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Effect of temperature on the formation of electronic bound states in an expanded bcc hydrogenoi
crystal: A restricted path-integral molecular dynamics simulation

Ki-Dong Oh and P. A. Deymier
Department of Materials Science and Engineering, The University of Arizona, Tucson, Arizona 85721, USA

~Received 28 May 2003; revised manuscript received 10 November 2003; published 2 April 2004!

We have used the restricted path-integral molecular dynamics method to study the correlated electronic
structure of a half-filled expanded three-dimensional hydrogenoid body-centered cubic lattice at finite tempera-
tures. Starting from a paramagnetic metallic state with electron gas character, we find that bound electrons form
upon expansion of the lattice. The bound electrons are spatially localized with their center for the motion of
gyration located on ionic positions. The region of coexistence of bound and unbound states in the temperature-
density plane is reminiscent of that associated with a first-order transition. At constant temperature, the number
of bound electrons increases monotonously with decreasing density. The width of the region of coexistence
narrows with increasing temperature.

DOI: 10.1103/PhysRevB.69.155101 PACS number~s!: 71.30.1h, 71.15.Pd
er
F
d

e
-
re

et
s

in
-
nd
za
ce
b
c

ins

o
ue
igh
re
m
i

he
d
tin

g

f
a

th

n-

re-
nal

ca-
ac-
dis-

gral

la-
in-

es a
cal-

of
ro-

d
rons
are
a-
c-

ec-
nt
sti-
3D

ota-
den-
nd

od
of
are
ded

ap-
ite
I. INTRODUCTION

The study of strongly correlated electrons is at the v
core of condensed matter physics and materials theory.
instance, great strides have been made in the understan
of the correlated electron gas because of its importanc
density functional theory.1–8 The investigation of the behav
ior of correlated electrons on crystalline lattices has also
ceived a great deal of attention for its relevance to the m
to insulator transition~MIT ! in several materials such a
transition metal oxides.9,10 The correlation-induced MIT,
known as Mott transition, is of fundamental importance
condensed matter theory.11 The transition results from a com
petition between the electrons’ potential energy that te
toward localization and kinetic energy that favors delocali
tion. This competition is captured in a canonical latti
model for correlated electrons, namely, the half-filled Hu
bard model.12 On a lattice, the competition between the ele
tron kinetic energy~quantified by a band widthW) and the
intra-atomic energy of two electrons with antiparallel sp
on a given site~interaction strengthU) may open a gap in
the electronic energy spectrum leading to the formation
the so-called lower and upper Hubbard bands. At low val
of U/W, the Hubbard model leads to a metallic state. At h
values ofU/W, the stable state is insulating. In this pictu
magnetic interactions are not taken into account and the
tallic and insulating phases are paramagnetic. Magnetic
teractions may provide a driving force for moments in t
insulating state to long-range order, leading to a thermo
namics transformation and an antiferromagnetic insula
state below the Ne´el temperature.13 A solution to the Hub-
bard model across the entire range of interaction stren
exists only in one dimension.13 The Mott transition in one
dimension with long-range hopping has the attributes o
continuous transition with a continuous opening of the g
up to some finite value of U.13 The Hubbard model in infinite
dimension has been studied intensively since in that limit
results of mean-field approximations become exact.13 In spite
of this, a definite scenario for the Mott transition in dime
sions higher than one has not been established yet.13–23
0163-1829/2004/69~15!/155101~7!/$22.50 69 1551
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Correlated electrons in three-dimensional lattices have
ceived considerably less attention than their one-dimensio
~1D! and infinite dimension counterparts. There are indi
tions that in the presence of long-range Coulomb inter
tions, the zero temperature Mott transition appears to be
continuous in two and three dimensions.24 Recently, we
demonstrated the usefulness of the restricted path-inte
molecular dynamics~RPIMD! method to the study of
strongly correlated electrons on lattices.25 This recent quan-
tum molecular dynamics method is applicable to the simu
tion of many-fermion systems at finite temperature and
cludes exchange and correlation effects.26–28 The RPIMD
uses a position representation of the electrons and provid
good description of electrons that may change from delo
ized to localized states. We have reported the formation
bound electronic states in a half-filled expanded 3D hyd
genoid body-centered cubic~bcc! lattice at finite
temperature.25 Starting from a metallic state, with correlate
electron plasma character, we observed that bound elect
form upon expansion of the lattice. The bound electrons
spatially localized with their center for the motion of gyr
tion located on ionic positions. The number of bound ele
trons increases monotonously with decreasing density.

