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Simulation of crystal and liquid potassium via restricted path-integral molecular dynamics
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The path-integral molecular-dynamics method is employed to study the effect of temperature on a simple
metal(potassium model system. The simple metal undergoes a phase transformation upon heating. Calculated
dynamic properties indicate that the atomic motion changes from a vibrational to a diffusive character identi-
fying the transformation as melting. Calculated structural properties further confirm the transformation. lonic
vibrations in the crystal state and the loss of long-range order during melting modify the electronic structure
and in particular localize the electrons inside and at the border of the ion[&@r£63-18209)00117-4

[. INTRODUCTION recent years. DFTMD has been employed to investigate a
very large number of problems from condensed matter to
The goal of the present work is to predict the equilibriumchemistry to biology® In contrast, applications of
and dynamical properties of systems with strongly couplednolecular-dynamics simulations using the discretized path-
electronic and ionic degrees of freedom. Of particular interintegral (Pl) representatioft of quantum particles have been
est is the interplay between electronic and atomic structurémited mostly to the simulation of systems containing a
during a phase transformation. In this paper, we present themall number of quantum degrees of freed@uch as in the
application of a recently developed first-principle numericalsolvation of a single quantum particle in a classical fitjid
method: the path-integral molecular-dynami¢®IMD)  or to problems where quantum exchange is not domitiant.
method-? to the study of an alkali metal, namely, potassiumprogress in the simulation of fermionic systems by the path-
(K). The choice of this system is essentially driven by itsintegral Monte Carlo methd& " have opened the way to-
simplicity but also by the availability of experimental data yward the implementation of a path-integral-based finite-
such as structural and thermodynamic properties in both "qremperature ab initio molecular-dynamics method. The
uid and solid phases as well as vibrational properties for they\vip method has demonstrated recently its potency in the
crystal®=® Although the alkali metals are often considered g ulation  of degenerate electron plasma and liquid
simple nearly free-electron systenisith only one single potassiunt:? This method uses the discretized path-integral

valence electron per atgmthey possess physical properties representation of quantum particles as a starting point, and

that make them good_prototyp_e SyStemS with relevance tPntroduces a restricted form of the path that accounts for
many current issues in materials science. Some of the

properties includél) metal to nonmetal transitior@1/NM ), Fermi statistics. This scheme is then coupled to classical

the M/NM transition in expended molten alkali mefaise- molecular-dynamics equations of motion for sampling the

mains an outstanding many-body problem of strongly Correg:onfigurational space of the electronic and ionic degrees of

lated systems at high temperatuf@) immiscibility, while freedom. This method is capable of modgling electronic sys-
most binary alloys of alkali metals show miscibility, the t€MS beyond the Hartree-Fock approxmaﬁ&anrther-
K-Li and Na-Li exhibit a miscibility gag (3) structural More, since the PIMD method is based on a position repre-
phase transformations, the body-centered-cubic Na and I§entation of the quantum states, it appears to be well suited
crystals exhibit a martensitic transition at low temperdture to simulating systems which electronic structure may change
but one of the most obvious and common transformations i§om delocalized to more localized electrons.
that from the solid phase to liquid phase, namely, melting. ~ We show in this paper that the PIMD successfully models
While melting of numerous materials has been extenthe body-centered-cubic crystal structure of potassium metal
sively investigated by classical molecular dynamics usingat low temperature. Upon increasing the temperature, the
empirical pair or many-body potentials, there have been fewnetal transforms to a liquid. The predicted melting tempera-
first-principles investigations of this ubiquitous phenomenonture is below the experimental value. This deviation is as-
The coupling between the structure of the solid/liquid andsigned to a short-range approximate potential used in place
the electronic structure necessitates a theoretical approadt the usual long-range Coulomb potential in order to reduce
based on first principles. The method to be used should alscomputational cost. The phase transformation is character-
allow for the calculation of properties at finite temperaturesized thermodynamically via energies, structurally via pair-
such as dynamical and thermodynamic properties. distribution functions as well as dynamically via the mean-
In the field of ab initio molecular dynamic§MD), the  square displacement and the vibrational power spectrum.
method of Car and Parrinelfo,based on the density- Vibrations in the crystal appear to induce some localization
functional theory(DFT) has enjoyed a great popularity over in the electron density. As melting takes place, the electronic
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structure responds to the loss of long-range order in thevhere the Hamiltonian operatét,, is decomposed into the
atomic structure by additional localization. kinetic operatorT,, and the potential operatdr,,. For a
This paper is organized as follows. In Sec. Il, we briefly local potential operato becomes

review the method of PIMD as well as its practical imple-

mentation and application to the simulation of alkali metals.2?(Rn,Rn+1;€)~(Rn|exp(— e Top) Ryt 1)exd —eV(Rq11)],

Results are reported in Sec. Ill. In Sec. IV, we draw some )

conclusions concerning the applicability of the PIMD whereV(R,,,) is a potential function of the position. This

method to some other systems. potential function may describe any potential field in which
the electrons evolve including electron-electron Coulomb in-

Il. METHOD AND MODEL teractions or electron-ion interactions.

