaction between the particles. In the case

of a Coulombic interaction,

9jk(r
(j)

i − r(k)
i ) = e2

4πε0|r(j)

i − r(k)
i |

. (11)

In this form the particles ‘j ’ and ‘k’ can only interact when in the same discrete quantum
state (or at the same imaginary time) as indicated by the subscript ‘i’.



140 P A Deymier et al

Equation (10) acquires further complications upon the inclusion of exchange. This is
due to the formation of dimers, trimers, and higher-order ‘polymeric’ structures that arise
from the 2-cycle, 3-cycle, and up toN -cycle permutations of particles. These contributions
appear in the form of extra terms in the partition function. The quantum partition function
of a system composed of interacting electrons (fermions) including exchange is given by
[9]

Z ≈
[

1

N !

] [
Pm

2πh̄2β

]3NP/2 ∫ N∏
j=1

P∏
i=1

dr
(j)

i M[An,n+1] exp

[
− β

P

N∑
j=1

P∑
i=1

8(r
(j)

i )

]

× exp

[
− β

P

N∑
j>k

P∑
i=1

9jk(r
(j)

i − r(k)
i )

]
. (12)

The termM[An,n+1] stands for the determinant of anN × N matrix whose elements are
given by

A
jk

n,n+1 ∝ 〈r(j)
n |e−βTop/P |r(k)

n+1〉 (13)

where

〈r(j)
n |e−βTop/P |r(k)

n+1〉 =
[

Pm

2πβh̄2

]3/2

exp

[
−β

Pm

2β2h̄2 (r(j)
n − r(k)

n+1)
2

]
. (14)

In the absence of quantum exchange the determinant is

M[An,n+1] =
N∏

j=1

A
jj

n,n+1 (15)

and equation (12) reduces to equation (10). The off-diagonal element of the matrix [An,n+1],
A

jk

n,n+1, represents a path fromr(j)
n to r(k)

n+1. This path is associated with a permutation
between particle ‘j ’ and ‘k’.

To develop exchange further, we rewrite the matrix [An,n+1] in the form:

[An,n+1] = [Fn,n+1] × [En,n+1] (16)

where

F
ij

n,n+1 =
{

0 if i 6= j

A
jj

n,n+1 if i = j

and

E
ij

n,n+1 = exp

[
−β

Pm

2β2h̄2 [(r(i)
n − r

(j)

n+1)
2 − (r(i)

n − r(i)

n+1)
2]

]
. (17)

To illustrate this step we consider the case of two fermions. Equation (16) may be
written as (

A11
n,n+1 A12

n,n+1

A21
n,n+1 A22

n,n+1

)
=

(
F 11

n,n+1 F 12
n,n+1

F 21
n,n+1 F 22

n,n+1

) (
E11

n,n+1 E12
n,n+1

E21
n,n+1 E22

n,n+1

)
. (18)

We now drop the indicesn andn + 1 for simplicity. If we define

[F ] =
(

A11 0
0 A22

)
(19)

as is done in the second part of equation (16), then the matrix [E] has to take the form

[E] =
( A11

A11
A12

A11

A21

A22
A22

A22

)
. (20)
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Since the elements,Ajk, are defined in equations (13) and (14) as

A
jk

n,n+1 ∝ exp

[
−β

Pm

2β2h̄2 (r(j)
n − r(k)

n+1)
2

]
the matrix [E] is, therefore, composed of ones on the diagonal and exponential
(equation (17)) off the diagonal. With this,M[An,n+1] becomes

M[An,n+1] =
N∏

j=1

A
jj

n,n+1 × M[En,n+1] (21)

where the second term contains all the exchange effects. The determinantsM[En,n+1] and
M[An,n+1] generally contain terms with negative weight when the length of the exchange
permutation cycle is made up of even numbers of particles [13].

