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Simulation of crystal and liquid potassium via restricted path-integral molecular dynamics
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The path-integral molecular-dynamics method is employed to study the effect of temperature on a simple
metal~potassium! model system. The simple metal undergoes a phase transformation upon heating. Calculated
dynamic properties indicate that the atomic motion changes from a vibrational to a diffusive character identi-
fying the transformation as melting. Calculated structural properties further confirm the transformation. Ionic
vibrations in the crystal state and the loss of long-range order during melting modify the electronic structure
and in particular localize the electrons inside and at the border of the ion core.@S0163-1829~99!00117-4#
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I. INTRODUCTION

The goal of the present work is to predict the equilibriu
and dynamical properties of systems with strongly coup
electronic and ionic degrees of freedom. Of particular int
est is the interplay between electronic and atomic struc
during a phase transformation. In this paper, we present
application of a recently developed first-principle numeri
method: the path-integral molecular-dynamics~PIMD!
method1,2 to the study of an alkali metal, namely, potassiu
~K!. The choice of this system is essentially driven by
simplicity but also by the availability of experimental da
such as structural and thermodynamic properties in both
uid and solid phases as well as vibrational properties for
crystal.3–5 Although the alkali metals are often consider
simple nearly free-electron systems~with only one single
valence electron per atom!, they possess physical properti
that make them good prototype systems with relevance
many current issues in materials science. Some of th
properties include~1! metal to nonmetal transitions~M/NM !,
the M/NM transition in expended molten alkali metals6,7 re-
mains an outstanding many-body problem of strongly co
lated systems at high temperature;~2! immiscibility, while
most binary alloys of alkali metals show miscibility, th
K-Li and Na-Li exhibit a miscibility gap;8 ~3! structural
phase transformations, the body-centered-cubic Na an
crystals exhibit a martensitic transition at low temperatu4

but one of the most obvious and common transformation
that from the solid phase to liquid phase, namely, meltin

While melting of numerous materials has been ext
sively investigated by classical molecular dynamics us
empirical pair or many-body potentials, there have been
first-principles investigations of this ubiquitous phenomen
The coupling between the structure of the solid/liquid a
the electronic structure necessitates a theoretical appr
based on first principles. The method to be used should
allow for the calculation of properties at finite temperatu
such as dynamical and thermodynamic properties.

In the field of ab initio molecular dynamics~MD!, the
method of Car and Parrinello,9 based on the density
functional theory~DFT! has enjoyed a great popularity ov
PRB 590163-1829/99/59~17!/11276~10!/$15.00
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recent years. DFTMD has been employed to investigat
very large number of problems from condensed matter
chemistry to biology.10 In contrast, applications o
molecular-dynamics simulations using the discretized pa
integral~PI! representation11 of quantum particles have bee
limited mostly to the simulation of systems containing
small number of quantum degrees of freedom~such as in the
solvation of a single quantum particle in a classical fluid12!
or to problems where quantum exchange is not dominan13

Progress in the simulation of fermionic systems by the pa
integral Monte Carlo method14–17 have opened the way to
ward the implementation of a path-integral-based fini
temperatureab initio molecular-dynamics method. Th
PIMD method has demonstrated recently its potency in
simulation of degenerate electron plasma and liq
potassium.1,2 This method uses the discretized path-integ
representation of quantum particles as a starting point,
introduces a restricted form of the path that accounts
Fermi statistics. This scheme is then coupled to class
molecular-dynamics equations of motion for sampling t
configurational space of the electronic and ionic degrees
freedom. This method is capable of modeling electronic s
tems beyond the Hartree-Fock approximation.1,2 Further-
more, since the PIMD method is based on a position rep
sentation of the quantum states, it appears to be well su
to simulating systems which electronic structure may cha
from delocalized to more localized electrons.

We show in this paper that the PIMD successfully mod
the body-centered-cubic crystal structure of potassium m
at low temperature. Upon increasing the temperature,
metal transforms to a liquid. The predicted melting tempe
ture is below the experimental value. This deviation is
signed to a short-range approximate potential used in p
of the usual long-range Coulomb potential in order to redu
computational cost. The phase transformation is charac
ized thermodynamically via energies, structurally via pa
distribution functions as well as dynamically via the mea
square displacement and the vibrational power spectr
Vibrations in the crystal appear to induce some localizat
in the electron density. As melting takes place, the electro
11 276 ©1999 The American Physical Society
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structure responds to the loss of long-range order in
atomic structure by additional localization.

This paper is organized as follows. In Sec. II, we brie
review the method of PIMD as well as its practical impl
mentation and application to the simulation of alkali meta
Results are reported in Sec. III. In Sec. IV, we draw so
conclusions concerning the applicability of the PIM
method to some other systems.

