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Ab initio molecular-dynamics method based on the restricted path integral:
Application to the electron plasma and liquid alkali metal
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We introduce anab initio molecular-dynamics method based on the discretized path-integral representation
of quantum particles. Fermi statistics is automatically generated by an effective exchange potential. This
path-integral molecular-dynamics method is able to simulate electron plasmas at the border of the degenerate
and the semidegenerate regimes with a satisfactory level of accuracy. Application of the method to the
simulation of a liquid alkali metal demonstrates its potential in the simulation of real systems from first
principles.@S0163-1829~98!00436-6#
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I. INTRODUCTION

Modeling and simulation have become a vital part of m
terials research. Modeling and simulation techniques are
turing to the point where they offer hope for a practical a
reliable approach for the study of real materials. The dev
opment of materials models has evolved from the infancy
specific empirical descriptions to highly accurate and sop
ticated representations based on first-principle calculatio
Ab initio molecular-dynamics~MD! methods relying on
density-functional theory~DFT! within the local-density
approximation1,2 are emerging as some of the most power
tools for investigating the properties of complex many-bo
systems. These methods have enjoyed a great popularity
have been employed to investigate a very large numbe
problems.3 In contrast to the DFT MD method, molecula
dynamics simulations using the discretized path-integ4

representation of quantum particles have been limited mo
to the simulation of systems containing a small number
quantum degrees of freedom such as in the solvation
single quantum particle in a classical fluid5 or to problems
where quantum exchange is not dominant.6 We should also
mention the path-integral-based method of Alavi and Fren
that allows for the calculation of the grand canonical pa
tion function of fermion systems.7 With this method the fer-
mion sign problem in the evaluation of the partition functi
is solved exactly in the case of noninteracting fermio
When combined with DFT, this method provides a means
doing ab initio MD of systems with interacting high
temperature electrons.8

Progress in the simulation of fermionic systems by
path-integral Monte Carlo method9–12 has opened the way t
the implementation of a path-integral-based fini
temperatureab initio molecular-dynamics~PIMD! method.
This paper describes such a molecular-dynamics method
plicable to the simulation of many-fermion systems at fin
temperatures. The method is based on~a! the discretized
path-integral representation of quantum particles as clo
‘‘polymeric’’ chains of classical particles~beads! coupled
through harmonic springs,4 ~b! the treatment of quantum ex
PRB 580163-1829/98/58~12!/7577~8!/$15.00
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change as cross linking of the chains,13 ~c! the nonlocality of
cross linking ~exchange! along the chains~in imaginary
time!,9 and ~d! the restricted path integral10,14 to resolve the
problem of negative weights to the partition function resu
ing from the cross linking of even numbers of quantum p
ticles.

The present PIMD method is initially applied to the d
scription of the one-component plasma~OCP! at the border
of the degenerate and semidegenerate regimes where th
tio of the temperature to the Fermi temperatureTF is ap-
proximately equal to 0.1. The electron plasma is the fi
focus of this investigation because it is the simplest el
tronic system. It has been extensively studied via pa
integral, variational, and diffusion Monte Carlo metho
since the calculation of the equation of states of a Fermi O
such as the interacting electron gas is a problem of fun
mental and practical importance as one uses its propertie
density-functional theory. The OCP is also a good prototy
cal system as there exists a large amount of theoretical
numerical data on its equation of state. The zero-tempera
perturbative expansion of the energy of a three-dimensio
uniform electron plasma in the high-density limit~when r s ,
the radius of a sphere that encloses on the average one
ticle, is much smaller than the Bohr radiusa0! was calcu-
lated theoretically quite some time ago.15 Accurate Monte
Carlo variational calculations have extended theT50 K
equation of states of the degenerate Fermi OCP to a w
range of lower densitiesr s /a0P@1,500#.16 The exchange-
correlation free energy has been subsequently calculate
encompass the full range of thermal degeneracy.17–19