) ) ) ) For the kinetic matrix, we use the exact noninteracting
In this section we briefly review the PIMD methiodand density matrix:

provide some details concerning its implementation for the
simulation of alkali metals. The PIMD method makes use of pni(Ry Rus1ie)=(Rplexp(—eT)|Ry 1 1)
(a) the discretized path-integral representation of quantum
particles as closed “polymeric” chains of classical particles _
(bead$ coupled through harmonic springfs(b) the treat-
ment of quantum exchange as crosslinking of the chdins, . . . .
(c) the r?onlocalit of crgsslinking(exchangé along the with [An 1] representing &> N matrix in which elements
e nomocarty 14 g» aong ij ~B(mi2gen?)(rM—r() 2
chains (in imaginary time'* (d) the restricted path are expressed a5 1=e n~'nt1’ In the pre-
integral®!®%°to resolve the problem of negative weights to ceding relation, the indicesandj label the electrons. The
the partition function resulting from the crosslinking of even expression for the density matrix of Ed) is given in a
numbers of quantum particles. position representation. It is obtained by using a complete set
Since, the main difficulty in the PIMD method resides in Of states represented by Slater determinants of plane waves.
the treatment of the electronic degrees of freedom we firsThe use of a position representation has the advantage over
develop the formalism in the case of a system of electrongnethods employing only a finite basis set of providing a
We subsequently add the ionic degrees of freedom to thketter description of electronic orbitals that may change form
model for the electron system. The partition function of aqualitatively. This property makes the path-integral formal-

system ofN quantum particles expressed in a position repreism particularly suited for systems with electrons going from
sentation takes the foth localized to delocalized orbitals. At this stage, however,

since Slater determinants of plane waves are solutions to the
P P Hartree-Fock equation for free electrons, the noninteracting
Z=J' dep(Rl,Rl;,B):j H anH *p(Rn,RnH;e), density matrix does not describe electron correlation. Al-
n=1 n=1 though the noninteracting density matrix does not describe
@) electron correlation, in the limit of high temperature, its
where p is the density matrixR={r®,... r™ stands for ~nodes approximate reasonably well those of the exact density

" . i 15
the position of the particles, and=1/kT. In Eq. (1), we  Matrx. _ _
have used the convolution property of the density matrix and We now construct an approximate form for the density
introduced P— 1) intermediate states. THein the product ~Matrix that includes electron correlation. The determinant of
indicates the cyclic conditioRp. ;=R; ande = B/P. Since the kinetic matrix in the absence of quantum exchange is

the wave function of fermions is antisymmetric, the densityfactored out of Eq(4):

matrix can be positive or negative and convergence is slow. N

However, the diagonal density matrix can be evaluated by defA ~TT Ail def E 5
restricting paths to remain in the region of phase space where Annsal i];[l nn+1d8(Ennsal, ®

their sign is positivé>1519With this restriction, Eq(1) is . . .
exact, but since one does not know the exact density matri>¥\'herfe all th? exchange effc_ac(mcludlng the sign of the
ensity matrix are included inE] where the elements are

it is necessary to replace it by some reasonable approxima:~ . i i i -

tion. The nodi/as of tFk)le approil(imate density ma(tbgipof efined a€, .1 =Ann;1/Ann. 1 In the limit of 60, the
points where the density matrix is zeéhould be as close as matrlx[E] reduces to the identity matrix and_ the system col-
possible to those of the exact density matrix if one hopes t¢fPSES iNto a bosonic state. To prevent this undesirable be-
calculate accurate properties. Rf is sufficiently large, we navior, following Hall, we recast Eq(5) in a nonlocal
can use Trotter's approximation to separate the kinetic anBOfmi

N2
defAnni1] 4

2meh?

the potential contributions to the density matttx. N P
The propagator,p(R,,R,+1:;€), is approximated for defA, n+1]—>H Airi - H (defE,, ,])*P. (6)
small & using the Trotter formufa by ’ i=1 T m=1 '