II. METHOD AND MODEL

In this section we briefly review the PIMD method1,2 and
provide some details concerning its implementation for
simulation of alkali metals. The PIMD method makes use
~a! the discretized path-integral representation of quan
particles as closed ‘‘polymeric’’ chains of classical particl
~beads! coupled through harmonic springs,18 ~b! the treat-
ment of quantum exchange as crosslinking of the chain18

~c! the nonlocality of crosslinking~exchange! along the
chains ~in imaginary time!,14 ~d! the restricted path
integral15,16,19to resolve the problem of negative weights
the partition function resulting from the crosslinking of ev
numbers of quantum particles.

Since, the main difficulty in the PIMD method resides
the treatment of the electronic degrees of freedom we
develop the formalism in the case of a system of electro
We subsequently add the ionic degrees of freedom to
model for the electron system. The partition function of
system ofN quantum particles expressed in a position rep
sentation takes the form20

Z5E dR1r~R1 ,R1 ;b!5E )
n51

P

dRn)
n51

P

* r~Rn ,Rn11 ;«!,

~1!

wherer is the density matrix,R5$r (1),...,r (N)% stands for
the position of the particles, andb51/kT. In Eq. ~1!, we
have used the convolution property of the density matrix a
introduced (P21) intermediate states. The* in the product
indicates the cyclic conditionRP115R1 and«5b/P. Since
the wave function of fermions is antisymmetric, the dens
matrix can be positive or negative and convergence is sl
However, the diagonal density matrix can be evaluated
restricting paths to remain in the region of phase space w
their sign is positive.15,16,19 With this restriction, Eq.~1! is
exact, but since one does not know the exact density ma
it is necessary to replace it by some reasonable approx
tion. The nodes of the approximate density matrix~loci of
points where the density matrix is zero! should be as close a
possible to those of the exact density matrix if one hope
calculate accurate properties. IfP is sufficiently large, we
can use Trotter’s approximation to separate the kinetic
the potential contributions to the density matrix.21

The propagator,r(Rn ,Rn11 ;«), is approximated for
small « using the Trotter formula21 by

r~Rn ,Rn11 ;«!5^Rnuexp~2«Hop!uRn11&

'E dR^Rnuexp~2«Top!uR&

3^Ruexp~2«Vop!uRn11&, ~2!
e
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where the Hamiltonian operatorHop is decomposed into the
kinetic operatorTop and the potential operatorVop. For a
local potential operator,r becomes

r~Rn ,Rn11 ;«!'^Rnuexp~2«Top!uRn11&exp@2«V~Rn11!#,
~3!

whereV(Rn11) is a potential function of the position. Thi
potential function may describe any potential field in whi
the electrons evolve including electron-electron Coulomb
teractions or electron-ion interactions.

For the kinetic matrix, we use the exact noninteracti
density matrix:

rNI~Rn ,Rn11 ;«!5^Rnuexp~2«T!uRn11&

5F m

2p«\2G3N/2

det@An,n11# ~4!

with @An,n11# representing aN3N matrix in which elements

are expressed asAn,n11
i j 5e2b(m/2b«\2)(r n

( i )
2r n11

( j ) )2
. In the pre-

ceding relation, the indicesi and j label the electrons. The
expression for the density matrix of Eq.~4! is given in a
position representation. It is obtained by using a complete
of states represented by Slater determinants of plane wa
The use of a position representation has the advantage
methods employing only a finite basis set of providing
better description of electronic orbitals that may change fo
qualitatively. This property makes the path-integral form
ism particularly suited for systems with electrons going fro
localized to delocalized orbitals. At this stage, howev
since Slater determinants of plane waves are solutions to
Hartree-Fock equation for free electrons, the noninterac
density matrix does not describe electron correlation.
though the noninteracting density matrix does not desc
electron correlation, in the limit of high temperature,
nodes approximate reasonably well those of the exact den
matrix.15

We now construct an approximate form for the dens
matrix that includes electron correlation. The determinan
the kinetic matrix in the absence of quantum exchange
factored out of Eq.~4!:

det@An,n11#5)
i 51

N

An,n11
i i det@En,n11#, ~5!

where all the exchange effects~including the sign of the
density matrix! are included in@E# where the elements ar
defined asEn,n11

i j 5An,n11
i j /An,n11

i i . In the limit of «→0, the
matrix @E# reduces to the identity matrix and the system c
lapses into a bosonic state. To prevent this undesirable
havior, following Hall, we recast Eq.~5! in a nonlocal
form:14

det@An,n11#→)
i 51

N

An,n11
i i )

m51

P

~det@En,m# !1/P. ~6!