In this paper, we study the behavior of correlated el
trons on a lattice by considering Mott’s original argume
based on the expansion of a hydrogenoid lattice. We inve
gate the correlated electronic structure of the expanded
hydrogenoid bcc crystal at several finite temperatures. N
bly, we observe that increasing temperature at constant
sity diminishes the weight of the conduction electrons a
favors bound states on the lattice sites.

In Sec. II, we present in some details the RPIMD meth
and the 3D bcc hydrogenoid lattice model. The results
isothermal dilation of the crystal at several temperatures
reported and discussed in Sec. III. The paper is conclu
with a summary in Sec. IV.

II. MODEL AND METHOD

We use a recent quantum molecular dynamics method
plicable to the simulation of many-fermion systems at fin
©2004 The American Physical Society01-1
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KI-DONG OH AND P. A. DEYMIER PHYSICAL REVIEW B69, 155101 ~2004!
temperature including correlation effects. The RPIM
method was introduced elsewhere.26–28 This method makes
use of ~a! the discretized path integral representation
quantum particles as closed necklaces ofP classical particles
~beads or time slices in the path representation! with quan-
tum exchange treated through crosslinking of t
necklaces,29 ~b! the nonlocality of crosslinking along th
necklaces,30 ~c! the restricted path integral31 to resolve the
problem of negative weights to the partition function due
exchange of indistinguishable particles.

We consider a rigid lattice of hydrogenoid ions interacti
with an assembly of unpolarized electrons. This system
modeled with the classical Hamiltonian26,27

H5 (
k51

Nel

(
i 51

P
1

2
m* ~ ṙ i

(k)!21(
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(
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P
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Herem* is an arbitrary mass (m* 51 a.u.) defining an arti-
ficial kinetic energy for the dynamics of the electron nec
lace beads. The positions of the beads and of the ions
indicated byr and R, respectively. The second term in E
~1! accounts for the electron-electron Coulomb interactio
The third term is the electron-ion potential energy. The io
electron pseudopotential is denotedVps and we use an empt
core local pseudopotential26,27 with a core radiusRc . The
fourth term is the effective harmonic potential for disti
guishable quantum particles.32 The cyclic condition on the
summation over the beads is denoted by an asterisk. Fin
the fifth term is an exchange potential for electron with ide
tical spin s5↑ or ↓. The functionu i j

1 ensures the path re
striction by taking on the values 1 and 0 for paths with po
tive and negative det@Eij#. All the exchange effects ar
included in the matrix@Ei j # which elements are defined a
Ei j

kl5Ai j
kl/Ai j

kk with Ai j
kl5exp@2 meP/2b\2 (r i

(k)2r j
( l ))2#,

wherek and l label the electrons. The indicesi and j label
beads along necklaces.me stands for the electron mass an
b51/kBT.