Such a nonlocal form for the density matrix cannot be ob-

P(RnRot1;8)=(Rolexp(—eHop)|Ro+a) tained from simple Slater determinants of plane waves.
Equation (6) should, therefore, represent electrons beyond
%j dR(R,|exp(—&T,p) |R) the Hartree-Fock approximation. A nonlocal density matrix

would, therefore, account for some electron correlation. This
X (R|exp(—&Vop) R 1), (2 approximation was shown to model a semidegenerate elec-
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tron plasma near metal density beyond the Hartree-Fock Nel P g Nion _
approximation-2 In this work, the calculated kinetic and po- H= >, >, —m*(i¥)2+ > —~MR?
tential energies did not correspond to the Hartree-Fock val- k=1 1=1 2 =12

ues but approached the values for a fully correlated plasma. N Ng Ng—1

(—e)(—e/P)

ion Nion—1 P e
_ _W|th the_ res_trlcted_ path integral, the mtegranq of th_e par- + E ¢|J(R|J)+2 T
tition function is positive andZ can now be rewritten in a >3 1=1 151 51 daeo|rid 1|

classical form usable with a molecular-dynami@giD)

) P Ngi Nion vV R _r_(k)

scheme: +2 2 pseud& | i )
T1k1 =1 P
P N P mgP
z=J nl;[l dR, exd — BVer(Ry,....Rp)], (7) +k§=)1 z)l* Tgﬂz(rgkLrE?l)Z
P P

where the effective potential includes quantum exchange and . > D *In de(Eij]sﬁiers
correlation. For systems containing electrons with nonidenti- 1 E i=1j=1
cal spins, the density matrix is approximated as the product ES:T P : ©
of two determinants taking the form of E¢6); one determi- > 2t
nant for the electrons with one type of spin and another de- =1j=1

terminant for the electrons with the other type of sffin. ) o )

Therefore, in the case of a nonpolarized fermion system witff he differences between Hamiltoni&8) and (9) include a

N, electrons, a microcanonical ensemble sampling of théinetic energy for the ionic degrees of freedom as well as the
quantum states of the system can now be performed by solen/ion ®,; and ion/electron/ e qgointeraction potentials.

ing for the trajectories generated by the classical Hamil- We simulate crystalline and liquid potassium metal with
tonian: the method of PIMD. We have chosen potassium becél)se

it is a prototype free-electron metal which has been studied
previously by semiempirical pair potential®) there exist

N P (k2 PoNeNerd(_g)(—e/P) experimental data for the pair-correlation function of the lig-
H=2, ;l M2 2 2 r 0] uid state? thermodynamié,and vibrational propertiesThe
! ! simulation cell contains 54K and 54 nonpolarized elec-
Ney . MP ; trons. The number of electrons with spin up and spin down is
T2 Z 2ﬁ2,82(ri( >—r§+)l)2 Ns—1 =27 andNs_ =27, respectively. In the crystal struc-
k=1i=d ture, the potassium ions and electrons are arranged on a
P P body-centered-cubitbcc) lattice. Electrongnecklacepwith
I 2 2 In de{Eij]seﬁs spin up are placed on the lattice with nearest neighbors of
1 D i=1j=1 ®) opposite spin. Every simulation reported starts with a differ-
B P ' ent initial necklace configuration obtained from randomly
iZl 121 ﬂﬁs generated-bead positions in every electron chain. The initial

bead-bead distance is chosen according to the temperature.
However, in order to reduce the time for the system to reach
Here,m* is some arbitrary mas@ve chosem*=1a.m.u,)  equilibrium from its initial configuration, we have taken
used to define an artificial kinetic energy for the quantumsome care as to construct necklace initial configuratioas
states in order to explore the effective potential surf&g, necklace spatial extentclosely related to the anticipated
constituted of the last three terms in E8). The fourth term  equilibrium state.
is an effective exchange potential for the electrons with spin  As temperature is varied, the dimensions of the cell are
up (s=1) and spin down¢=]). The functionaﬁ ensures adjusted to match the experimental density of the K crystal,
the path restriction by taking on the values 1 and 0 for pathshis over the entire range of temperature studied. Unexpect-
with positive and negative dé], respectively. In Eq(8),  edly, our simulations have shown that the potassium model
the second term accounts for the electron/electron Coulombystem melts at a temperature below the experimental value
interactions. The forces derived from the exchange potentiadf the melting point, thus the density of the liquid system
are calculated as means over the paths with positive determieported below conforms to the value of the density of the
nant. Therefore, an effective force calculation requires a sagrystal at the corresponding temperature.
isfactory sample of such paths. Since the exchange potential Periodic boundary conditiond®BC’s) are applied to the
offers a barrier to paths with negative determinants, it biasesimulation cell. The numerical treatment of the electrons
the sampling of phase space toward configurations with posiwith PBC'’s is done in a fashion similar to that of some
tive determinants. Although many configurations with negaprevious work on the electron plasmigsWith PBC’s the
tive determinants exist and evolve, they do not contribute teystem is constituted of a simulation cell and 26 image cells.
the exchange forces. Under these conditions the matrpE, ] for each spin
Extension of the restricted-PIMD method to include theshould be a (2MsX 27Ng) matrix. When expanded over the
classical ionic degrees of freedom is straightforward propossible exchange cyclésxchange between two electrons,
vided the electrons interact with the ions via local pseudopoexchange among three particles, gtthe determinant of this
tentials. In this case the Hamiltonian becomes matrix may be written in the form
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27 27 Ng N
de(En,m]:l_pEl 2 z E exr{_’8ZBShZ[(rEII,Q)_r%yp))2+(r%lyp)_rg{m)2_(rETIVQ)_r%YQ))Z_(rgJ,p)_r(nJ{p))Z]
27 27 27 Ng Ng Ng m
i j, j, K, k, i
+ > eXF{—BWz[(Vﬁ' V—r P2 (r P =) 2+ (rpe D = rp @) ?