Such a nonlocal form for the density matrix cannot be o
tained from simple Slater determinants of plane wav
Equation ~6! should, therefore, represent electrons beyo
the Hartree-Fock approximation. A nonlocal density mat
would, therefore, account for some electron correlation. T
approximation was shown to model a semidegenerate e
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11 278 PRB 59KI-DONG OH AND P. A. DEYMIER
tron plasma near metal density beyond the Hartree-F
approximation.1,2 In this work, the calculated kinetic and po
tential energies did not correspond to the Hartree-Fock
ues but approached the values for a fully correlated plas

With the restricted path integral, the integrand of the p
tition function is positive andZ can now be rewritten in a
classical form usable with a molecular-dynamics~MD!
scheme:

Z5E )
n51

P

dRn exp@2bVeff~R1 ,...,RP!#, ~7!

where the effective potential includes quantum exchange
correlation. For systems containing electrons with nonide
cal spins, the density matrix is approximated as the prod
of two determinants taking the form of Eq.~6!; one determi-
nant for the electrons with one type of spin and another
terminant for the electrons with the other type of spin22

Therefore, in the case of a nonpolarized fermion system w
Nel electrons, a microcanonical ensemble sampling of
quantum states of the system can now be performed by s
ing for the trajectories generated by the classical Ham
tonian:

H5 (
k51

Nel

(
i 51

P
1

2
m* ~ ṙ i

~k!!21(
i 51

P

(
k. l

Nel

(
l 51

Nel21
~2e!~2e/P!

4p«0ur i
~k!2r i

~ l !u

1 (
k51

Nel

(
i 51

P

*
meP

2\2b2 ~r i
~k!2r i 11

~k! !2

2
1

b (
s5↑

↓ (
i 51

P

(
j 51

P

ln det@Ei j #su i js
1

(
i 51

P

(
j 51

P

u i js
1

. ~8!

Here,m* is some arbitrary mass~we chosem* 51 a.m.u,)
used to define an artificial kinetic energy for the quant
states in order to explore the effective potential surface,Veff
constituted of the last three terms in Eq.~8!. The fourth term
is an effective exchange potential for the electrons with s
up (s5↑) and spin down (s5↓). The functionu i j

1 ensures
the path restriction by taking on the values 1 and 0 for pa
with positive and negative det@E#, respectively. In Eq.~8!,
the second term accounts for the electron/electron Coulo
interactions. The forces derived from the exchange poten
are calculated as means over the paths with positive dete
nant. Therefore, an effective force calculation requires a
isfactory sample of such paths. Since the exchange pote
offers a barrier to paths with negative determinants, it bia
the sampling of phase space toward configurations with p
tive determinants. Although many configurations with neg
tive determinants exist and evolve, they do not contribute
the exchange forces.

Extension of the restricted-PIMD method to include t
classical ionic degrees of freedom is straightforward p
vided the electrons interact with the ions via local pseudo
tentials. In this case the Hamiltonian becomes
k
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H5 (
k51

Nel

(
i 51

P
1

2
m* ~ ṙ i

~k!!21(
I 51

Nion 1

2
MlṘl

2

1(
I .J

Nion

(
I 51

Nion21

F IJ~RIJ!1(
i 51

P

(
k. l

Nel

(
l 51

Nel21
~2e!~2e/P!

4p«0ur i
~k!2r i

~ l !u

1(
i 51

P

(
k51

Nel

(
I 51

Nion Vpseudo~RI2r i
~k!!

P

1 (
k51

Nel

( *
i 51

P
meP

2\2b2 ~r i
~k!2r i 11

~k! !2

2
1

b (
s5↑

↓ (
i 51

P

(
j 51

P

* ln det@Ei j #su i js
1

(
i 51

P

(
j 51

P

* u i js
1

. ~9!

The differences between Hamiltonian~8! and ~9! include a
kinetic energy for the ionic degrees of freedom as well as
ion/ion F IJ and ion/electronVpseudointeraction potentials.

We simulate crystalline and liquid potassium metal w
the method of PIMD. We have chosen potassium because~1!
it is a prototype free-electron metal which has been stud
previously by semiempirical pair potentials,~2! there exist
experimental data for the pair-correlation function of the l
uid state,3 thermodynamic,4 and vibrational properties.5 The
simulation cell contains 54 K1 and 54 nonpolarized elec
trons. The number of electrons with spin up and spin dow
Ns5↑527 andNs5↓527, respectively. In the crystal struc
ture, the potassium ions and electrons are arranged o
body-centered-cubic~bcc! lattice. Electrons~necklaces! with
spin up are placed on the lattice with nearest neighbors
opposite spin. Every simulation reported starts with a diff
ent initial necklace configuration obtained from random
generated-bead positions in every electron chain. The in
bead-bead distance is chosen according to the tempera
However, in order to reduce the time for the system to re
equilibrium from its initial configuration, we have take
some care as to construct necklace initial configurations~i.e.,
necklace spatial extent! closely related to the anticipate
equilibrium state.