For instance, the expression forM[En,n+1] may be rewritten in the form

M[En,n+1] = 1 −
∑

i

∑
j

exp

[
− β

C

2
((r(i)

n − r
(j)

n+1)
2 + (r(j)

n − r(i)

n+1)
2

−(r(i)
n − r(i)

n+1)
2 − (r(j)

n − r
(j)

n+1)
2)

]
+

∑
i

∑
j

∑
k

exp

[
− β

C

2
((r(i)

n − r
(j)

n+1)
2 + (r(j)

n − r(k)

n+1)
2 + (r(k)

n − r(i)

n+1)
2

−(r(i)
n − r(i)

n+1)
2 − (r(j)

n − r
(j)

n+1)
2 − (r(k)

n − r(k)

n+1)
2)

]
− · · · (22)

where the second term in this equation corresponds to exchange between pairs of electrons,
while the third term corresponds to a 3-cycle exchange or simultaneous exchange among
three electrons, and so on.

The difficulty in defining an effective potential resides in the fact that the partition
function, throughM[En,n+1], is a sum over terms which can be either positive or negative.
In order to produce an effective classical potential useful in a computer simulation, one
would like to rewrite (or approximate) the partition function in a way that corresponds to a
sum of positive terms. Such an approximation may be possible for some systems provided
the terms with positive weight dominate the negative ones.

For instance, Monte Carlo simulations of a two-dimensional non-interacting system
constituted of two polarized fermions in a harmonic potential have been reported [15]. In
this study, two sampling methods were used, namely the usual importance sampling of
particle permutation and coordinates, and a sampling based on weight functions including
explicitly the determinant,M[An,n+1]. Both weight functions can take negative values;
however, the fraction of states with negative signs sampled by the determinant method is
much smaller. At high temperatures, the ratio of negative signs becomes very small. At
fixed PT , this fraction increases with decreasing temperature.

In a more recent study, path integral calculations of a fermion system of liquid3He
atoms in the normal state indicate that a restriction of the paths to a region of phase space
with a positive density matrix gives reasonable results at relatively high temperatures above
1 K [16]. Considering the heavy mass of3He atoms, 1 K falls in the high-temperature
region. These two studies suggest that under conditions of high temperature, we may be
able to restrict phase space to a region of positive determinant.

In our case, at high temperature, the sum over pairs of fermions in equation (22) is
expected to dominate. The sign ofM[En,n+1] is, therefore, determined by the magnitude
of (r(i)

n − r
(j)

n+1)
2, (r

(j)
n − r(i)

n+1)
2 and(r(i)

n − r(i)

n+1)
2, (r

(j)
n − r

(j)

n+1)
2.
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For interacting fermions, the Coulombic repulsion between the electrons dictates
the distance between nodes in their respective necklaces. The distance between two
successive nodes within a necklace decreases as the number of nodesP increases. At
high effective temperaturePT , that is high temperature and/or large number of nodesP ,
the large classical force constantC imposes|r(i)

n − r
(j)

n+1| and |r(j)
n − r(i)

n+1| to be greater

than |r(i)
n − r(i)

n+1| and |r(j)
n − r

(j)

n+1| leading to a topological constraint on the sign of

(r(i)
n − r

(j)

n+1)
2 + (r

(j)
n − r(i)

n+1)
2 − (r(i)

n − r(i)

n+1)
2 − (r

(j)
n − r

(j)

n+1)
2.

In other words, under these conditions, the Coulombic interaction breaks the symmetry
between a path within a necklace and a path between different necklaces. Since the partition
function is independent of the number of nodes for sufficiently large values, we may
conveniently chooseP such that positive determinants are the major contributors toZ.
Thus, we approximate the partition function by

Z ∼=
(

1

N !

)P [
Pm

2πβh̄2

]3NP/2 ∫
>0

N∏
j=1

P∏
i=1

dr
(j)

i exp[−βV ′
eff] exp

[
− β

P

N∑
j=1

P∑
i=1

8(r
(j)

i )

]

× exp

[
− β

P

N∑
j>k

P∑
i=1

9jk(r
(j)

i − r(k)
i )

]
(23)

where the
∫
>0 is limited to configurations withM[En,n+1] > 0.