The cubic simulation cell containsNel554 ions arranged
on a bcc lattice~27 unit cells! and 54 nonpolarized electron
(Ns5↑527 andNs5↓527). Periodic boundary conditions ar
applied. The long-range Coulomb potentials in Eq.~1! are
replaced by a shorter-range screened potential of the f
(1/r )erfc(hr) where h50.382 Å21. ‘‘erfc’’ stands for the
complementary error function. The choice of erfc as
screening function is inspired by the Ewald method.33 Here
we limit the calculation of the potential to the positio
dependent real-space part of the Ewald sum. With the cho
value for h, the reciprocal-space part of the Ewald sum
negligible compared to the real-space parts.34 For a fixed
value of h, the point self-energy in the Ewald sum is ind
pendent of density and is not presented here. All potent
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are truncated at half the length of the edge of the simula
cell. The RPIMD is amenable to parallelization over theP
beads.

We solve the equations of motion with a leap-frog sche
and an integration time step of 2.8310216 s. For the
electron-ion pseudopotential, we employ a core radiusRc
51.5 Å. Rc is large enough not to require higher correctio
to Trotter formula for path-integral simulations.35 As will be
seen in the result section,Rc is small enough to lead to a
significant electronic density inside the ionic core providi
the on-site electron-electron interaction necessary to obs
the formation of bound states. We useP5400 beads for the
electron necklaces in order to ensure convergence of the
integral at the temperatures and densities studied.26,27 We
eliminate all phonons by holding the ions at fixed position
The temperature of the electrons is maintained at h
enough values such that for the high densities paramagn
metal state studied the electrons are in a nearly degene
regime.26,27 It is known that the simulation of stiff harmoni
chains suffers from nonergodicity. To alleviate this proble
we thermostat the electron degrees of freedom by coup
every group of 54 beads~electrons! with identical label ‘‘i ’’
to a Nose´-Hoover chain of thermostats.36 The chain length is
chosen to be five in order to lead to more randomness in
thermostating process. The first thermostat directly coup
to the electrons has a mass of 100 a.u. and the four o
thermostats have a mass of 10.a.u. We have observed
this way of thermostating the electrons still yields non
godic behavior for highly dilated crystals. To overcome th
difficulty we have coupled each necklace to an Anderse
thermostat.37 Andersen’s thermostat assigns velocities d
tributed according to a Maxwell-Boltzmann distribution to
necklace selected randomly every 50 integration steps.
calculate the kinetic energy with two different estimators.32,38

Note that in the present model, spin flip is not allowe
i.e., the spin state is permanently attached to an elect
Frustration in magnetic ordering will arise from the sm
difference in the distance between first and second nea
neighbors in the bcc lattice compared to the deBroglie wa
length of electrons. Under the conditions of our simulatio
a thermodynamic transition associated with magnetic ord
ing of the entire simulations cell is unlikely. Considering th
spatial extend of bound electrons, the bcc lattice cannot
commodate a periodic antiferromagnetic structure with id
tical spin states on the first and second nearest neighbo
each site. However, the formation of small antiferromagne
clusters is not precluded.

III. RESULTS AND DISCUSSION

We report simulations or series of simulations of the el
tronic structure of the hydrogenoid bcc lattice at several te
peratures with lattice parameter ranging from 5.3 to 13.3
Every simulation uses as starting configuration the fi
equilibrated configuration from a preceding simulation at
ther a lower temperature and identical density or same t
perature but lower or higher density. As a measure of
electron density, we use the electron sphere radius expre
in units of the Bohr radius and defined byr s
1-2



et

ns
ilib
0

na
s
e

ro
ho

o
s

ag
he
i-
p
n
pe

en
b

tr
d
in
. A
n

oi

in
ion
ck-

ng
en-
re

o-

tud-
y
a

-
ion

rly
ns’
a-

c-

glie
are
ly

w
p

e

of

EFFECT OF TEMPERATURE ON THE FORMATION OF . . . PHYSICAL REVIEW B 69, 155101 ~2004!
5@(4/3)p (Nel /V)#21/3, whereV is the volume of the simu-
lation cell. For numerical reasons associated with arithm
limitations on the magnitude of det@E# in Eq. ~1! we could
not simulate expanded systems beyondr s512.41. The total
number of MD integration time steps for the simulatio
ranges from 25 000 for the highest densities where equ
rium is reached fairly rapidly and up to an excess of 200 0
steps at lower density. Because of limits in computatio
resources, each simulation is a sequence of shorter run
approximately 10 000 to 20 000 steps. Consequently, we
timate the standard deviation of the average energies f
the set of individual average energies obtained from the s
runs constituting each simulation.