As temperature is varied, the dimensions of the cell
adjusted to match the experimental density of the K crys
this over the entire range of temperature studied. Unexp
edly, our simulations have shown that the potassium mo
system melts at a temperature below the experimental v
of the melting point, thus the density of the liquid syste
reported below conforms to the value of the density of
crystal at the corresponding temperature.

Periodic boundary conditions~PBC’s! are applied to the
simulation cell. The numerical treatment of the electro
with PBC’s is done in a fashion similar to that of som
previous work on the electron plasmas.1,2 With PBC’s the
system is constituted of a simulation cell and 26 image ce
Under these conditions the matrix@En,m# for each spin
should be a (27Ns327Ns) matrix. When expanded over th
possible exchange cycles~exchange between two electron
exchange among three particles, etc.!, the determinant of this
matrix may be written in the form
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det@En,m#512 (
p51

27

(
q51

27

(
i 51

Ns

(
j 51

Ns

expF2b
m

2b«\2 @~rn
~ i ,q!2rm

~ j ,p!!21~rn
~ j ,p!2rm

~ i ,q!!22~rn
~ i ,q!2rm

~ i ,q!!22~rn
~ j ,p!2rm

~ j ,p!!2#G
1 (

p51

27

(
q51

27

(
r 51

27

(
i 51

Ns

(
j 51

Ns

(
k51

Ns

expF2b
m

2b«\2 @~rn
~ i ,q!2rm

~ j ,p!!21~rn
~ j ,p!2rm

~k,r !!21~rn
~k,r !2rm

~ i ,q!!2

2~rn
~ i ,q!2rm

~ i ,q!!22~rn
~ j ,p!2rm

~ j ,p!!22~rn
~k,r !2rm

~k,r !!2#G2¯ . ~10!
to
im
d

la

ap

to

n

e

k
r

n
t
g

ibu

e-
lls
ro
as
i-
th
l o
be
a
h
en
at

-
l

ang-
e

b
but

m

ter
dge

e
ass,

he
ith

f
tion
to

tion
nge
ps.

ently
en
os-
ms
nic

h a

We
of
tum
n
will

ins
nd

mi-
The second term in the previous equation corresponds
sum over exchanges between pairs of electrons in the s
lation cell and image cells, while the third term correspon
to exchange among three electrons, etc. The indicesp, q, and
r are used to specify the periodic cells including the simu
tion cell.

In order to make the calculation more tractable, we
proximate the matrix,@En,m#, by a block diagonal matrix
containing two blocks. This approximation is equivalent
dividing the periodic system into a physical regionR con-
taining Ns electrons isolated from~actually, weakly coupled
to! its surrounding~defined as the rest of the universe!. The
first block in the density matrix,@Fn,m#, is aNs3Ns matrix
where the elements minimize the quantity:

u~rn
~ i ,q!2rm

~ j ,p!!21~rn
~ j ,p!2rm

~ i ,q!!22~rn
~ i ,q!2rm

~ i ,q!!2

2~rn
~ j ,p!2rm

~ j ,p!2!u

among the possible combinations of exchange betwee
particle i in the simulation cell~as defined byq!, and a par-
ticle j in all other cells,p51,27. This procedure identifies th
leading pair exchange terms in det@En,m# involving at least
one particle in the simulation cell. In other words, the bloc
@Fn,m#, contains elements of the density matrix which co
responds to those states in the regionR, maximizing the
Boltzman weight of the two-cycle exchange. The seco
block includes the contribution of the rest of the universe
the density matrix. It contains the contribution of exchan
between electrons in the image cells and a minor contr
tion ~or zero contribution if the regionR is completely iso-
lated from the surrounding! from exchange processes b
tween electrons in the simulation cells and all other ce
Denoting byC the determinant of the second block and p
vided that the assumption of isolation holds, one h
det@En,m#'Cdet@Fn,m#. When calculating the leading contr
butions to the exchange force on the electrons inside
simulation cell, as the derivative of the exchange potentia
Eq. ~8!, the quantityC drops out and does not need to
evaluated. This approximation is valid when the electrons
fairly well localized and in particular for systems in whic
the electrons have a strong repulsive interaction that prev
the close approach of more than a very few electrons
time. With this approximation, the algorithm scales asP2Ns

3.
In the model, the ions K1 are dealt with in a purely clas

sical manner and interact through a Born-Mayer potentia

F IJ~r !5
ZIZJe

2

4p«0r
1AIJe2r /r IJ ~11!
a
u-
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and the parameters of the potential are those fixed by S
ster and Atwood.23 As to the electron/ion interaction, w
have used a simple empty core local pseudopotential

Vpseudo~r !5
2ZIe

2

r
, r>Rc ; and

2ZIe
2

Rc
, r ,Rc

~12!

with a core radiusRc52.22 Å.24

To optimize the calculation of the long-range Coulom
energy and forces, we do not use the Ewald summation
simply replace the long-range Coulomb potential in Eqs.~8!
and ~9! by a shorter range effective potential of the for
1/r→1/r erfc(hr) where h55.741/L0 and L0516 Å. erfc
stands for the complementary error function. This shor
range potential is then truncated at half the size of the e
of the simulation box.