_(rgI,Q)_rE]I{Q))Z_(rgl,P)_rgyp))2_(r(nk,r)_r(nl?r))Z] . (10)

The second term in the previous equation corresponds toand the parameters of the potential are those fixed by Sang-
sum over exchanges between pairs of electrons in the simster and Atwood?® As to the electron/ion interaction, we
lation cell and image cells, while the third term correspondshave used a simple empty core local pseudopotential
to exchange among three electrons, etc. The ingicgsand

r are used to specify the periodic cells including the simula- -7, —-Z,€?
tion cell. Vpseudér) = r r=R.; and R’ r<Rg
In order to make the calculation more tractable, we ap- ¢ (12)

proximate the matrix[E, ], by a block diagonal matrix

containing two blocks. This approximation is equivalent towith a core radiuR,=2.22 A *

dividing the periodic system into a physical regiBncon- To optimize the calculation of the long-range Coulomb
taining Ng electrons isolated froractually, weakly coupled energy and forces, we do not use the Ewald summation but
to) its surrounding(defined as the rest of the univeys&he  simply replace the long-range Coulomb potential in Egs.
first block in the density matriX,F, ], is aNgXNg matrix ~ and (9) by a shorter range effective potential of the form

where the elements minimize the gquantity: 1/r — 1ir erfc(yr) where p=5.741L, and L,=16A. erfc
. . . ' . ' stands for the complementary error function. This shorter
|(r @ —pUPy2y (0P p(.0)) 2 (p(h0) _p(1.0))2 range potential is then truncated at half the size of the edge

of the simulation box.

The physical potassium ion masshs =71 830n,, lead-
ing to an extreme disparity in electronic and ionic time
&ales. For practical reasons, we use a ratio of the ion mass,
M,, to the electron bead artificial mass}, of 39.1:1. The
! . . . . dynamics of the electrons is still significantly faster than the
leading pair exchange terms in [if,| involving at least dynamics of the ions. We solve the equation of motion with

ol?e particle in the IS|muIat|onf Cﬁ"'(ljn other words, tE? ElOCk'a leapfrog scheme and an integration time step~&.8
[Fn.m], contains elements of the density matrix which Cor- j5-165 ~Most simulations were run for a minimum of

rBeslponds to Fhﬁse fStﬁteS n thel regia,l;]maX|m|_|z_|r?g the 76000 time steps or 20 ps. In some cases for the calculation
oftzman weight of the two-cycle exchange. The SeconGy \inrational properties, we have run simulations up to
block includes the contribution of the rest of the universe 10150000 steps

the density matrix. It contains the contribution of exchange
between electrons in the image cells and a minor contribu
tion (or zero contribution if the regioR is completely iso-

lated from the surroundingfrom exchange processes be-
tween electrons in the simulation cells and all other cells
Denoting byC the determinant of the second block and pro-

_(rglyp)_rgyp)2)|

among the possible combinations of exchange between
particlei in the simulation cellas defined byy), and a par-
ticle j in all other cellsp=1,27. This procedure identifies the

Because of the large computational cost of the calculation
of the exchange effective potential and forces, the exchange
forces are calculated and updated every 10 MD time steps.
The values for the exchange forces are used subsequently
during the 10 steps following their calculation. The chosen
s ) . - time step is small enough to resolve the high-frequency os-
vided that the assumption of |sqlat|on hOIdS.’ one h.ascillations of the harmonic springs. In the case of systems
de{E,m]~CdefF,y]. When calculating the leading contri- \ish |arge P, the strong electron bead-to-bead harmonic

b.utiolns. to thﬁ excnar:jge' force ofn r:he elﬁctrons inside Ith rces of Eq.(9) may lead to nonergodic behavidrsThis
simulation cell, as the derivative of the exchange potential o, ohiem can be alleviated by rescaling temperature with a