In equation (23),V ′
eff is an effective potential which accounts for quantum exchange

and is given by

V ′
eff =

N∑
j=1

P∑∗

i=1

C

2
(r

(j)

i − r
(j)

i+1)
2 − 1

β

P∑∗

n=1

ln(M[En,n+1]). (24)

Following Hall [10], we rewrite the exchange potential in a nonlocal form,

V ′
eff =

N∑
j=1

P∑∗

i=1

C

2
(r

(j)

i − r
(j)

i+1)
2 − 1

β

P∑∗

m=1

P∑∗

n=1

1

P
ln(M[En,m]) (25)

which allows exchange between particles at any two imaginary times (nodes) in either
necklace. This procedure is, in a sense, equivalent to a mean-field approximation.

According to Hall’s scheme, the exchange potential between two electrons (i) and (j )
is given as

V
(i)(j)

exch = − 1

β

P∑∗

n=1

P∑∗

m=1

ln

{
1 − exp

[
− β

Pm

2β2h̄2 α|(r(i)
n − r(j)

m )2 + (r(j)
n − r(i)

m )2

−(r(i)
n − r(i)

m ) − (r(j)
n − r(j)

m )2|
]}

(26)

where the absolute value is introduced to ensure only positive weights in the partition
function. This approximation understimates the contribution of configurations with negative
arguments of the exponential. Hall introduces a coefficientα 6 1 to correct for errors arising
from the approximation. By contrast, our effective exchange potential is only limited to
M[En,m] > 0 which allows for the inclusion of terms whereEij

n,m > 1 or configurations
such that(r(i)

n − r
(j)
m )2 − (r(i)

n − r(i)
m )2 < 0. Since the exchange must be repulsive (to

satisfy Pauli’s principle), we must also restrict it toM[En,m] 6 1. To accomplish this,
M[En,m] is redefined as the determinant of [En,m] when M[En,m] is between 0 and 1, and
1 otherwise. Another difference with Hall’s work is that our approach is not limited to two
and three cycle exchange, but includes all higher-order exchange effects. While four, five
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and higher-order exchange cycles may not be significant at high temperature, our effective
potential will give a realistic picture at lower temperature provided the number of nodesP

is increased.
With an exchange potential defined, a molecular dynamics algorithm may now be applied

to sample the states of a system containing ionic and electronic degrees of freedom. We
note that a microcanonical ensemble sampling can be performed by averaging over the
trajectories generated by the classical Hamiltonian

H =
Nel∑
k=1

P∑
i=1

1

2
m∗(ṙ(k)

i )2 +
N∑

I=1

1

2
MIṘ

2
I +

N∑
I>J

N−1∑
I

ZIZJ

4πε0|RI − RJ |

+
P∑
i

Nel∑
k>l

Nel−1∑
l

(−e)(−e/P )

4πε0|r(k)
i − r(l)

i |
+

P∑
i=1

Nel∑
k=1

N∑
I=1

1

P
Vpseudo(RI − r(k)

i )

+
Nel∑
k=1

P∑
i=1

meP

2h̄2β2
(r(k)

i − r(k)

i+1)
2 − 1

β

P∑
i=1

P∑
j=1

1

P
ln(M[Eij ] ↑)

− 1

β

P∑
i=1

P∑
j=1

1

P
ln(M[Eij ] ↓) (27)

where MI are the ionic masses,m∗ is some arbitrary mass attributed to the nodes [17]
and N and Nel are the number of ions and electrons, respectively. The termVpseudo is a
pseudopotential describing the effective interaction between valence electrons and ions. As
exchange can only take place between electrons with identical spins, the exchange potential
is made spin-dependent by separating it into spin-up and spin-down parts. Furthermore,
since our exchange potential is based on the assumptions that (i) most of the important
configurations haveM[En,m] > 0, and (ii) this potential offers an infinite energy barrier
to configurations with negativeM[En,m], the electron trajectories will be biased toward
configurations with positive determinants.