The physical potassium ion mass isMI571 830me , lead-
ing to an extreme disparity in electronic and ionic tim
scales. For practical reasons, we use a ratio of the ion m
MI , to the electron bead artificial mass,m* , of 39.1:1. The
dynamics of the electrons is still significantly faster than t
dynamics of the ions. We solve the equation of motion w
a leapfrog scheme and an integration time step of;2.8
310216s. Most simulations were run for a minimum o
70 000 time steps or 20 ps. In some cases for the calcula
of vibrational properties, we have run simulations up
120 000 steps.

Because of the large computational cost of the calcula
of the exchange effective potential and forces, the excha
forces are calculated and updated every 10 MD time ste
The values for the exchange forces are used subsequ
during the 10 steps following their calculation. The chos
time step is small enough to resolve the high-frequency
cillations of the harmonic springs. In the case of syste
with large P, the strong electron bead-to-bead harmo
forces of Eq.~9! may lead to nonergodic behaviors.25 This
problem can be alleviated by rescaling temperature wit
chain of Nose´-Hoover thermostats.13,26 This rescaling would
ensure convergence to the right canonical distribution.
have chosen to rescale the temperature of each chainP
beads independently of each other via a simple momen
rescaling thermostat.27 With this procedure we do not obtai
a true canonical distribution, but most thermal averages
be accurate to ordersN21.28 We have also verified that with
this approach over the length of our simulations the cha
would sample a large region of configuration space a
therefore resolve not only the fast but also the slow dyna
cal scale.
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We have studied the potassium model system at temp
tures in the interval~10–298 K!. The simulation of the elec
tronic degrees of freedom as discrete necklaces at these
temperatures would necessitate a large number of b
for convergence with respect toP. In two previous
publications,1,2 we have shown that in the study of an ele
tron plasma at high electronic density~near the metal density
of potassium!, the electron system conserves a nearly deg
erate character up to a temperature of 2300 K. Since t
perature does not affect significantly the electronic state
the metal density, we have thermally decoupled the class
ionic degrees of freedom and the quantum electronic deg
of freedom. The electronic necklaces are attached to a t
mostat set at a temperature of 1300 K, while the ionic te
perature is adjusted independently with another thermo
At the electron temperature of 1300 K, it is sufficient
employ a reasonably small number of beads for converge
of the algorithm.

We calculate the kinetic energy with the usual ene
estimator derived from] ln Z/]b.12 Hall has shown that the
exchange potential does not contribute directly to the ac
energy estimator but indirectly through the equilibriu
configuration.14 With this estimator, the kinetic energy i
given as a small quantity, the difference between two lar
quantities, with a variance growing withP. This estimator,
therefore, introduces an error on the calculated values of
average kinetic energy. We have estimated this error by
culating the standard deviation on the running cumulat
average over the last 30 000 time steps of the simulatio
This error is estimated to be on the order of 0.01 eV
electron.

III. RESULTS AND DISCUSSION

In a first stage, we have investigated the convergenc
the algorithm with respect to the number of beads in
electron necklaces, namely,P. For this we have calculate
the electron kinetic energy at an ion temperature of 273 K
systems with varying values ofP. It is important to note
again that each simulation starts from different initial nec
lace configurations. Figure 1 presents the results of th
calculations. It is clearly seen that the electron kinetic ene
converges to an asymptotic value of approximately 1.23
electron. The algorithm appears to have nearly converged
number of beads exceeding 240. As a trade-off between
curacy and efficiency, we have chosenP5260 for all subse-
quent simulations.

