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Abstract
We introduce a formalism that enables the calculation of elastic wave functions supported by
parallel arrays of coupled one-dimensional elastic waveguides. These wave functions are
expressed as tensor products of a spinor part associated with directional degrees of freedom and
an orbital angular momentum (OAM) part associated with the phase of the coupled waveguides.
We demonstrate that one can construct wave functions as a superposition of these elastic waves,
which cannot be written as a tensor product of a spinor part and an OAM part. These elastic
wave functions are not separable in the tensor product Hilbert space of directional and OAM
subspaces. We show that we can construct maximally nonseparable states that are similar to Bell
states.

Keywords: elastic waves, orbital angular momentum, nonseparability, phononics

(Some figures may appear in colour only in the online journal)

1. Introduction

The notion of classical ‘entanglement’ or, in now more
generally accepted words, the notion of classical nonsepar-
ability [1–3] has been receiving a lot of attention from the
theoretical and experimental point of views in the field of
optics. Degrees of freedom of photon states that span dif-
ferent Hilbert spaces can be made to interact in a way that
leads to local correlations. For instance, laser beams with
spin angular momentum and orbital angular momentum
(OAM) can be prepared in a nonseparable state [4–11].
Nonseparability of OAM, polarization and radial degrees of
freedom of a beam of light has also been achieved [12].
Photonic schemes have also been employed to correlate
polarization with propagation direction [13, 14]. To date, the
nonseparability between different degrees of freedom has
been primarily investigated and demonstrated using laser
beams. However, the notion of classical nonseparability is
not limited to the optical field but can be applied to other
types of excitations such as, for instance, neutron beams
[15]. It is the goal of the current paper to demonstrate

theoretically, the possibility of achieving correlations
between propagation direction and OAM degrees of freedom
of elastic waves. More specifically, we show that the elastic
waves supported by coupled one-dimensional (1D) elastic
waveguides can be described in the tensor product Hilbert
space of the direction of propagation and OAM Hilbert
subspaces. More importantly, we show that we can construct
superpositions of elastic waves in the tensor product space
that cannot be factored into tensor products of waves in the
subspaces. This signature of nonseparability is completely
analogous to that observed in the case of electromagnetic
waves. In section 2 of this paper, we present the mathema-
tical formalism that enables us to establish the analogy
between superposition of states of elastic waves in multiple
coupled waveguide systems and locally correlated multi-
degree of freedom systems. Results derived from the model
are reported in section 3. We also address the relationship
between separability and nonseparability with the notion of
measurement of elastic wave transmission amplitudes in
section 4. Finally, conclusions regarding the generalization
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of the notion of wave nonseparability to elastic waves are
drawn in section 5.

2. Model and method

We consider a system constituted of N 1D waveguides cou-
pled elastically along their length. The propagation of elastic
modes is limited to longitudinal modes along the waveguides
in the long wavelength limit i.e., the continuum limit. The
equations of motion can be cast into the following compact
form:

H I M u. 0. 1N N N N N
2

1a+ =´ ´ ´{ } ( )

This system is schematically illustrated in figure 1.
In equation (1), the dynamical differential operator,

H ,
t x

2
2

2

2

2b= -¶
¶

¶
¶

models the propagation of elastic waves in
the direction x along the waveguides. The parameter b is
proportional to the speed of sound in the medium constituting
the waveguides implying that the waveguides are constituted
of the same material. The parameter 2a characterizes the
strength of the elastic coupling between the waveguides (here
we consider that the strength is the same for all coupled
waveguides). uN 1´ is a vector which components,
u i N, 1, ,i = represent the displacement of the ith wave-
guide. In equation (1), IN N´ is the N N´ identity matrix and
the coupling matrix operator MN N´ describes the elastic
coupling between waveguides. For instance, in the case of N
parallel waveguides in a closed ring arrangement with first
neighbor coupling, the coupling matrix is written as the
Laplacian matrix with periodic boundary conditions:

M

2 1 0 0 0 0 1
1 2 1 0 0 0 0

0 1 2 1 0 0 0
. . . . . . . .
0 0 0 0 1 2 1
1 0 0 0 0 1 2

. 2N N =

- ¼ -
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Equation (1) takes the form of a generalized Klein–Gordon
(KG) equation. Dirac factorization of the KG equation

introduces the notion of the square root of the operator
H I M. .N N N N

2a+´ ´{ } In that factorization, one attempts to
represent the dynamics of the system in terms of first deri-
vatives with respect to time, t, and position along the wave-
guides, x. This factorization reveals the degrees of freedom
associated with the direction of propagation of elastic waves,
namely the positive or negative directions along the wave-
guide. There are two possible Dirac equations [16]:

U
t

U
x

U M

i

i 0. 3

N N x N N y

N N N N x N2 2 2 1

s b s

a s

Ä
¶
¶

+ Ä -
¶
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 Ä Y =
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In equation (3), UN N´ and U N N2 2´ are antidiagonal matrices

with unit elements. 0 1
1 0xs = ⎜ ⎟

⎛
⎝

⎞
⎠ and 0 i

i 0ys =
-

⎜ ⎟
⎛
⎝

⎞
⎠ are two of

the Pauli matrices. N2 1Y ´ is a 2N dimensional vector which
represents the modes of vibration of the N waveguides pro-
jected in the two possible directions of propagation. MN N´
is the square root of the coupling matrix. The square root of a
matrix is not unique but we will show later that we can pick
any form without loss of generality in our search for the
elastic modes of the system.

We now choose components of the N2 1Y ´ vector in the
form of plane waves a e eI I

kx ti iy = w with I N1, , 2 .= ¼ k and
w are a wave number and an angular frequency, respectively.
Inserting this form in equation (3) and multiplying all terms
on the left by U N N2 2´ leads to the Eigen value equation:

A kB C a 0, 4N N N N N N N2 2 2 2 2 2 2 1w b a+  =´ ´ ´ ´{ } ( )

where

A I I a, 5N N N N2 2 2 2= Ä´ ´ ´ ( )

B I b, 5N N N N z2 2 s= Ä -´ ´ ( ) ( )

C M c. 5N N N N x2 2 s= Ä´ ´ ( )

1 0
0 1zs =

-
⎜ ⎟
⎛
⎝

⎞
⎠ is the third Pauli matrix and a N2 1´ is a 2N

dimensional vector whose components are the amplitudes a .I

Figure 1. Schematic illustration of elastically coupled one-dimensional waveguides for N=5. The angular separation between the
waveguides is N2 .p/

2
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Equation (4) can be rewritten as a linear combination of
tensor products of N N´ and 2 2´ matrix operators:

I I k M a 0.
6

N N z N N x N2 2 2 1w b s a sÄ -  Ä =´ ´ ´ ´{ [ ] }
( )

This form suggests we seek solutions in the form of tensor
products:

a E s . 7N N2 1 1 2 1= Ä´ ´ ´ ( )

The degrees of freedom associated with EN 1´ span an N
dimensional Hilbert subspace. The degrees of freedom asso-
ciated with s2 1´ span a two-dimensional space. In the form of
equation (7), the degrees of freedom associated with the
coupling of the waveguides and those associated with the
propagation along the waveguides are separable into a tensor
product and span the tensor product space of the two
subspaces.

Replacing a N2 1´ by equation (7) in equation (6) yields:

I E I k s

M E s 0. 8

N N N z

N N N x

1 2 2 2 1

1 2 1

w b s

a s

Ä -

 Ä =
´ ´ ´ ´

´ ´ ´

{( ) ([ ] )
( ) ( )} ( )

If we choose EN 1´ to be an Eigen vector, e ,n of the matrix
MN N´ with eigen value nl then equation (8) reduces to:

e I k s 0. 9n z n x2 2 2 1w b s al sÄ -  =´ ´{([ ] ) } ( )

For non-trivial eigen vectors e ,n the problem in the space of
the directions of propagation reduces to finding solutions of

I k s 0 10z n x2 2 2 1w b s al s-  =´ ´([ ] ) ( )

In obtaining equation (9), we have also used the fact that en is
an eigen vector of IN N´ with eigen value 1. Equation (9) is the
1D Dirac equation for an elastic system which solutions, s ,2 1´
have the properties of Dirac spinors [16–19]. The components
s1 and s2 of the spinor s2 1´ represent the amplitude of the
elastic waves in the positive and negative directions,
respectively.