After showing that the PIMD method contains the nec
sary ingredients to simulate electron plasmas up to m
densities at finite temperatures, we turn to demonstrating
it is applicable to simulating a liquid metal from first prin
ciple. We focus on a simple alkali metal, namely, liquid
We chose potassium because~i! it is a prototypical free-
electron metal,~ii ! there exist experimental data for the pa
correlation function,20 and~iii ! the DFT MD method has had
problems with metals when electrons leave the Bo
Oppenheimer surface and therefore violate one of the b
7577 © 1998 The American Physical Society
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7578 PRB 58KI-DONG OH AND P. A. DEYMIER
assumption of the method. This problem has been so
technically in anad hoc manner with the introduction o
appropriate thermostats for the electronic and ionic deg
of freedom.21 In our model, the discretized restricted pat
integral representation of the electron is the same as tha
the electron plasma. Classical ionic degrees of freedom
resenting potassium ions are added to the model. The e
trons are interacting with the ions via a simple empty c
local pseudopotential. We show that bonding takes place
that the calculated structure of the liquid is in good agr
ment with experimental data.

The present paper is organized as follows. We introd
the PIMD method in Sec. II. Features specific to the simu
tion of the models of the electron plasma and liquid alk
metal along with results are reported in Sec. III. Conclusio
regarding the effectiveness of the PIMD model are drawn
Sec. IV along with future improvements.

II. METHOD

The partition function of a system ofN quantum particles
expressed in a position representation may take the form22

Z5E dR1r~R1 ,R1 ;b!, ~1!

wherer is the density matrix,R15$r (1),...,r (N)% stands for
position of the particles, andb51/kT. Using the convolu-
tion property of the density matrix

r~R1 ,R3 ;b11b2!5E dR2r~R1 ,R2 ;b1!r~R2 ,R3 ;b2!

~2!

and introductingP-1 intermediate states,Z is written in a
discretized path-integral representation

Z5E )
n51

P

dRn)
n51

P

* r~Rn ,Rn11 ;e!, ~3!

wheree5b/P and the asterisk in the product indicates t
cyclic conditionRP115R1 .

Since the wave function of fermions~electrons! is anti-
symmetric, the density matrix can be positive or negat
and convergence of the summation may be slow. Howe
the diagonal density matrix can be evaluated by restric
paths to remain in the region of phase space where their
is positive.10 It is therefore possible to write

Z5E )
n51

P

dRn)
n51

P

* r~Rn ,Rn11 ;e!u1. ~4!

The parameteru1 is equal to 1 for positive paths and
otherwise. The quantum partition function can now be cas
the form of a classical partition function

Z5E )
n51

P

dRnexp@2bVeff~R1 ,...,RP!#, ~5!
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Veff5H 2
1

b (
n51

P

* ln r~Rn ,Rn11 ,e! if u151

` if u150.

~6!

The classical form of Eq.~5! suggests that a molecula
dynamics scheme could be used to sample the states o
quantum system. A microcanonical ensemble sampling
the states of the system can now be performed by solving
the trajectories generated by the classical Hamiltonian

H5(
i 51

N

(
n51

P
1
2 m* ~ ṙ n

~ i !!21Veff~R1 ,...,RP ;e!. ~7!

Herem* is some arbitrary mass used to define an artific
kinetic energy for the quantum states in order to explore
potential surfaceVeff . Since the effective potential presen
an infinite potential barrier to paths attempting to chan
sign, the molecular-dynamics scheme offers the advantag
automatically imposing the restriction on the density mat
to the region of phase space where the paths are positiv

Equation~4! is exact, but since one does not know t
exact density matrix, it is necessary to replace it by so
reasonable approximation. The nodes~loci of points where
the density matrix is zero! of the approximate density matri
should be as close as possible to those of the exact de
matrix if one hopes to calculate accurate properties of a
mion system.

The exact density matrix is approximated by a nonlo
form of the noninteracting density matrix. In the limit of hig
temperature, the nodes of the noninteracting density ma
approximate reasonably well those of the exact den
matrix.10 If P is sufficiently large, we can use Trotter’s ap
proximation to separate the kinetic and the potential con
butions to the density matrix.23

The propagatorr(Rn ,Rn11 ;e) is approximated for smal
e, using the Trotter formula,23 by

r~Rn ,Rn11 ;e!5^Rnuexp~2eHop!uRn11&

'E dR^Rnuexp~2eTop!uR&

3^Ruexp~2eVop!uRn11&, ~8!

where the Hamiltonian operatorHop is decomposed into the
kinetic operatorTop and the potential operatorVop. For a
local potential operatorr becomes

r~Rn ,Rn11 ;e!'^Rnuexp~2eTop!uRn11&exp@2eV~Rn11!#,
~9!

whereV(Rn11) is a potential function of the position. Thi
potential function may describe any potential field in whi
the electrons evolve including electron-electron Coulomb
teractions or electron-ion interactions.