The total energy of the potassium system as a function
temperature is reported in Fig. 2. The energy shows
regions separated by an apparent discontinuity of appr
mately 0.025 eV/atom. In Fig. 2, we have also drawn a
guide for the eyes best second-order and first-order poly
mial fits to the low-temperature and high-temperature en
gies, respectively. The slope of the fitted curves increa
from the low- to the high-temperature region indicative
larger energy fluctuations in the high-temperature syste
The dotted line in the low-temperature region is construc
from the experimental value of the constant pressure h
capacity with the constraint that it gives the calculated
ergy at 76 K. In view of the error on the energy, the sim
lated metal is in reasonable agreement with its experime
counterpart.
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We recall that the density of the simulated potassium s
tem varies continuously as a function of temperature as
set to the temperature-dependent density of the solid. Th
fore, the discontinuity is not associated with any discontin
ous change in the volume of the system but can only re
from a structural transformation. This structural transform
tion takes place around 210 K. As we will see later fro
structural data, this is a solid to liquid transformation. T
calculated transformation, therefore, underestimates
melting point by nearly 120 K as potassium melts at 333
under atmospheric pressure. This difference cannot be
signed to the fact that the density of the simulated system
constrained since such a constraint should have the opp
effect of raising the melting point. The difference betwe

FIG. 1. Electron kinetic energy as a function of the number
necklace beadsP. The ion temperature is 273 K and the electr
temperature is 1300 K.

FIG. 2. Total energy versus temperature. The solid lines are
to the data in the low- and high-temperature regions. The dotted
is constructed from the experimental constant pressure heat cap
such that it intersects the calculated energy at 76 K.
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experimental and simulation melting point can only res
from the computer model that underestimates the strengt
the K-K bond and in particular we believe that it is a cons
quence in part of the approximation made to reduce
range of the Coulomb interaction. In that respect it is p
dominantly a size effect.

To gain further insight into the energetics of the transf
mation, we have graphed in Fig. 3 some of the contributi
to the energy of the system. The only energy that is
plotted is the classical kinetic energy of the ions. Since
temperature of the ions is maintained constant by a ther
stat, the ion kinetic energy is a simple linear function
temperature and cannot account for the discontinuity in
total energy. Apart from an isolated point at 200 K, the p
tential energies vary reasonably continuously with tempe
ture. In contrast, it appears that the electron kinetic ene
data is separable in two groups, namely, a low-tempera
group and a high-temperature group. Since the electron
the potassium system are nearly degenerate, their kinetic
ergy should not be temperature dependent provided
atomic structure remains the same. Within each group
kinetic energy does not show any systematic variation.
should remember that the standard deviation on the elec
kinetic energy is approximately 0.01 eV/electron. The diff

FIG. 3. Various contributions to the total energy of the pot
sium system as functions of temperature.
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ence between the energies of the two groups amount
approximately 0.015–0.02 eV electron and appears to b
significant contribution to the total-energy discontinuity. T
rise in kinetic energy as one crosses the discontinuity fr
the low-temperature to the high temperature is indicative o
change to an electronic state of higher localization in
high-temperature metal. This observation is consistent w
the expected behavior of electrons in a liquid structure
contrast to a crystalline solid. As the structure disorders fr
crystalline to liquid, one anticipates a narrowing of the ele
tronic band. However, since the short-range local atomic
vironment does not change drastically between the liquid
the solid above and below the transformation temperat
the extent of the electronic localization should be small.

We characterize the atomic structure of the simulated s
tem via the K-K pair-distribution function. The distribution
calculated at several temperatures are drawn in Fig. 4.
very low-temperature ion pair-distribution function shows
first nearest-neighbor peak at approximately 4.6 Å and
well-defined second-nearest shoulder at 5.2 Å. This sec
distance represents the lattice parameter of the crystal ph
The third-nearest-neighbor peak occurs near 7.4 Å. Th
features are characteristic of the body-centered-cubic st
ture of crystalline potassium. As temperature increases,
second-nearest-neighbor shoulder fades away and me
with the first-nearest-neighbor peak forming a broad asy
metric peak because of the larger amplitude of atomic m
tion. At the temperature of 76 K, the third-nearest-neighb
peak retains its identity. At 150 K, this peak consists only
a vague shoulder part of a much broader peak that sh
encompass higher-order nearest neighbors. However, du
the size of our simulation cell, we cannot resolve with mu
confidence the pair-distribution function beyond one half
length of the edge of the simulation cell. On the same figu
we have also plotted the K-K pair-distribution functions
the temperatures of 248 and 273 K. We have not represe
the distribution at 298 K since it is practically identical to th
one at 273 K. The maximum of the first-nearest-neighb

-

FIG. 4. Ion pair-distribution functions at the temperatures of
K ~thick solid line!, 76 K ~thin solid line!, 150 K ~dashed line!, 248
K ~thick dotted line!, and 273 K~thin dotted line!.
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peak shifts toward lower values as temperature increase
273 K, this maximum occurs at a distance of approximat
4.3 Å. This distance is an underestimation of the experim
tal K-K first-nearest-neighbor distance3 but the calculated
liquid distribution is in good qualitative accord with avai
able experimental data.