We also need to note that the eigen vectors of MN N´ are
also the eigen vectors of the coupling matrix MN N´ itself.
Also, the eigen values of MN N´ are .n

2l These properties
indicate that we do not have to determine the square root of
the coupling matrix to find the solutions a .N2 1´ One only
needs to calculate the eigen vectors and the eigen values of
the coupling matrix. Hence, the non-uniqueness of MN N´
does not introduce difficulties in determining the elastic
modes of the coupled system in the Dirac representation.

In the case of a coupling matrix, M ,N N´ given by
equation (2), the eigen values and complex eigen vectors with
n N0,1, , 1= ¼ - are obtained as [20]:

n

N
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The real eigen vectors are:
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For instance, three coupled chains lead to two eigen values
00

2l = and 3.1
2l = The first eigen value is not degenerate but

the later eigen value is doubly degenerate. In the case of four
waveguides, we have 0,0

2l = 21
2l = and 4.3

2l = The first
and third modes are not degenerate. The second mode is
doubly degenerate. There are three distinct eigen values for
five coupled chains with only the 00

2l = being non-
degenerate. Systems with different odd and even number of
chains N possess modes with different degeneracy.

The operator M ,N N´ its eigen values and eigen vectors
are consistent with the notion of OAM of elastic waves
propagating along the coupled waveguides. The components
of the eigen vectors depend on the angular position along the
coupled waveguides ring arrangement. The elastic waves
propagating in the coupled waveguide system exhibit helical

Figure 2. Schematic illustration of the band structure for an array of
nine waveguides. The four bands with a cut off frequency are doubly
degenerate. We have taken 1b = rad s−1 and 1a = rad s−1. The
wave number is in units of m 1- and the frequency is in units of rad s−1.
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phase fronts. The various OAM eigen vectors include
monopolar, dipolar, quadrupolar, etc modes.

3. Results

Equation (10) can now be solved for a given .nl In matrix
form it becomes:

k
k

s
s 0. 13n n

n n

1

2

w b al
al w b
- 

 +
=

⎛
⎝⎜

⎞
⎠⎟( ) ( )

This eigen equation gives the dispersion relation n
2w =

k n
2 2b al+( ) ( ) (see figure 2) and the following eigen vectors

projected into the space of directions of propagation:

s s
k

k
. 14

n

n
2 1 0

w b

w b
=

+

 -
´

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ( )

Note that this dispersion relation support both negative and
positive frequency solutions. In equation (14), s0 is a complex
constant. The amplitudes in the positive and negative direc-
tions along the waveguides are not independent unless n 0.=
When 0,0

2l = propagation along the two directions decouple
and the dispersion relations reduces to that of a homogeneous
medium, namely k.w b=  For n 0,¹ the dispersion relation
shows a cut off frequency which depends on the eigen value
of the OAM degree of freedom. The amplitude in the two
possible directions of propagation are dependent on the wave
number, k. These correspond physically to quasistanding
waves with full standing wave character for k=0 and full
traveling character for k . ¥

For a degenerate band, the complete solution for the
elastic field in the coupled structure is now given by
(equation (7)):
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Since equation (3) is linear, any superposition of modes is
also a solution of equation (3). Also as the system is doubly
degenerate in momentum space, one can for instance con-
struct a superposition of two waves with the same frequency
but positive and negative wave numbers for a doubly
degenerate band n:

N

n

N

n N
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s
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k
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In this superposition, both the eigen vectors of the OAM
degree of freedom and the spinors are different. This super-
position of states cannot be written in the form of a tensor
product of one OAM eigen vector, DN 1´ and one spinor, s .2 1¢́
If that were the case, we could say that:

D s e ’ e ’ , 17N N
k x t

2 1 1 2 1
i iY = Ä ¢ w

´ ´ ´ ( )

where k¢ and w¢ are some wave number and frequency. From
equations (17) and (16) it is clear that one must have .nw w¢ =
Furthermore, equating the ratio of two successive odd and even
components with index J of the tensor product in equation (17)
and of the wave function given by equation (16) yields:

s

s

e e

e e
18

kx kx

kx kx

i i

i i
1

2

g g
d d

+
+

=
¢
¢

+ - -

+ - -
( )

with kcos ,nJ

N n
2g w b= +p+ ksin ,nJ

N n
2g w b= -p-

kcos ,nJ

N n
2d w b= -p+ and ksin .nJ

N n
2d w b= +p- Here

we have taken the+spinor component of the  in
equation (16). Equation (18) can be reformulated as:

P Qe e 0, 19kx kxi i+ = ( )

where P s s2 1g d= ¢ - ¢+ + and Q s s2 1g d= ¢ - ¢- - are real
quantities.

Equation (19) must be satisfied for all x and, in particular,
for x 0.= At the origin, we have P Q= - which when
inserted into equation (19) results in P kx2i sin 0.- =( ) The
condition for separability of N2 1Y ´ into a tensor product of a
OAM eigen vector and a spinor requires k 0.= This corre-
sponds to pure standing waves. All other superpositions of
quasistanding waves of the form given by equation (16) are not
separable. These superpositions span the tensor product Hilbert
space of the N-dimensional OAM subspace and the two-
dimensional direction of propagation subspace but cannot be
written as tensor products in the 2N-dimensional Hilbert space.
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We now denote by en
1( ) and en

2( ) the wave functions asso-
ciated with the OAM degree of freedom for a doubly degenerate

band n. We also denote by f ek
k

k
kx1

2
i

n

n

n
=

w

w b

w b

+

 -( ) and

f e ,k
k

k
kx1

2
i

n

n

n
=

w

w b

w b-
-

 +
-( ) the normalized spinorial part of

the wave functions associated with the directional degrees of
freedom. We can form a basis for the states of the coupled elastic
waveguides in the form of the four tensor products:

e f ;n k1
1f = Ä( ) e f ;n k2

1f = Ä -
( ) e f ;n k3

2f = Ä( )
4f =

e f .n k
2 Ä -

( ) In that basis the state giving by equation (16)
reads:

s e f s e f
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e 2 e . 20
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t
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2 1 0
1

0
2

i
0 1 0 4
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w

w f f

Y = Ä + Ä

´ = +w w

´
-

-
-

( )
( ) ( )

( ) ( ) ( ) ( )

( ) ( )

It is clear that this state cannot be written as a tensor product
in the basis , , , .1 2 3 4f f f f{ } Again, we can say that this state
is nonseparable. To quantify the degree of nonseparability of
this state, we can calculate the ‘entanglement entropy’ [21].
Here we use the term ‘entanglement’ in quotation marks to
stress the classical nature of nonseparability. First, we nor-
malize the wave function of equation (20):

s s
s s

1
e . 21

k k

k k t

0
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0 1 0 4
i nf fY =

+
+ w
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( ) ( )

In obtaining the normalizing factor in equation (21) we have used
the fact that e f e f e fi j n

i
k n

j
k n

i
k* *f f = Ä Ä = Ä  ( )( ) ( )( ) ( ) ( )

e f e e f fn
i

k n
i

n
i

k k
* * * *Ä = Ä  ( ) ( ) ( )( ) ( ) ( ) and that the vectors en

i( )

(equation (12b)) form an orthonormal basis. We also note that the
amplitude of f k is real.

We can also define the basis , , ,1 2 3 4f f f f{ } in terms of

the 4 1´ vectors
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We construct the

density matrix associated with that state as the outer product
of Ỹ and its complex conjugate :*Ỹ
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In equation (22), we have used the notation sOAMr - to
highlight that the density of states is expressed in the tensor
product Hilbert space of the directional and OAM subspaces.
The reduced density of state in the Hilbert space of OAM is
obtained by taking the partial trace of the density matrix over
the directional states:

s s
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The entropy of ‘entanglement’ is now obtained from the
relation:

S Tr ln . 24OAM OAM OAMr r r= -( ) ( ) ( )

Using equation (23), we get:
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We can also calculate the entropy of ‘entanglement’ by cal-
culating the reduced density matrix in the Hilbert space of
directions, .sr The two entropies are equal.