For the kinetic matrix we use the exact noninteracti
density matrix

^Rnuexp~2eTop!uRn11&5F m

2pe\2G3N/2

det@An,n11#,

~10!
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with @An,n11# representing anN3N matrix whose elements
are expressed as

An,n11
i j 5expF2b

m

2be\2 ~r n
~ i !2r n11

~ j ! !2G . ~11!

Up to this point the density matrix has been projected o
Slater determinant of plane waves and is equivalent t
Hartree-Fock approximation.

The determinant of the kinetic matrix in the absence
quantum exchange is factored out of Eq.~10!:

det@An,n11#5)
i 51

N

An,n11
i i det@En,n11#, ~12!

where all the exchange effects~including the sign of the
density matrix! are included in@E#. In the absence of ex
change the matrix@E# reduces to the identity matrix. Th
elements of@E# are defined asEn,n11

i j 5An,n11
i j /An,n11

i j . In
the limit of e→0, the matrix@E# converges to the identity
matrix and the system collapses into a bosonic state. To
vent this undesirable behavior, following Hall,9 we recast Eq.
~12! in a nonlocal form

det@An,n11#5)
i 51

N

An,n11
i i )

m51

P

~det@En,m# !1/P. ~13!

This nonlocal form is equivalent to a mean-field approxim
tion over all possible exchange processes. In this form
density matrix does not correspond anymore to a projec
over a single Slater determinant of plane waves and there
may represent the quantum system beyond a Hartree-F
model.

With the restricted path integral, the integrand of the p
tition function is positive andZ can now be rewritten in a
classical form usable with a molecular-dynamics scheme

Z5E )
n51

P

dRnexp@2bVeff
exch~R1 ,...,RP!#, ~14!

where the effective potential includes quantum exchange
the case of a nonpolarized fermion system withNel electrons,
a microcanonical ensemble sampling of the quantum st
of the system can now be performed by solving for the t
jectories generated by a classical Hamiltonian of the t
given in Eq.~7!. The time trajectories thus obtained do n
have real meaning but are only a mean to explore the ef
tive exchange potential surface:

Veff
exch~R1 ,...,RP!5(

i 51

P

(
k. l

Nel

(
l 51

Nel21
~2e!~2e/P!

4pe0ur i
~k!2r i

~ l !u

1 (
k51

Nel

(
i 51

P

*
meP

2\2b2 ~r i
~k!2r i 11

~k! !2

2
1

b (
s5↑

↓ (
i 51

P

(
j 51

P

ln det@Ei j #su i js
1

(
i 51

P

(
j 51

P

u i js
1

.

~15!
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The third term in Eq.~15! is an effective exchange potentia
for the electrons with spin up (s5↑) and spin down (s
5↓). The functionu i j

1 ensures the path restriction by takin
on the values 1 and 0 for paths with positive and nega
det@E#, respectively. The first term of this Hamiltonian a
counts for the electron/electron Coulomb interactions.

Extension of the restricted PIMD method to include cla
sical ionic degrees of freedom is straightforward provid
the electrons interact with the ions via local pseudopot
tials. In this case the Hamiltonian becomes

H5 (
k51

Nel

(
i 51

P
1

2
m* ~ ṙ i

~k!!21(
I 51

Nion 1

2
MIṘI

2

1(
I .J

Nion

(
I 51

Nion21

F IJ~r IJ!1(
i 51

P

(
k.1

Nel

(
l 51

Nel21
~2e!~2e/P!

4pe0ur i
~k!2r i

~ l !u

1(
i 51

P

(
k51

Nel

(
I 51

Nion Vpseudo~RI2r i
~k!!

P

1 (
k51

Nel

(
i 51

P

*
meP

2\2b2 ~r i
~k!2r i 11

~k! !2

2
1

b (
s5↑

↓ (
i 51

P

(
j 51

P

ln det@Ei j #su i js
1

(
i 51

P

(
j 51

P

u i js
1

. ~16!