To supplement the structural information provided by t
ion pair-distribution functions, we report in Fig. 5 two
dimensional projections of the trajectories of the K ions
several temperatures. Figures 5~a! and 5~b! correspond to the
crystalline state. The ionic species vibrate about clearly w
defined equilibrium lattice positions. At the two high tem
peratures, Figs. 5~c! and 5~d!, one cannot identify lattice po
sitions anymore. Although one may still identify som
vibrational component to the ionic motion in the form
some localization in the trajectories, ionic motion is not p
dominantly oscillatory but also possesses a diffusive cha
ter.

More quantitative information concerning ionic motion
available from the analysis of the mean-square displacem
Figure 6 shows the mean-square displacement~MSD! of K
ions as a function of time and temperature. In terms of
MSD, diffusive motion is identified by linear variation wit
time in the limit of large time.29 Vibrational motion is char-
acterized by a time-independent MSD. At the three low
temperatures~10, 76, and 150 K!, the MSD indicates tha
ionic motion is vibrational. At the highest temperatures
248, 273, and 298 K, the ions exhibit diffusive motion. It
somewhat more difficult with the present data to identify
the basis of the MSD only the nature of atomic motion at
temperature of 223 K. However, because the density of
system is constrained to conform to that of the solid, it is
surprising that at 223 K, atoms in this liquid may displ
essentially vibrational motion.

Further information on the ionic motion is obtained fro
the calculation of the normalized velocity autocorrelati
function ~NVAF!.29 We also consider the power spectrum
the NVAF, defined as its Fourier transform. The NAVF
and the associated power spectra have to be analyzed
qualitative manner because the time over which they are

FIG. 5. Trajectories of the K ions at~a! T510 K, ~b! T
576 K, ~c! T5248 K, and~d! T5298 K.
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culated is not long enough for quantitative characterizati
In Fig. 7, the NVAF’s at the two high temperatures of 27
and 298 K show features of the crystalline state~10 K!, with
oscillations representative of thermally excited phonons
crystal lattices. The contrast in ionic motion between t
liquid and the crystal is also quite apparent in the pow
spectrum and in particular in the low-frequency modes.
10 K, the power spectrum drops to zero at zero frequen
The liquid systems at 273 and more evidently at 298
exhibit nonzero values of the power spectrum at zero
quency. This observation is in accord with a diffusive ion

FIG. 6. Mean-square displacement~MSD! as a function of time
and temperature.

FIG. 7. Normalized velocity autocorrelation function~NVAF!
and associated power spectrum for crystalline potassiumT
510 K) and liquid metal (T5273,298 K). The inset in theT
510 K power spectrum is the experimentally deduced phonon d
sity of states at 9 K of Ref. 5.
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motion.30 The peaks in the power spectra of the liquid me
are consequences of the oscillations in the NVAF’s and m
thus be regarded as remnants of the phonon structure
served in the crystal state. The fact that the density of
liquid is constrained to that of the crystal may accentuate
effect. As temperature increases or density decreases,
peaks should disappear with the decay of the oscillation
is not possible to extract detailed information from the fi
structure of the power spectra because of the finite time u
in their calculation. However, one may compare qualitativ
the calculated power spectrum at 10 K with that dedu
from experimental measurements at 9 K.5 The experimental
phonon density of states possesses a major peak nea
31012Hz. Vibrations in the PIMD model of the crystal po
tassium have lower frequencies in the range 0.8–
31012Hz suggestive of weaker bonds. This observation c
relates closely with the observation of a calculated melt
temperature underestimating the experimental melting po

Finally, we consider the change in the electronic struct
of the metal upon melting. This change is associated with
increase in electronic kinetic energy of approximately 0
eV/electron. This energy is small and thus one expects on
slight modification of the electronic structure. Such a var
tion is observable in the electron pair-distribution functio
of Fig. 8. The partial distribution functions show that th
major difference between the low-temperature crystal
the liquid is an increase of the maximum in the heteros
pair correlation between 3 and 4 Å and an expansion of th
exchange-correlation hole as seen in the isospin distribut
In a previous study of the effect of temperature on the e
tron density in an electron plasma with density near tha
the present potassium system, we had shown that increa
temperature shrinks the exchange-correlation hole.2 How-
ever, the direct effect of temperature on the electronic str
ture cannot be a factor as it is maintained constant b
thermostat. Here, the expansion in the parallel-spin elec
correlation may thus simply be a result of volume expansi
On the other hand, upon melting the first-nearest-neigh
and second-nearest-neighbor shells of the crystal struc