To verify that our simulations had indeed reached therm
dynamics equilibrium, we simulated a low-density system
at r s511.17, starting from a randomly generated param
netic insulator with only singly occupied lattice sites. T
temperature wasT51000 K. After the system reached equ
librium, structural and thermodynamics properties a
proached those of the expanded systems at the same de
providing evidence that the simulations reported in this pa
correspond to stable thermodynamic equilibrium.

The electron kinetic energies, electron-ion potential
ergy @third term in Eq.~1!# and electron-electron coulom
energy @second term in Eq.~1!# for two temperatures,T
5950 and 1100 K, are presented as functions of the elec
sphere radiusr s in Fig. 1. The kinetic energies calculate
with the two estimators agree well with each other indicat
that ergodicity is satisfied. The kinetic energy is U shaped
high density, the calculated kinetic energy follows the tre
of the unpolarized uniform electron gas.2 As density de-
creases, i.e.,r s increases, the electrons in the hydrogen

FIG. 1. ~a! Average electron kinetic~circles! and electron-ion
potential energy~squares! versus the electron sphere radiusr s at
two temperatures. The open and closed circles are calculated
the energy estimators of Refs. 38 and 32. The solid lines are sim
polynomial fits to serve as guides to the eye. The thin dashed lin
the kinetic energy of the unpolarized electron plasma~Ref. 2!. ~b!
Electron-electron (e-e) Coulomb potential energy as a function
r s .
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lattice deviate from the electron gas behavior. The rise
kinetic energy at low density is associated with the format
of compact electrons, i.e., highly localized electron ne
laces. Figure 1~a! clearly shows that beyondr s510, electron
localization results from a competition between the risi
kinetic energy and the decreasing electron-ion potential
ergy. The compact electrons with high kinetic energy a
localizing inside the core of the ions to minimize their p
tential energy. The electron-electron Coulomb energy@Fig.
1~b!# decays monotonously over the range of densities s
ied. Beyondr s510, the electron-electron potential energ
decreases only slightly~or even appears to have reached
minimum for T51100 K) indicating that the localized elec
trons have effectively excluded other electrons from the
cores.

The formation of compact electronic states is also clea
seen in Fig. 2, where we report the distribution of electro
radius of gyration~RG! at several densities and two temper
tures. The radius of gyration of an electron (k) is calculated
with the following expression:

RG(k)5
1

P
A(

i 51

P

~r i
(k)2 r̄ (k)!2, ~2!

where r̄ (k) is the position of the center of mass of the ele
tron. Parrinello and Rahman.32 have shown that̂ RG2&
5 \2/2me /kBT C. For a free particle,C is equal to 1 and
^RG2& is interpreted as the square of the average de Bro
wavelength for electrons with average momentum squ
mekBT. At high density, the RG distribution takes a near
Gaussian form with a mean RG;4 Å. For T51100 K and
r s56.82, the value ofC is estimated to be;0.45 which is

ith
le
is

FIG. 2. Distributions of electron radius of gyration~see text for
definition! for several densities at two temperatures.
1-3
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KI-DONG OH AND P. A. DEYMIER PHYSICAL REVIEW B69, 155101 ~2004!
nearly half that of a free particle. The electrons have so
free particle character but this value forC reflects some com
pactness due to electron correlation as well as the interac
with the lattice. Upon a decrease in density, compact e
trons form a shoulder in the RG distribution transformi
into a narrow peak centered around RG;2 Å. At fixed den-
sity, the weight of bound states increases as temperature
from 950 to 1100 K. AtT51100 K, the value ofC for the
bound electrons is now one order of magnitude less than
free electron value. This value is comparable to that o
single F center studied by Parrinello and Rahman w
PIMD.32 The compact electrons are representative of bo
states since their center for the motion of gyration is loca
on ionic positions as illustrated by the electron-ion rad
distribution functions~RDF! of Fig. 3.