2.2. Model and practical implementation

We have successfully simulated a system constituted of 30 potassium ions and 30 valence
electrons (15 with spin-up and 15 with spin-down) at a temperature of 1300 K. The mass
m∗ is taken to be equal to one atomic mass unit [17]. The simulation cell is a fixed cubic
box with edge lengthL = 13.3 Å, which corresponds to the density of liquid potassium at
the melting temperature [18]. The electron/potassium interaction is modelled with an empty
core pseudopotential with a core radiusRc = 2.22 Å [19]. The long-range Coulombic
interaction is calculated via the Ewald summation method [20], with the Ewald parameter
η = 5.741/L, and the real-space part of the summation truncated at(1/2)L. With this
choice of parameters, the reciprocal-space sum in the Ewald construction is small compared
to real-space contributions and may therefore be neglected [21].

To calculate the kinetic energy of the electrons, we use the energy estimator.

〈KE〉 = 3PNel

2β
−

〈 Nel∑
j=1

P∑∗

i=1

C

2
(r

(j)

i − r
(j)

i+1)
2

〉

+
〈

∂

∂β

( P∑∗

m=1

P∑∗

n=1

1

P
(ln(M[En,m]↑) + ln(M[En,m]↓))

)〉
. (28)
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This contribution to the energy is found by differentiating the partition function with respect
to β, in the absence of electron interaction and external potentials.

Periodic boundary conditions are imposed on the system. Some care must be taken
when using the exchange potential in equation (27) in association with periodic boundary
conditions. ForN electrons with identical spins, [En,m] is a N ×N matrix. The components
E

ij
n,m weigh a direct path along necklace (i) between imaginary timesn and m versus an

exchange path between necklaces (electrons) (i) and (j ). We therefore construct the matrix
[En,m] by considering all pairs of electrons in the simulation cell (and image cells). Only
those configurations of pairs of electrons which are most likely to contribute significantly to
the partition function are selected. This is accomplished by selecting the pairs of electrons
(i) and (j ) for which |(r(i)

n −r
(j)
m )2+(r

(j)
n −r(i)

m )2−(r(i)
n −r(i)

m )2−(r
(j)
n −r

(j)
m )2| is minimized.

The justification for this is found in equation (22), where at high temperatures the second
term is expected to dominate. Thus we choose a pair criterion for the construction of the
matrix [En,m].

The discretized path integral represents the exact quantum system when the number of
nodesP tends to infinity. However, there exists a minimum value ofP above which the
properties of the classical system have nearly converged to the properties of the quantum
system. In absence of exchange, the discretization of the electron is determined by the
ratio of the potential energy of the electron to the thermal energy. In the case of electrons
interacting with each other and with K+ ions through an empty core pseudopotential, the
potential energy is dominated by the electron Coulomb repulsion. The maximum potential
energy may be calculated ase2/4πε0rmin wherermin is the minimum distance of approach
between two interacting electrons. Within our cell the volume per electron is equal to
(4π/3)r3

s wherers = 2.655 Å (5.02 au). Takingrmin ∼ rs/2 = 1.32 Å as a lower limit, the
conditionP > e2/4πε0rminkT yields a lower bound for our system of approximately 100
nodes.

This value, however, may not ensure appropriate sampling of exchange-related states.
An estimate of the minimum number of nodes for sampling exchanging states may
be obtained by considering the limit of validity of our approximate partition function
(equation (23)). This limit is reached when(r(i)

n − r
(j)
m )2 and(r

(j)
n − r(i)

m )2 in equation (22)
are of the same order as(r(i)

n − r(i)
m )2 and (r

(j)
n − r

(j)
m )2. In other words, we want the

equilibrium distance between the nodesn and m in the same necklace not to exceed the
minimum distance between necklaces. We take the distance between necklaces as a measure
of the distance for exchange. This distance is controlled by the Coulombic repulsion between
electrons. We chose againrmin = 1.32 Å as a lower bound. Since

Pm

2β2h̄2 (r(i)
n − r(i)

m )2 ∼ 3

2β

and setting(r(i)
n − r(i)

m )2 ∼ r2
min, we getP ∼ 120 nodes.