FIG. 8. Partial electron pair-correlation functions. The solid li
and dotted line refer to the crystal atT510 K and the liquid at 273
K, respectively.
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collapse and the ion coordination number in the liquid
creases. The exchange-correlation force between neighbo
isospin electrons may then induce further localization. T
resulting localization within and at the border of the ion
core is seen best in the electron-ion radial distribution of F
9. At low temperature the ion-electron pair distributio
shows a significant first maximum at a distance of 2.2
This distance corresponds to approximately one half
first-nearest-neighbor interatomic distance. The ion-elect
correlation reaches a minimum between 4.3 and 4.5 Å
lowed by a second maximum near 6.5 Å. The ion-elect
pair distribution is therefore complementary of the ion-i
distribution. In other words, high electron-ion correlation
expected where there is low ion-ion correlation. The hi
electron density between ions is indicative of bonding. Co
sidering now the midpoints between ionic sites as consis
of electronic sites, we can estimate the electron-electron
tance in the potassium body-centered-cubic structure to
on the order of 1/& times the lattice parameter. Th
electron-electron distance thus calculated amounts to
proximately 3.67 Å. This number is in excellent accord w
the observed maximum in the heterospin electron-elec
pair distribution. With this information, we may construct
simplified picture of the electronic structure in the crys
phase. The electron density is the highest between the
thus leading to bonding and the electronic sites are occu
alternatively by electrons with differing spin.

An increase in electron localization at the electron si
occurs even in the solid state at the higher temperature
150 K. This shows that atomic vibrations have a significa
effect on the nature of the electronic states in crystall
potassium. Vibrations tend to localize the electron dens
Similar observations by other investigators were made
the case of sodium clusters.14 The electron density localize
further with disordering of the structure at even higher te
perature. In the liquid, the electron density increases near
Å. This increase is compensated by a reduction in
electron-ion pair correlation at longer range as seen by
loss of electron-ion correlation near 6.5 Å. Since the cal
lated dynamical properties support the retention of vib

FIG. 9. Electron-ion pair-distribution functions at several te
peratures.
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11 284 PRB 59KI-DONG OH AND P. A. DEYMIER
tional motion in addition to diffusive motion in the liquid
state, it is unclear at this stage which of the two proces
vibration versus disorder, contributes principally to the loc
ization. The electron localization at the edge of the io
cores should lead to an increase in heterospin correla
between 3 and 4 Å which is observed in Fig. 8. Finally, w
note that the larger electron density between near
neighbor ions is consistent with the shorter K-K bond len
in the liquid structure.

IV. CONCLUSIONS

A first-principles molecular-dynamics scheme for t
simulation of electron-ion systems with quantum-mechan
electrons modeled within the discretized path-integral f
malism was applied to the study of the finite-temperat
properties of a simple metal. We showed that the model
tassium metal undergoes a melting transformation upon h
ing. The transformation is characterized thoroughly throu
calculated thermodynamics quantities, structural and
namical properties. The model potassium crystal melts
temperature significantly below the experimental melt
point. The reasons for this discrepency may be found in
approximations made to speed up the calculations as,
instance, the use of a short-range interionic potential and
empty core pseudopotential. Comparison between the ca
lated low-temperature vibrational spectrum and the exp
mentally measured phonon density of states indicates tha
strength of the atomic bonds is underestimated in the mo
Upon melting the ionic motion changes from pure vibrati
to diffusive motion. Above the transition temperature, t
ion mean-square displacement increases linearly with t
perature; an unambiguous sign of diffusion. This change
atomic motion is also supported by the temperature dep
dency of the Fourier transform of the ion velocity autocor
lation function. The PIMD allows us to study the interpla
s
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between the atomic and electronic structures. In the crys
line state, vibrations appear to have an effect on the elec
density and result in some electron localization. Moreov
we find that the electronic structure of the simple metal
sponds to the collapse in the long-range order of the io
structure by localizing further within and at the edge of t
core of the ions.

Contrary to many of the current quantum molecula
dynamics simulation techniques which rely on the indep
dent particle approximation, the PIMD is a many-partic
technique and includes the important effects of interacti
of electrons with each other and with the ions. Althou
PIMD is a very promising technique for the study of mat
rials in which electronic and ionic structures are intimate
correlated, the shear computational cost of the algorit
constitutes a barrier to its application to large systems.
present, the restricted PIMD method is limited by the co
putation cost of the forces derived from the effective e
change potential. The computational cost is a quadratic fu
tion of the number of beads and a cubic function of t
number of isospin electrons. Access to supercomputers
make possible the simulation of systems with larger numb
of electrons. For larger fermion systems, one may be abl
optimize the calculation by exploiting the short spatial exte
of exchange31 and dividing the simulation cell into smalle
and more tractable subcells. The quadratic dependencyP
due to the nonlocality of the exchange potential is a m
serious problem. A local effective exchange potential co
lead to a linear dependency on the number of beads. We
currently developing an approximate local form of the e
change potential that is able to model the exchange inte
tions at a cost proportional toP only.32 Finally, since the
PIMD involves stiff oscillators, disparate masses, and sh
and long-range forces, another avenue in improving the c
putational efficiency of our algorithm is to employ a multip
time-step scheme.33–35
nd
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