We note that if one chooses s 1k
0 =( ) and s 1,k

0 =-( )

S ln2.OAMr =( ) The state Ỹ (equation (21)) is maximally

‘entangled.’ The state e t1

2 1 4
i nf fY = + w˜ ( ) is equivalent to

a Bell state [20].
By controlling the amplitude and phase of s k

0
( ) and s ,k

0
-( )

one can control the degree of nonseparability of the Ỹ as well
as generate other Bell states.

Other examples of nonseparable states can also be obtained
by considering superpositions of modes in two different bands
(each possessing a cut off frequency), n and n ,¢ with the same
frequency n nw w= ¢ but different wave numbers, k and k :¢
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In this case the frequency is limited to the range defined by the
intersection of the frequency range of the two bands, n and n .¢

4. Discussion

Let us discuss the meaning of the notions of separability and
nonseparability of elastic states in the context of manipulation
of elastic states and measurement. For practical reasons, we
would have to work with a finite length array of coupled
elastic waveguides. The modes will now be discrete in the
directional degrees of freedom. Let us consider a separable
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state of the form e s e e .n
kx t

2 1
i iÄ w

´ This mode can be excited
with N transducers attached to the input ends of the N
waveguides and connected to N phase-locked signal gen-
erators to excite the appropriate OAM mode. The frequency is
used to control the spinor state. One can measure the direc-
tional degrees of freedom independently of the OAM degrees
of freedom. The spinor part of the wave function s2 1´ is the
same for each waveguide. The components of s2 1´ which
represent a quasistanding wave can be quantified by mea-
suring the transmission coefficient (normalized transmitted
amplitude) along any one of the waveguides. It is then pos-
sible to operate on the OAM without affecting the spinor
state. For instance, one could apply a rotation that permutes
cyclically the components of en by changing the phase of the
signal generators. Such an operation could be quantified by
measuring the phase of the transmission amplitude at the
output end of the waveguides. In contrast, a nonseparable
state such as that given by equation (26), can be excited by
applying a superposition of signals on the transducers with
the appropriate phase, amplitude and frequency relations.
However, because this state is not separable, measurements of
transmission amplitude and phases along each waveguide
cannot be separated into independent spinor and OAM parts.
Any operation such as the application of a rotation to the
OAM degrees of freedom will result in a change in the
spinorial character of every waveguide.

5. Conclusions

The present work shows that the state of elastic waves sup-
ported by a parallel array of N elastically coupled waveguides
can be characterized by two types of degrees of freedom,
namely an OAM degree of freedom spanning a N-dimen-
sional subspace and the direction of propagation spanning a
two-dimensional subspace. The states of elastic waves in this
system are spanning the tensor product Hilbert space of these
two subspaces. It is possible to construct linear combinations
of these states that cannot be expressed as a tensor product in
the larger Hilbert space. These states are said to be non-
separable and are therefore locally correlated. Here we have
considered an array of waveguides that form a ring-like
arrangement. The mathematical framework developed in the
present work is general and can be applied to any other
arrangement of the coupled waveguides. The arrangement
will change the form of the coupling matrix and therefore the
eigen values and eigen vectors in the N-dimensional sub-
space. The direction of propagation degrees of freedom will
remain unchanged. The overall conclusion regarding the
existence of nonseparable superpositions of elastic states will
not be affected by the details of the arrangements. Further-
more, fully two-dimensional arrays of waveguides such as
concentric ring arrangements will lead to the introduction of
another degree of freedom related to the position of the
waveguide (e.g., radial position with respect to the origin).
One can anticipate the possibility of creating elastic beams
along this type of array with correlated directional/OAM and
radial position degrees of freedom. The ability to produce

light beams supporting correlated OAM/polarization/radial
degrees of freedom has allowed the development of useful
techniques with applications to photonic-based quantum
information science. The extension of the notion of non-
separability to elastic waves and the demonstration of the
analogy between elastic wave propagation and quantum
mechanics opens unique opportunities in the emerging field
of phononics.
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