Eg. (8), the quantityC drops out and does not need 1o be o4 of NogeHoover thermostats?6 This rescaling would
e\{aluated. Th|s. approximation Is valid when the eIe;ctron; ar@nsure convergence to the right canonical distribution. We
fairly well localized and in particular for systems in which

time. With this approximation, the algorithm scalesPd. 3 rue canonical distribution, but most thermal averages will
_ In the model, the ions K are dealt with in a purely clas- pe accurate to ordefs 1.2 We have also verified that with
sical manner and interact through a Born-Mayer potential this approach over the length of our simulations the chains
would sample a large region of configuration space and
(11) therefore resolve not only the fast but also the slow dynami-
cal scale.

Z,Z,€? bl
; +Ae

(DIJ(r):H
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We have studied the potassium model system at tempera-
tures in the interva(10—298 K. The simulation of the elec-
tronic degrees of freedom as discrete necklaces at these low
temperatures would necessitate a large number of beads
for convergence with respect t#. In two previous
publications:?> we have shown that in the study of an elec-
tron plasma at high electronic densityear the metal density
of potassiuny, the electron system conserves a nearly degen-
erate character up to a temperature of 2300 K. Since tem-
perature does not affect significantly the electronic states at
the metal density, we have thermally decoupled the classical
ionic degrees of freedom and the quantum electronic degrees
of freedom. The electronic necklaces are attached to a ther-
mostat set at a temperature of 1300 K, while the ionic tem-
perature is adjusted independently with another thermostat.
At the electron temperature of 1300 K, it is sufficient to
employ a reasonably small number of beads for convergence
of the algorithm.

We calculate the kinetic energy with the usual energy
estimator derived fron# In Z/9B.1? Hall has shown that the

Electron kinetic energy (eV/electron)
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FIG. 1. Electron kinetic energy as a function of the number of

exchange potential does not contribute directly to the actuaiecklace beadP. The ion temperature is 273 K and the electron
energy estimator but indirectly through the equilibrium temperature is 1300 K.

configuration** With this estimator, the kinetic energy is

given as a small quantity, the difference between two larger \ye recall that the density of the simulated potassium sys-

guantities, with a variance growing with. This estimator,

tem varies continuously as a function of temperature as it is

therefore, introduces an error on the calculated values of thget to the temperature-dependent density of the solid. There-
average kinetic energy. We have estimated this error by cafpre, the discontinuity is not associated with any discontinu-
culating the standard deviation on the running cumulativesys change in the volume of the system but can only result
average over the last 30000 time steps of the simulationgrom a structural transformation. This structural transforma-
This error is estimated to be on the order of 0.01 eV petkjon takes place around 210 K. As we will see later from

electron.

Ill. RESULTS AND DISCUSSION

therefore,

structural data, this is a solid to liquid transformation. The
calculated transformation,
melting point by nearly 120 K as potassium melts at 333 K

underestimates the

In a first stage, we have investigated the convergence dfnder atmospheric pressure. This difference cannot be as-
the algorithm with respect to the number of beads in theSigned to the fact that the density of the simulated system is
electron necklaces, namelp, For this we have calculated constrained since such a constraint should have the opposite
the electron kinetic energy at an ion temperature of 273 K fogffect of raising the melting point. The difference between

systems with varying values d®. It is important to note
again that each simulation starts from different initial neck-
lace configurations. Figure 1 presents the results of these
calculations. It is clearly seen that the electron kinetic energy
converges to an asymptotic value of approximately 1.23 eV/
electron. The algorithm appears to have nearly converged for
number of beads exceeding 240. As a trade-off between ac-
curacy and efficiency, we have choder 260 for all subse-
guent simulations.

The total energy of the potassium system as a function of
temperature is reported in Fig. 2. The energy shows two
regions separated by an apparent discontinuity of approxi-
mately 0.025 eV/atom. In Fig. 2, we have also drawn as a
guide for the eyes best second-order and first-order polyno-
mial fits to the low-temperature and high-temperature ener-
gies, respectively. The slope of the fitted curves increases
from the low- to the high-temperature region indicative of
larger energy fluctuations in the high-temperature systems.
The dotted line in the low-temperature region is constructed
from the experimental value of the constant pressure heat
capacity with the constraint that it gives the calculated en-

Total energy (eV/atom)

0.12

0.10 +

0.08

0.06

0.04

0.02

0.00 | .
0 50 100

T T
150 200

Temperature (K)

T
250

T
300

350

FIG. 2. Total energy versus temperature. The solid lines are fits

ergy at 76 K. In view of the error on the energy, the simu-to the data in the low- and high-temperature regions. The dotted line
lated metal is in reasonable agreement with its experimentad constructed from the experimental constant pressure heat capacity

counterpart.