The differences between the Hamiltonians~7! and ~16! in-
clude a kinetic energy for the ionic degrees of freedom
well as the ion/ionF IJ and ion/electronVpseudo interaction
potentials.

III. MODEL SYSTEMS AND RESULTS

A. Electron plasma

We have tested the PIMD method on an unpolarized e
tron plasma composed ofNel530 electrons~N↑515 and
N↓515!. The simulation cell is a fixed cubic box with edg
lengths L513.3, 19.95, and 26.6 Å, which correspond
electronic densities withr s /a055, 7.5, and 10, respectively
Periodic boundary conditions are used and the system is
stituted of a simulation cell and 26 image cells. Under the
conditions the matrix@En,m# for each spin should be a
27N↑,↓327N↑,↓ matrix. In order to make the calculatio
more tractable, we make the numerical approximat
det@En,m#'C det@Fn,m#, where@Fn,m# is anN↑,↓3N↑,↓ matrix
that off-diagonal elements give the maximum contribution
pair exchange to the determinant among the possible com
nations of exchange between the electrons in the simula
cell and the electrons in all periodic cells.C'det@F#26 is a
constant representing the mean contribution of the im
cells to the overall determinant. Within this approximatio
the constantC drops out of the force calculation. This ap
proximation should be valid at high temperature when
electrons are fairly well localized and for systems in whi
the electrons have a strong repulsive interaction that prev
the close approach of more than a very few electrons a
time. In this form, the computing time for the calculation
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7580 PRB 58KI-DONG OH AND P. A. DEYMIER
the exchange potential scales asP2N↑,↓
3 . This scaling at

present limits the applicability of the method to systems w
a fairly small number of fermions. However, one may expl
the natural parallelism of the approximate effective excha
potential over the number of beads to reduce the comp
tional cost to a nearly linear scaling with respect toP.24

We solve the equation of motion with a leapfrog sche
and an integration time step of;10216 sec. Most simula-
tions were run for an average of 30 000 time steps. In so
cases for the low and intermediate density plasmas, we h
run simulations up to 50 000 steps for better equilibration
low temperature.

Because of the large computational cost of the calcula
of the exchange effective potential and forces, the excha
forces are calculated and updated every ten MD time st
The values for the exchange forces are used subsequ
during the ten steps following their calculation. We ha
compared the calculated average energies during a sim
tion where the exchange forces were calculated every
and the more efficient scheme described above and foun
significant statistical difference in their values.

The chosen time step is small enough to resolve the h
frequency oscillations of the harmonic springs. In the case
systems with largeP, the strong harmonic forces in Eq.~15!
may lead to nonergodic behaviors.25 This problem can be
alleviated by rescaling temperature with a chain of No´-
Hoover thermostats.6,26 This rescaling would ensure conve
gence to the right canonical distribution. We have elected
rescale the temperature of each chain ofP beads indepen
dently of each other via a simple momentum rescal
thermostat.27 With this procedure we do not obtain a tru
canonical distribution, but most thermal averages will be
curate to ordersN21.28 We have also verified that with thi
approach over the length of our simulations the chains wo
sample a large region of configuration space and there
resolve not only the fast but also the slow dynamical sca

The calculation of the Coulomb energy is handled by
usual Ewald method of summation.29 The Coulomb potentia
energy of the electron plasma is made convergent by
introduction of a positively charged background of dens
230e/V, whereV is the cell volume. The discretized natu
of the quantum particle introduces some peculiarity in
calculation of the Coulomb potential. The potential at a be
n of an electroni is therefore given by16

ui ,n5
1

4pe0

~2e!

P H (
j Þ i
if j in cell

Nel 1

r i j ,n
erfc~hr i j ,n!22

h

Ap

1 (
kÞ0

`
4p

V

e2k2/4h2

k2 (
j 51
j in cell

Nel

eik•~r j ,n2r i ,n!

2
p~Nel21!