On this basis and on the basis of our previous work on solvation of four, six and eight
electrons in molten potassium chloride atT = 1300 K, we choose a slightly higher number
of nodes,P = 150 [22, 23].

Temperature is maintained constant during the simulation by using a momentum
rescaling thermostat [24]. With this procedure we do not obtain a true canonical distribution,
but most thermal averages will be accurate to orderN−1 [25]. Furthermore, with 150 nodes
andT = 1300 K, our simulations should equilibrate reasonably quickly as the intrapolymeric
harmonic forces are not overly stiff [26]. Finally, although the electrons and ions are already
in thermal equilibrium, we have found that employing one thermostat for the ionic species
and one thermostat for each individual electronic necklace leads to even faster convergence.
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For our system it is necessary to use a small integration time step to sample phase
space accurately and produce stable trajectories. We solve the equations of motion with a
finite-difference scheme with a time step of1t = 1.35 × 10−16 s. This value allows us
to run simulations long enough to sample a reasonable number of atomic states while still
remaining computationally tractable. The exchange potential in equation (25), however, is
very steep in some regions of configuration space. As a result, the forces derived from this
potential have large values in these regions. This may lead to instabilities due to our choice
of time step. In this case, measures have been taken to avoid any instability due to the large
time step by restricting the exchange forces to an upper limit of 1.15× 10−8 N. This upper
limit was chosen such that the algorithm produces stable trajectories without significant loss
of accuracy. In the algorithm, forces exceeding the upper limit are renormalized to the
upper limit value.

We verified that the number of nodes subjected to exchange forces larger than our upper
limit represents only a very small fraction of all of the nodes in the simulation cell. We also
verified that at any given time during a simulation, the large majority of forces exceeding
the upper limit do so only by at most a factor of three. Furthermore, a simulation conducted
with an upper limit of 2.3 × 10−8 N did not show any significant change in the average
electron kinetic energy to within the uncertainty.

3. Results and discussion

A random distribution of nodes and ions was created as starting configuration for a
preliminary simulation limited to harmonic potentials between nodes. This simulation
produced an equilibrated configuration which was then used as an initial condition for
all subsequent simulations. Three simulations were run. This first simulation lasted 10 000
integration time steps or approximately 1.3 × 10−12 s and included quantum exchange.
A second simulation of free electrons without exchange was conducted by ignoring all
the interaction terms in equation (27), excluding the effective harmonic potential between
neighboring nodes. The third simulation consisted of a system of interacting electrons in
liquid potassium without exchange. This system is simulated by removing the effective
nonlocal exchange potential from the Hamiltonian. Both the second and third simulations
lasted 20 000 steps. We report in figure 1 the instantaneous value of the kinetic energy per
electron for the first simulation. The initial 2500 steps were discarded as a transient period
and a time average was calculated over the remaining 7500 steps. The calculated average
kinetic energy per electron is presented in table 1. Table 1 also includes the kinetic energy
of free electrons in absence of an exchange potential, free electrons with exchange and the
kinetic energy of interacting electrons in liquid potassium in absence of exchange. The
kinetic energy of the free electrons with exchange is obtained from the expression 2.21/r2

s
(Ryd) [27], with rs = 5.02 au. Both kinetic energies in absence of exchange are computed
as time averages in simulations (2) and (3). Finally, we have added in table 1, the result of
Pines and Nozieres [28] for the kinetic energy of non-interacting electrons in a potassium
periodic potential at a density ofrs = 4.87 au.