such that it intersects the calculated energy at 76 K.
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= ence between the energies of the two groups amounts to
< o3 o approximately 0.015-0.02 eV electron and appears to be a
? ot . significant contribution to the total-energy discontinuity. The
§ 1.22 * rise in kinetic energy as one crosses the discontinuity from
'§ * . the low-temperature to the high temperature is indicative of a
E 121 3 . change to an electronic state of higher localization in the
g high-temperature metal. This observation is consistent with
2 1.20 ' ' ' the expected behavior of electrons in a liquid structure in
® 0 100 200 300

contrast to a crystalline solid. As the structure disorders from
Temperature (K) crystalline to liquid, one anticipates a narrowing of the elec-
. _— tronic band. However, since the short-range local atomic en-
_FIG. 3. Various cc_)ntnbutlons (o the total energy of the POaS-yironment does not change drastically between the liquid and
sium system as functions of temperature. . .
the solid above and below the transformation temperature,
the extent of the electronic localization should be small.
experimental and simulation melting point can only result We characterize the atomic structure of the simulated sys-
from the computer model that underestimates the strength aém via the K-K pair-distribution function. The distributions
the K-K bond and in particular we believe that it is a conse-calculated at several temperatures are drawn in Fig. 4. The
qguence in part of the approximation made to reduce theery low-temperature ion pair-distribution function shows a
range of the Coulomb interaction. In that respect it is prefirst nearest-neighbor peak at approximately 4.6 A and a
dominantly a size effect. well-defined second-nearest shoulder at 5.2 A. This second
To gain further insight into the energetics of the transfor-distance represents the lattice parameter of the crystal phase.
mation, we have graphed in Fig. 3 some of the contributionghe third-nearest-neighbor peak occurs near 7.4 A. These
to the energy of the system. The only energy that is nofeatures are characteristic of the body-centered-cubic struc-
plotted is the classical kinetic energy of the ions. Since theaure of crystalline potassium. As temperature increases, the
temperature of the ions is maintained constant by a thermasecond-nearest-neighbor shoulder fades away and merges
stat, the ion kinetic energy is a simple linear function ofwith the first-nearest-neighbor peak forming a broad asym-
temperature and cannot account for the discontinuity in thenetric peak because of the larger amplitude of atomic mo-
total energy. Apart from an isolated point at 200 K, the po-tion. At the temperature of 76 K, the third-nearest-neighbor
tential energies vary reasonably continuously with temperapeak retains its identity. At 150 K, this peak consists only of
ture. In contrast, it appears that the electron kinetic energg vague shoulder part of a much broader peak that should
data is separable in two groups, namely, a low-temperaturencompass higher-order nearest neighbors. However, due to
group and a high-temperature group. Since the electrons ithe size of our simulation cell, we cannot resolve with much
the potassium system are nearly degenerate, their kinetic enenfidence the pair-distribution function beyond one half the
ergy should not be temperature dependent provided thkength of the edge of the simulation cell. On the same figure,
atomic structure remains the same. Within each group theve have also plotted the K-K pair-distribution functions at
kinetic energy does not show any systematic variation. Wehe temperatures of 248 and 273 K. We have not represented
should remember that the standard deviation on the electrae distribution at 298 K since it is practically identical to the
kinetic energy is approximately 0.01 eV/electron. The differ-one at 273 K. The maximum of the first-nearest-neighbor
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FIG. 5. Trajectories of the K ions afa) T=10K, (b) T

—76K, () T=248 K, and(d) T—298 K. FIG. 6. Mean-square displaceméMSD) as a function of time

and temperature.

peak shifts toward lower values as temperature increases. At
273 K, this maximum occurs at a distance of approximatelyculated is not long enough for quantitative characterization.
4.3 A. This distance is an underestimation of the experimenin Fig. 7, the NVAF’s at the two high temperatures of 273
tal K-K first-nearest-neighbor distantéut the calculated and 298 K show features of the crystalline stdt@ K), with
liquid distribution is in good qualitative accord with avail- oscillations representative of thermally excited phonons in
able experimental data. crystal lattices. The contrast in ionic motion between the
To supplement the structural information provided by theliquid and the crystal is also quite apparent in the power
ion pair-distribution functions, we report in Fig. 5 two- spectrum and in particular in the low-frequency modes. At
dimensional projections of the trajectories of the K ions atl0 K, the power spectrum drops to zero at zero frequency.
several temperatures. Figureg)sand b) correspond to the The liquid systems at 273 and more evidently at 298 K,
crystalline state. The ionic species vibrate about clearly wellexhibit nonzero values of the power spectrum at zero fre-
defined equilibrium lattice positions. At the two high tem- quency. This observation is in accord with a diffusive ionic
peratures, Figs.(6) and 8d), one cannot identify lattice po-

sitions anymore. Although one may still identify some 10 . 0.06 . K

vibrational component to the ionic motion in the form of T-298K

some localization in the trajectories, ionic motion is not pre- o5l 1 04

dominantly oscillatory but also possesses a diffusive charac-

ter. 0.0 W/\J\/\/V\/’\/\IV\— 0.02

More quantitative information concerning ionic motion is

available from the analysis of the mean-square displacement. -05 : 0.00 Lvvrrnnns