Vh2 J , ~17!

wherek is a reciprocal space vector associated with the
riodicity of the simulated and image systems. erfc stands
the complementary error function. The first three terms
Eq. ~17! are the usual real and reciprocal space contributi
to the potential. The last term is the contribution of the ba
t
e
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ground. We chose an Ewald parameterh55.741/L for
which satisfactory convergence is obtained with truncat
of the real space sum at1

2 L and truncation of the reciproca
sum atk2<49.

We calculate the kinetic energy with the usual ener
estimator derived from] ln Z/]b.5 Hall has shown that the
exchange potential does not contribute directly to the ac
energy estimator but indirectly through the equilibriu
configurations.9 With this estimator, the kinetic energy i
given as a small quantity, the difference between two lar
quantities, with a variance growing withP. This estimator
therefore introduces an error on the calculated values of
kinetic energy that we have estimated to be on the orde
0.1 eV.

Every simulation reported starts with a different initi
configuration obtained from randomly generated bead p
tion in every electron chain. The initial bead-bead distanc
determined by the temperature. In order to reduce the t
for the system to reach equilibrium from its initial configu
ration, we have taken some care as to construct initial c
figurations closely related to the anticipated equilibriu
state. Specifically, we have found that localized comp
necklaces take more time to reach equilibrium compared
more open necklaces whose beads are distributed unifo
throughout the simulation cell. This observation is more i
portant for low-density systems where the extent of spac
sample is large.

In Fig. 1 we present results on the convergence of
discretized restricted path-integral molecular dynamics. T

FIG. 1. ~a! Kinetic energy and~b! potential energy as function
of the number of beads in the necklace representation of quan
particles. The circles and squares refer to the high-density~r s

55a0 , T51800 K! and medium-density~r s57.5a0 , T5700 K!
electron plasmas, respectively.
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PRB 58 7581Ab initio MOLECULAR-DYNAMICS METHOD BASED . . .
kinetic energy@Fig. 1~a!# and potential energy@Fig. 1~b!# of
the high-density plasma (r s55a0) at T51800 K and the
intermediate-density plasma (r s57.5a0) at a temperature o
700 K are reported as a function of the number of beadsP.
We note that the energies converge to some asymptotic v
for necklaces containing as few as 200–300 beads even
the electron plasma near metallic density. This observatio
particularly significant as the nonparallelized PIMD alg
rithm scales with the square of the number of beads. In
dition to PIMD energies, we have also indicated the 0
kinetic and potential energies of electron plasma with sa
density of Ref. 16. At the temperatures of 1800 and 700
the high- and intermediate-density systems are in the de
erate regime and the electronic energies should be com
rable to the 0-K values. The kinetic energies are in very go
agreement, but some discrepencies exist between the p
tial energies as the restricted PIMD method appears to o
estimate them. In order to further the validation of the
stricted PIMD method, we have conducted a series
calculations at several temperatures for the three dens
For the high- and medium-density systems we have used
and 300 beads, respectively. These numbers of beads
within the region of convergence. Electrons in the lo
density electron plasma are discretized over 360, 380, 4
680, 720, and 780 beads for the temperatures 1100, 900,
575, and 550; 500 and 450; and 400 and 350 K. The ca
lated kinetic energies of Fig. 2~a! are in excellent agreemen
with the variational Monte Carlo results of Ceperley16 for
correlated plasma. We note that the kinetic energy does
vary significantly over the range of temperature studied, a
expected for these plasmas at the border of the degen
and the semidegenerate regimes.18 At low temperature, the
low-density system with a large number of beads take
very long time to equilibrate and sampling of phase spac
not very efficient. In this case, calculation of reliable en
gies requires very long simulations. Another difficulty in ca
culating reliable energies when a large number of beads
used results from the fact, as was noted before, that the
ance of the kinetic energy increases withP. We did not need
to use so many nodes for the low-density plasma even at
temperature; however, these simulations illustrate the nee
use as few beads as possible within the interval of con
gence. In addition to the 0-K correlated energies, we h
indicated the Hartree kinetic energy~2.21/r s