The electron localization due to electron–electron and electron–ion Coulomb interaction
in the absence of the exchange potential is associated with a kinetic energy approximately
equal to2

5 eV. Upon introduction of the fermionic constraint through the effective exchange
potential, the kinetic energy increases to 1.73 eV. This increase of 1.34 eV is in good accord
with the difference in kinetic energy of 1.2 eV between the free-electron system with and
without exchange. One may therefore view interacting electrons in liquid potassium within
a quasi-particle representation with a zero of energy at2

5 eV. The positive difference in
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Figure 1. Electronic kinetic energy against time (one time step equals 1.34 × 10−16 s). The
kinetic energy of interacting electrons with exchange potential in liquid potassium atT = 1300 K
is calculated using the energy estimator of equation (28).

Table 1. Electronic kinetic energy for various systems. See text for details.

Kinetic energy per electron
System (eV)

Free electrons without exchange 0.00± 0.01
Liquid potassium with interacting electrons in absence of exchange 0.39± 0.05
Free electrons with exchange 1.19
Non-interacting electrons in periodic potential including exchange 1.42
Liquid potassium with interacting electrons including exchange 1.73± 0.05

kinetic energy between our liquid potassium and the results of Pines and Nozieres for
crystalline potassium may be attributed to additional electron localization resulting from
the electron–electron repulsion and the disordered arrangement of the potassium ions in
the liquid phase. Further localization may also arise from atomic vibration [29] which is
intrinsic in our simulation.

The electronic structure of liquid potassium is best illustrated by the electron–ion and
electron–electron radial distributions. Figure 2 shows that the electrons are concentrating
on the periphery of the ionic core. The fact that the electrons are not localized within each
ion is indicative of the participation of electrons in bonding. In figure 3, we have plotted
the electron–electron distribution for isospin and heterospin electrons. Coulombic repulsion
prevents electrons from approaching one another for distances less than 1Å. The choice
for P > 120 based on a minimum distance of approach of 1.32Å appears then to be quite
reasonable. Apart from illustrating the effect of the Coulomb repulsion, this figure shows
the effectiveness of the non-local exchange potential in ensuring Pauli exclusion principle.
The exclusion is particularly active between 1 and 5Å with an isospin electron probability
reduced by almost a factor of two for distances less thanrs. The overlap between the two
distributions beyond 6̊A suggests that in liquid potassium the non-local exchange potential
is reasonably short range.

Finally, figure 4 illustrates the calculated pair distribution function of liquid potassium at



Electronic and atomic structure of liquid potassium 147

Figure 2. Average electron–ion radial distribution. The
radial distance is in units of̊angstr̈oms.

Figure 3. Average electron–electron radial distribution.
The thick and thin curves correspond to heterospin and
isospin electrons, respectively. The radial distance is in
ångstr̈oms.

Figure 4. Calculated ion pair distribution function atT = 1300 K. The thick and thin continuous
curves are the experimental data of Waseda [30] at 343 K and 723 K, respectively. The radial
distance is in̊angstr̈oms.

1300 K as well as the experimentally determined distribution functions at 343 K and 723 K
[30]. The short length of our simulation and the small cell size are at the origin of the scatter
in the calculated distribution. Despite this noise, one can identify three significant features.
The radial distribution function exhibits three groups of peaks near 3.8Å, 4.3 Å, and 5Å.
Close analysis indicates that the sharp peaks near 3.8Å are associated with potassium dimers,
K2. First, this calculated separation is in good accord with the experimental value of 3.923Å
for the K2 molecule [31]. Second, a molecular dynamics simulation of two potassium ions
and two heterospin electrons at 1300 K confirmed the formation of a molecule with an
average separation distance in the vicinity of 3.8Å. Finally, the presence of K2 dimers is
clearly apparent in the snapshot of the simulation cell taken near the end of the simulation
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Figure 5. Snapshot of the simulation cell at time step 10 000. The large black circles are the
potassium ions. Each small dot represents a node on an electron necklace. The length of a cell’s
edge is 13.3Å.