In Fig. 3~a! we show that at the highest density studi
r s;4.96 decreasing the pseudopotential core radius f
Rc52.2 to 1.5 Å converts our system from a simple meta
an atomic lattice with overlapping atomic wave functions.
a simple metal such as potassium thee-ion RDF exhibits
oscillations that have an inverse phase to the ion-ion RD39

Note that the smaller amplitude of oure-ion RDF is probably
due to the erfc screening of the Coulomb interactions.
Rc52.2 Å, thee-ion RDF shows a minimum atr /r s;1.9
corresponding to the closely related first- and seco
nearest-neighbor distances of the bcc lattice,r /r s51.76 and
2.03, respectively. ForRc51.5 Å, thee-ion RDF fills the ion
core and shows a maximum in phase with the ion-ion d
tances. The minimum nearr /r s51, indicates that the elec
trons occupying atomic sites start to exclude other electro
We have also included in Fig. 3~a! the electron-proton RDF
for a hot dense partially ionized atomic hydrogen fluid th
also shows exclusion outside the atomic radius.40,41 Figure
3~b! demonstrates strong electron localization within the
cores as density decreases. The growing depression at
dius of 1 is evidence for a reduction in the number of itin
ant electrons. A pictorial representation of the spatial
rangement of the localized electrons and of the free carr
within the bcc lattice is given in Fig. 4. This figure provide
information somewhat similar to that of Fig. 3 but supp
ments it by showing that at low density, the lattice is co
posed of separate regions rich in bound electrons and reg
rich in free carriers.

The evolution of the electronic structure of the expand
system at fixed temperature is also clearly seen in the
erosping↑↓ and homosping↑↑ and↓↓ electron-electron RDF
reported in Fig. 5. The pair correlations are between bead
necklaces with the same label, that is, the same time s
along the discretized path representation. At high density,
electron-electron RDF calculated with the RPIMD meth
are characteristic of the uniform electron gas6,26,27 with a
correlation hole in the heterospin RDF and a wid
exchange-correlation hole in the homospin RDF. The inse
Fig. 5, compares our results atr s54.96 with the RDF of the
unpolarized uniform electron gas of Ref. 6 at a similar de
sity calculated with variational Monte Carlo~VMC! and dif-
fusion Monte Carlo~DMC! methods. The agreement is qui
good except near the origin. The RPIMD heterospin R
falls essentially between the VMC and DMC curves for m
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radial distances. At very short distance, the RPIMD h
erospin RDF does not take on the expected nonzero valu
the origin but rapidly changes slope and dives toward 0. T
discretized path integral representation of a quantum par
becomes exact asP→`. In that limit the electron-electron
Coulomb interaction term in Eq.~1!, allows heterospin elec
trons to overlap to some extent. At finiteP, this quantum
effect is lost and the RPIMD method overestimates the C

FIG. 3. ~a! Electron-ion RDF atr s54.96 for several values o
the pseudopotential core radii atT51100 K. The dotted line is the
RDF for potassium (r s55.024) extracted from Ref. 39~inner-core
structure is omitted!. The dashed line is a proton-electron RDF f
the partially ionized hydrogen atomic fluid of Ref. 40 (r s52). ~b!
Electron-ion RDF atT51100 K for several electron densities.
sharpening of the peaks and growing depressions atr /r s;1 and 2.5
indicates electron localization on the ion sites with decreasing d
sity. The inset shows the complete distributions for radii less th
the electron sphere radius.
1-4
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EFFECT OF TEMPERATURE ON THE FORMATION OF . . . PHYSICAL REVIEW B 69, 155101 ~2004!
lomb force between electrons at very short distance. FoP
5400 andr s;5, the RPIMD method does not represent t
electron-electron RDF properly for radial distances sho
than ;0.1 Å. This problem will not affect significantly the
results presented in this paper since most of the simulat
reported here are at low density for whichg↑↓ is very small
at the origin.