2 in rydbergs!
with a dotted line. Figure 2~a! shows that the nonlocal form
of the density matrix given by Eq.~13! introduces some elec
tron correlation. This is also apparent in the results for
temperature dependence of the potential energy. The ca
lated potential energy falls between the fully correlated
sults of Ceperley and the electron/electron interaction con
bution to the Hartree-Fock energy~given by 20.916/r s in
rydbergs!. We also note that the potential energy increa
weakly with temperature and that extrapolation toward 0
should result in potential energies in better agreement w
the correlated potential energies than the uncorrelated o
In the present model, however, the nonlocal effective pot
tial introduces an electron correlation between electrons w
identical spins only. The present potential energies are o
estimated as correlations between electrons with oppo
spins are not accounted for.
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Finally, as a demonstration of the effectiveness of
exchange potential in Eq.~15!, the pair correlation for iso-
spin and heterospin electrons is reported in Fig. 3 in the c
of the high-density plasma at the three temperatures stud
The difference between iso- and heterospin radial distri
tions is striking. In order to satisfy Pauli exclusion principl
the nonlocal exchange potential keeps the electrons w
identical spin away from each other while electrons w
different spins can approach each other quite closely.
Coulomb repulsive force is the only force keeping electro
with different spins from approaching. The nonlocal e
change potential is quite short range as it does not appe
affect the electron distribution beyond 5 Å. The exclusion
particularly important in the interval#0,3 Å#. The major ef-
fect of a rising temperature is the increase in pair correlat
at shorter distance or, in other words, the shrinkage of
exchange-correlation hole.18 After showing that the nonloca
restricted PIMD method can simulate with reasonable ac
racy electron plasma near metal density, we apply
method to the simulation of an alkali metal from first pri
ciples.

FIG. 2. ~a! Kinetic energy and~b! potential energy as function
of temperature. The electron plasmas withr s55a0 , 7.5a0 , and
10a0 are denoted by circles, squares, and triangles, respectiv
The horizontal lines correspond to the correlated energies of C
erley ~Ref. 16!. The dotted lines indicate the Hartree-Fock energi
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7582 PRB 58KI-DONG OH AND P. A. DEYMIER
B. Alkali metal

The alkali-metal system is composed of 30 K1 ions and
30 electrons in a cubic box with dimensionL513.3 Å. The
electron density in this system givesr s55a0 . The electrons
are nonpolarized. The Hamiltonian describing the system
given by Eq.~16!. The numerical treatment of the electro
is done in a fashion similar to that of the electron plasmas
the model, the K1 ions are dealt with in a purely classic
manner and interact through a Born-Mayer potential

F IJ~r !5
ZIZJe

2

4pe0r
1AIJe2r /r IJ ~18!

and the parameters of the potential are those fixed by S
ster and Atwood.30 As to the electron/ion interaction, w
have used a simple empty core local pseudopotential

Vpseudo~r !5H 2ZIe
2

r
, r>Rc

2ZIe
2

Rc
, r ,Rc ,

~19!

with a core radiusRc52.22 Å.31

To optimize the calculation, we do not use the Ewa
summation but simply replace the long-range Coulomb
tential in Eqs.~18! and~19! by a shorter-range effective po
tential of the form

1

r
→

1

r
erfc~hr !, ~20!

whereh55.741/L. The shorter-range potential is then tru
cated at half the size of the edge of the simulation box.

The melting point of potassium isTm5337 K. The simu-
lation of liquid potassium near this temperature would nec
sitate a large number of beads for convergence of the
tronic degrees of freedom with respect toP. We have seen
that in the study of the electron plasma at high densityr s

FIG. 3. Isospin and heterospin electron-electron pair distri
tions for the high-density electron plasma atT51300 K ~thick solid
line!, T51800 K ~dotted line!, andT52300 K ~thin solid line!.
is

n

g-

-

s-
ec-

55a0), the electron system conserves a nearly degene
character up to a temperature of 2300 K. Since tempera
does not affect significantly the electronic states at the m
density, we have decoupled thermally the classical ionic
grees of freedom and the quantum electronic degrees of f
dom. The electronic necklaces are attached to a thermo
set at a temperature of 1300 K while the ion temperatur
adjusted independently with another thermostat. At the e
tron temperature of 1300 K, a number of beadsP5360 is
sufficient for convergence of the discretized path.