Figure 6 shows the mean-square displacen(Bt8D) of K 1.0 . 0.06 — l

ions as a function of time and temperature. In terms of the Te273k | E

MSD, diffusive motion is identified by linear variation with w 95T 1§ 004} ]

time in the limit of large time?® Vibrational motion is char- s &

acterized by a time-independent MSD. At the three lowest 0.0 MM § ooz ]

temperatureg10, 76, and 150 K the MSD indicates that a

ionic motion is vibrational. At the highest temperatures of “1’§ ' g'gg ' '

248, 273, and 298 K, the ions exhibit diffusive motion. It is ’ ' ’

somewhat more difficult with the present data to identify on 05 T=10K 00a L i3

the basis of the MSD only the nature of atomic motion at the o bl

temperature of 223 K. However, because the density of the 00 W 002 Freaquency(16" e

system is constrained to conform to that of the solid, it is not

surprising that at 223 K, atoms in this liquid may display 05 s ‘ 000 bocoreeeiroiii

essentially vibrational motion. o 4 8 01 2 3 4
(107" sec) Frequency (10 Hz)

Further information on the ionic motion is obtained from
the calculation of the normalized velocity autocorrelation F|G. 7. Normalized velocity autocorrelation functiéNVAF)
function (NVAF).?° We also consider the power spectrum of and associated power spectrum for crystalline potassidm (
the NVAF, defined as its Fourier transform. The NAVF's =10K) and liquid metal T=273,298K). The inset in tha
and the associated power spectra have to be analyzed in=a10 K power spectrum is the experimentally deduced phonon den-
gualitative manner because the time over which they are cakity of states 89 K of Ref. 5.
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FIG. 8. Partial electron pair-correlation functions. The solid line ~ FIG- 9. Electron-ion pair-distribution functions at several tem-
and dotted line refer to the crystal &= 10K and the liquid at 273  Peratures.

K, respectively. . o . L
P Y collapse and the ion coordination number in the liquid in-

motion® The peaks in the power spectra of the liquid metalcreases. The exchange-correlation force between neighboring
are consequences of the oscillations in the NVAF’s and maysospin electrons may then induce further localization. The
thus be regarded as remnants of the phonon structure obkesulting localization within and at the border of the ionic
served in the crystal state. The fact that the density of theore is seen best in the electron-ion radial distribution of Fig.
liquid is constrained to that of the crystal may accentuate thi9. At low temperature the ion-electron pair distribution
effect. As temperature increases or density decreases, thesifows a significant first maximum at a distance of 2.2 A.
peaks should disappear with the decay of the oscillations. IThis distance corresponds to approximately one half the
is not possible to extract detailed information from the finefirst-nearest-neighbor interatomic distance. The ion-electron
structure of the power spectra because of the finite time usesbrrelation reaches a minimum between 4.3 and 4.5 A fol-
in their calculation. However, one may compare qualitativelylowed by a second maximum near 6.5 A. The ion-electron
the calculated power spectrum at 10 K with that deducegair distribution is therefore complementary of the ion-ion
from experimental measurements at § Khe experimental distribution. In other words, high electron-ion correlation is
phonon density of states possesses a major peak near 2fpected where there is low ion-ion correlation. The high
X 10'2Hz. Vibrations in the PIMD model of the crystal po- electron density between ions is indicative of bonding. Con-
tassium have lower frequencies in the range 0.8—1.3idering now the midpoints between ionic sites as consisting
X 10'2Hz suggestive of weaker bonds. This observation corof electronic sites, we can estimate the electron-electron dis-
relates closely with the observation of a calculated meltingance in the potassium body-centered-cubic structure to be
temperature underestimating the experimental melting poinbn the order of 2 times the lattice parameter. The
Finally, we consider the change in the electronic structureslectron-electron distance thus calculated amounts to ap-
of the metal upon melting. This change is associated with aproximately 3.67 A. This number is in excellent accord with
increase in electronic kinetic energy of approximately 0.02he observed maximum in the heterospin electron-electron
eV/electron. This energy is small and thus one expects only pair distribution. With this information, we may construct a
slight modification of the electronic structure. Such a varia-simplified picture of the electronic structure in the crystal
tion is observable in the electron pair-distribution functionsphase. The electron density is the highest between the ions
of Fig. 8. The partial distribution functions show that the thus leading to bonding and the electronic sites are occupied
major difference between the low-temperature crystal andlternatively by electrons with differing spin.
the liquid is an increase of the maximum in the heterospin An increase in electron localization at the electron sites
pair correlation between 3 dmt A and an expansion of the occurs even in the solid state at the higher temperature of
exchange-correlation hole as seen in the isospin distributiorl.50 K. This shows that atomic vibrations have a significant
In a previous study of the effect of temperature on the eleceffect on the nature of the electronic states in crystalline
tron density in an electron plasma with density near that opotassium. Vibrations tend to localize the electron density.
the present potassium system, we had shown that increasii®imilar observations by other investigators were made for
temperature shrinks the exchange-correlation Adow-  the case of sodium clustet$The electron density localizes
ever, the direct effect of temperature on the electronic strucfurther with disordering of the structure at even higher tem-
ture cannot be a factor as it is maintained constant by g@erature. In the liquid, the electron density increases near 2.2
thermostat. Here, the expansion in the parallel-spin electroA. This increase is compensated by a reduction in the
correlation may thus simply be a result of volume expansionelectron-ion pair correlation at longer range as seen by the
On the other hand, upon melting the first-nearest-neighbdoss of electron-ion correlation near 6.5 A. Since the calcu-
and second-nearest-neighbor shells of the crystal structutated dynamical properties support the retention of vibra-
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tional motion in addition to diffusive motion in the liquid between the atomic and electronic structures. In the crystal-
state, it is unclear at this stage which of the two processedine state, vibrations appear to have an effect on the electron
vibration versus disorder, contributes principally to the local-density and result in some electron localization. Moreover,