As density decreases tor s58.69, the heterospin RDF ex
hibits a shoulder at radial distancesr /r s;0.4. This shoulder
corresponds to doubly occupied lattice sites~i.e., singlet!.
This shoulder converts into a peak for lower densities in
cating further spatial localization of the electrons particip
ing in doubly occupied sites. It is worthy noting that th
number of electrons in double occupancy calculated by in
gratingg↑↓(r ) over the interval 0,r /r s,1 does not amoun
to more than a fraction of an electron. The homospin R
shows also a shoulder atr /r s;0.7 that results from a non
zero but very small number of doubly occupied triplet sit
Upon dilation of the lattice the increasing number of sing
occupied lattice sites yields a sharper peaks in the RDF
compassing both the nearest-neighbor distance of the
lattice and the second-nearest-neighbor distance.

The transfer of spectral weight from the free carrier sta
to the bound electron states as temperature is increase

FIG. 4. Snapshot projections of the position of the nodes of
the electron necklaces on the~100! plane of the bcc lattice for two
densities. The temperature isT51100 K. The electron sphere ra
dius is ~a! r s57.44 and~b! r s511.17.
15510
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fixed density (r s58.69) is unambiguously confirmed in Fig
6. It is worthy noting that there exists a similarity betwe
the distribution atT51300 K, r s58.69 and the distribution
of Fig. 2 at T5950 K andr s59.93. This similarity shows
that the relevant energy scale for the formation of bou
states upon expansion is the Fermi temperatureTF . Indeed,
despite their different temperatures and densities, these
systems have very similar values ofT/TF . The inset of Fig.
6 summarizes the spectral reweighing between unbound
bound states. We calculated the number of bound elect
by integrating a Gaussian fit to the first peak in the distrib
tion of RG. The number of free carriers is the differen
between the total number of electrons~i.e., 54! and the num-
ber of bound electrons. At a constant density, the % of
bound electron decreases asT increases. This implies that fo
r s58.69, the single particle density of state at the Fer
energy is nonzero and that it decreases as temperatur
creases.

Our observations are compatible with the predictions
the Hubbard model concerning the single particle excitat
spectrum~SPES!.22,42 Upon increase ofU/W ~our simula-
tions correspond to a fixedU and aW decreasing with in-
creasingr s) from the paramagnetic metal, the SPES dev
ops a central peak flanked by Mott’s sidebands. The cen
peak is located at the Fermi liquid value. At equilibrium
electrons occupying the central peak are free carriers, w
electrons occupying states in the lower sideband exh

ll

FIG. 5. Heterospin~solid line! and homospin~dotted line!
electron-electron RDF for several densities. The temperatureT
51100 K. The inset compares the RPIMD RDF for the hydr
genoid lattice atr s54.96 ~solid line! with the variational~dotted
line! and diffusion Monte Carlo~dashed line! results of Ref. 6 for
an unpolarized uniform electron gas atr s55. The inset shows tha
quantum effects are overlooked by the discrete path integral
proximation (P5400) only at very short radii. Because of the fini
P, the heterospin RDF changes slope below approximatelyr /r s

;0.1 and decreases to zero in contrast to the expected non
value at the origin.
1-5
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KI-DONG OH AND P. A. DEYMIER PHYSICAL REVIEW B69, 155101 ~2004!
more boundlike behavior. Rare doubly occupied sites co
spond to the electrons in the upper sideband. As tempera
increases the spectral weight of the free-carrier central p
diminishes rapidly.15,22,42This results in a transfer of spectr
weight to the side bands.