The physical potassium ion mass isMI571 830me , lead-
ing to an extreme disparity in electronic and ionic tim
scales. For practical reasons, we use a ratio of the ion m
MI to the electron bead artificial massm* of 39.1:1. The
dynamics of the electrons is still significantly faster than t
dynamics of the ions. The MD integration time step is t
same as for the electron plasma. The ion and electron p
tions in the initial configurations are generated at rand
with the electron necklace bead/bead distance constraine
the temperature. We have run two simulations lasting 50
MD integration steps. In the first simulation the ions a
electrons thermostats are both set at the temperature of
K. The ion temperature is maintained at 337 K for the seco
simulation.

The electronic structure of the liquid alkali metal is be
illustrated by the electron-ion and electron-electron rad
distributions. These distributions are reported for liquid p
tassium near the melting point. Figure 4~a! shows that the
electrons are concentrating on the periphery of the ion c
The electrons participate in bonding as indicated by the
that they are not localized within the core of each ion. In F

-

FIG. 4. ~a! Electron-potassium and~b! electron-electron pair
distributions for liquid K atT5337 K.
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4~b! we have plotted the electron-electron radial distribut
for iso- and heterospin electrons. These distributions
similar to those of the high-density electron plasma. T
behavior is therefore characteristic of a free-electron–
material. An increase in temperature of the ions to 1300
does not affect significantly the electron-electron a
electron-ion pair distributions.

Figure 5 shows the K-K radial distribution at the tw
temperatures studied compared to the experime
measurement.20 As was expected, the prominent peak is so
ened as the temperature increases since the ions have
displacements at higher temperatures. Very similar res
have been found in DFT MD calculations of the structure
liquid sodium.32 The calculated pair distribution is in reaso
able agreement with the experimental data, although
nearest-neighbor distance is underestimated by appr
mately 0.3 Å. The reasons for this deviation are threefo
First, the electron-ion pseudopotential we have used is q
approximate and may be improved upon. Second, as see
the simulation of the electron plasma, heterospin elect
correlations are not included in the model. Finally, the sim
lated alkali liquid system contains only a very small numb
of ions, which may lead to a size effect. The effect of t
small size of the system is particularly large at radial d
tances in the range 6–7 Å, which corresponds to the cuto
the electrostatic potential.

FIG. 5. Calculated ion-ion pair distribution function atT
5337 K ~thin solid line! and 1300 K~dotted line! and the experi-
mentally measured distribution~Ref. 20, thick solid line!.
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IV. CONCLUSIONS

We have shown that a nonlocal form of the restrict
discretized path integral may be used to define an effec
exchange potential for use in molecular-dynamics simu
tions of quantum particles obeying Fermi statistics. A qua
tum particle is represented as a closed necklace of disc
beads. Exchange is described via nonlocal cross linking
the necklaces. We have demonstrated that electron plas
may be simulated with a satisfactory degree of accuracy w
this method up to metallic densities. The algorithm co
verges rather quickly with respect to the number of bea
rendering it practical computationally. We have noted th
the exchange potential appears to introduce correlation
some effective form. Correlation would only be account
for for isospin electrons, which may explain the overes
mated potential energy. A solution to that problem may be
employ a fully correlated density matrix.33

We have extended the restricted PIMD method to inclu
the electron-ion interaction via a simple pseudopotential
therefore allowing in the future the simulation of materia
from first principles. We have simulated liquid potassiu
near the melting point and compared the calculated struc
to an experimentally determined pair correlation function.
view of the approximate pseudopotential we have used
well as the small size of the simulation cell, remarkab
agreement is achieved. At present, however, the restri
PIMD method is limited by the computation cost of th
forces derived from the effective exchange potential. Acc
to supercomputers can make possible the simulation of la
systems. For larger fermion systems, one may be able
optimize the calculation by exploiting the short spatial exte
of exchange34 and dividing the simulation cell into smalle
and more tractable subcells. Since the PIMD method
volves stiff oscillators, disparate masses, and short-
long-range forces, another avenue to improve the comp
tional efficiency of our algorithm is to employ a multipl
time step scheme.35–37

Because of its computational limitations the restrict
PIMD method introduced herein may be particularly suit
to investigating materials with low electron densiti
;1021 cm23 where quantum exchange is still importan
This is the case, for instance, in doped or nonstoichiome
ceramic oxides where the bonding between the ionic deg
of freedom may be modeled classically through semiem
ical potentials and the remaining few electronic degrees
freedom by discretized quantum paths.38
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