and presented in figure 5.
The formation of diatomic molecules may be explained by the high temperature of the

simulation which will favor the dissociation of large potassium clusters to form smaller
ones. To verify this hypothesis, we have frozen the liquid to room temperature and relaxed
it at this temperature for 2500 time steps. In order to ensure the conditions of validity for the
exchange potential in our Hamiltonian, we have maintained the electrons at a temperature
of 1300 K while decreasing the temperature of the ionic degrees of freedom to 300 K. This
procedure is made possible by the separate thermalization of the electrons and ions. Since
temperature variations in the interval 300–1300 K are not anticipated to affect significantly
the electronic states, this method would effectively result in a cooling of the liquid and a
reduction in the ion displacements. The calculated radial distribution function in figure 6
shows that the peaks near 3.8Å (indicative of molecular K2) are reduced significantly. This
observation suggests that the features around 4.3Å and 5Å are the only ones characteristic
of large size potassium clusters.

Larger potassium structures in theT = 1300 K liquid may be identified in figure 5.
However, since this figure represents an instantaneous configuration with all possible thermal
distortions the nature of these structures cannot be resolved. To gain some insight into the
structure of liquid potassium we treat it as resulting from distortions of ideal crystalline
structures. In a body centered cubic (bcc) structure, the second-nearest neighbor distance,
d2 is only slightly larger than the first-neighbor distance,d1. In an ideal bcc lattice,
dbcc

2 = 2d1/
√

3. On the other hand, a face-centered cubic (fcc) structure possesses two
well resolved first and second neighbor shells withd fcc

2 = d1

√
2. Thus, to identify the

structure of the simulated liquid as bcc-like or fcc-like, we taked1 = 4.3 Å and calculate
dbcc

2 = 4.96 Å andd fcc
2 = 6.08 Å. The presence of peaks near 5Å in the pair distribution of

the liquid (figure 4) supports a bcc-like liquid structure reminiscent of the crystal structure.
Finally, we note that the peaks in figure 4 near 4.3Å and 5Å are artificially narrowed.

The small number of particles in the simulation cell and the short time of the simulations
do not allow for a complete sampling of atomic configurations (in particular large clusters).
A broadening and overlap of these peaks for larger systems should lead to a better fit with
experimental radial distribution functions.
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Figure 6. Calculated ion pair distribution function atT = 300 K. The radial distance is in
ångstr̈oms.

4. Conclusions

We have developed and implemented a first-principle molecular dynamics method based
on the discretized path integral formulation of quantum mechanics. Our approach uses an
effective potential to model the effect of quantum exchange. This method has been employed
to simulate liquid potassium. The calculated energies and structures are in satisfactory
agreement with experimental as well as other theoretical results. The exchange potential
appears to be quite efficient at enforcing the Pauli exclusion principle.

In the path integral molecular dynamics method, the computing time for the calculation
of the exchange forces scales asP 2N3 whereN is the number of isospin electrons andP is
the number of discrete states (nodes). This poor scaling with system size currently restricts
the applicability of the method to systems containing a small number of electrons. It may
be possible, however, to take advantage of the short-range nature of exchange to achieve
a better scaling [32]. For instance, a large simulation cell may be divided up into subcells
whose size is determined by some appropriate cut-off length. Consequently, the number
of operations would reduce toP 2M3N whereM is the number of isospin electrons in a
subcell. Another problem, which limits the applicability of this method to high temperature
is the P 2 factor in computational cost. A proposed solution involves parallelization over
the nodes [33], which leads to linear scaling. Simulations at lower temperatures will require
a larger number of nodes resulting in non-ergodic behavior of the necklaces. A solution to
this problem has been proposed recently in the form of a chain of Nosé–Hoover thermostats
[34, 35].

As a final note, the electron–ion pseudopotential employed in this study is local in
nature, however, the extension of the path integral molecular dynamics method to systems
of electrons interacting with ions through non-local pseudopotentials may be accomplished
by using a recently developed expression for the discretized path integral in polar coordinates
[36].
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