Finally, we report in Fig. 7 the calculated number
bound and unbound electrons at the three temperatures~950,
1100, and 1900 K! at which density was varied systema
cally over a wide range of values. The number of bou
electrons is estimated from the first peak in the distributio
of RG as mentioned before. At all three temperatures,
number of bound electrons increases with decreasing den
i.e., increasingr s . Independently of temperature, at least
the level of resolution of our calculations, bound electro
states appear atr s;6 corresponding to an electron dens
n56.7531023 Å 23. This density is in good agreement wit
Mott’s criterion for the formation of bound states43 n1/3r H
.0.4.

The RPIMD method did not allow us to expand the b
lattice beyondr s;12. However, we can estimate the dens
at which all the electrons ought to be localized on ionic sit
that is, the density for completion of the transition from
paramagnetic metal to a paramagnetic insulator. For this
fit the calculated number of bound electrons at the three t
peratures to monotonously increasing functions that re
the value 0 atr s56.2. The choice of a continuous functio
for this fit is motivated by the observation of Kohn and M
jumdar that the transition from unbound to bound states
noninteracting Fermi gas occurs with continuous change
the properties.44 These authors conclude, however, that

FIG. 6. Distributions of electron radius of gyration for a crys
with r s58.69 at several temperatures. The inset reports the %
electrons in bound states~closed circle! and of free carriers~open
circle! as a function of temperature.
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properties may not vary continuously if one has strong int
action between the electrons as is the case here. The ins
Fig. 7 summarizes our findings in the form of a temperatu
density phase diagram. This diagram shows two ph
boundaries. A boundary, nearly independent of temperat
separates the paramagnetic metallic~PM! state from the re-
gion where bound and free carriers coexist. The sec
boundary separates the coexistence region and the para
netic insulting~PI! state. The width of the coexistence regio
narrows as temperature increases suggesting that the tr
tion may be of first order45 in accord with several studies o
the Hubbard model.17–22 Indeed, a cross over transitio
would imply that the width of the coexistence region i
creases with temperature.13 The temperature dependence
the phase boundaries in ourT versusr s phase diagram show
similar trends observed inT versusU/W phase diagrams fo
the Hubbard model in infinite dimensions;20,21namely, a sig-
nificantly weaker temperature dependence of the P
coexistence region boundary compared to the boundary
tween the PI and the coexistence regions.

IV. CONCLUSIONS

We have reported a study of the correlated electro
structure of an expanded 3D hydrogenoid bcc lattice. T
electronic structure is modeled within the frame of t
RPIMD method that enables the simulation of quantum p
ticles with exchange and correlation effects at finite tempe
ture. The electronic structure of the bcc lattice is charac
ized via electron-ion, electron-electron RDF, as well
distributions of the electron’s radius of gyration. The resu
presented in this paper suggest that the transition from
paramagnetic metal, with no bound states, to a paramagn

of

FIG. 7. Number of bound electrons~filled symbols! and un-
bound electrons~open symbols! at three temperatures (T5950 K,
circles; T51100 K, triangles; andT51900 K, squares!. r s* corre-
sponds to the density at which all the electrons ought to have tr
formed to bound states and is used to construct the tempera
density phase diagram in the inset. PM and PI stand
paramagnetic metal and paramagnetic insulator, respectively.
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insulator, with no free carriers, may possess a first-or
character. In qualitative accord with density-functional c
culations of hydrogen plasma,46 path-integral Monte Carlo
simulations,47 and variational density matrix method47 for
hot, dense hydrogen, we find that bound electronic st
begin to appear as the density of the hydrogenoid lattic
.
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in

15510
r
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es
is

lowered and temperature is raised. This observation is
encouraging success for the RPIMD simulation of stron
correlated electron systems. We anticipate that improvem
in the method and its extension to include for instan
phonons will provide a tool for shedding new light on sy
tems with many interacting electrons.
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