ization. The electron localization at the edge of the ionicwe find that the electronic structure of the simple metal re-

cores should lead to an increase in heterospin correlatioBPonds to the collapse in the long-range order of the ionic
between 3 amh 4 A which is observed in Fig. 8. Finally, we Structure by localizing further within and at the edge of the

note that the larger electron density between nearesore of the ions.

neighbor ions is consistent with the shorter K-K bond length  Contrary to many of the current quantum molecular-

in the liquid structure. dynamics simulation techniques which rely on the indepen-
dent particle approximation, the PIMD is a many-particle
IV. CONCLUSIONS technique and includes the important effects of interactions

of electrons with each other and with the ions. Although
A first-principles molecular-dynamics scheme for the PIMD is a very promising technique for the study of mate-

simulation of electron-ion systems with quantum-mechanicatials in which electronic and ionic structures are intimately
electrons modeled within the discretized path-integral for-correlated, the shear computational cost of the algorithm
malism was applied to the study of the finite-temperatureconstitutes a barrier to its application to large systems. At
properties of a simple metal. We showed that the model popresent, the restricted PIMD method is limited by the com-
tassium metal undergoes a melting transformation upon heaputation cost of the forces derived from the effective ex-
ing. The transformation is characterized thoroughly throughchange potential. The computational cost is a quadratic func-
calculated thermodynamics quantities, structural and dytion of the number of beads and a cubic function of the
namical properties. The model potassium crystal melts at aumber of isospin electrons. Access to supercomputers can
temperature significantly below the experimental meltingmake possible the simulation of systems with larger numbers
point. The reasons for this discrepency may be found in thef electrons. For larger fermion systems, one may be able to
approximations made to speed up the calculations as, fayptimize the calculation by exploiting the short spatial extent
instance, the use of a short-range interionic potential and aof exchang& and dividing the simulation cell into smaller
empty core pseudopotential. Comparison between the calcand more tractable subcells. The quadratic dependend on
lated low-temperature vibrational spectrum and the experidue to the nonlocality of the exchange potential is a more
mentally measured phonon density of states indicates that trserious problem. A local effective exchange potential could
strength of the atomic bonds is underestimated in the modelead to a linear dependency on the number of beads. We are
Upon melting the ionic motion changes from pure vibrationcurrently developing an approximate local form of the ex-
to diffusive motion. Above the transition temperature, thechange potential that is able to model the exchange interac-
ion mean-square displacement increases linearly with terntions at a cost proportional t8 only.3? Finally, since the
perature; an unambiguous sign of diffusion. This change iPIMD involves stiff oscillators, disparate masses, and short-
atomic motion is also supported by the temperature deperand long-range forces, another avenue in improving the com-
dency of the Fourier transform of the ion velocity autocorre-putational efficiency of our algorithm is to employ a multiple
lation function. The PIMD allows us to study the interplay time-step schem&°
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