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Abstract. The electronic properties of comb structures composed of one-dimensional atomic
wires of alkali elements are studied. The wires and network of wires are assumed to be formed
either on substrates or through networks of metal filled nanotubes. A tight-binding model is used
to model the electronic structure of the wires assuming that the atoms are constrained by the
substrate or nanotubes to separations exceeding their equilibrium distance. The binding between
side wires and the main linear backbone in the comb network opens gaps in the density of states.
The band structure of the periodic combs varies significantly with the number of atoms in the
side wires as well as the periodicity of the side wires along the backbone. For some specific
geometries, complete band gaps may be opened about the Fermi level. Finite combs may be
designed to produce devices with electronic properties similar to those of the periodic systems
and, in particular, with stop bands in their transmission spectrum.

1. Introduction

Nanowires are of great interest from an application point of view. Of particular technological
and theoretical interest are nanowires composed of lines of individual atoms that may possess
peculiar properties. As a result of recent progress in atom manipulation technology, it is
now possible to place individual atoms on substrates by using a scanning tunnel microscope
(STM) tip as tweezers. A STM permits; the fabrication of structures atom by atom such
as lines of Xe on Ni substrates [1], the deposit of nanometre-size gold structures on metal
substrates [2] or manipulation of individual atoms on a Si surface [3]. These advances
suggest that with a STM it is becoming possible to place metal atoms along a line or a
network of lines on insulating substrates for the fabrication of novel electronic devices. Such
devices would behave like one-dimensional ideal chains or networks of such chains. On
the other hand, the synthesis of concentric carbon nanotubes filled with metals has opened
the way to the design of quasi-one-dimensional conducting nanowires with diameters larger
than 100A [4]. The fabrication of single-wall carbon tubules with diameter of the order of
10 A [5, 6], has opened up the possibility of producing one-dimensional metallic chains as
metal atoms captured in these small tubules form an atomic linear chain. The interaction
between metal atoms and carbon atoms in metal-filled carbon nanotubes is expected to be
strong [7]. In contrast, the nearly insulating boron-nitride tubules [8, 9] would behave like
ideal non-interacting hosts for the captured metal atom [10]. This raises the possibility
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of fabricating ideal one-dimensional metallic chains. The suggestion of carbon-nanotube
connections [11] offers a means of designing networks of one-dimensional metal chains.

On the premise that this technological progress will permit the fabrication of ideal
metal chains and networks of such chains, we have undertaken a theoretical investigation
of the electronic properties of one-dimensional comb structures of alkali elements. These
comb structures are composed of finite one-dimensional chains grafted regularly onto a
backbone consisting of an infinite one-dimensional chain. With regard to the present work,
we shall mention the recent theoretical investigation of a network structure constructed from
a backbone with multiple dangling side branches (MDSB) [12]. The electronic properties
of the MDSB structures are studied within a free-particle model and therefore rely on
the assumption that the composite structure is comprised of infinitesimally thin wires. In
contrast to the MDSB networks, the present paper uses a more realistic tight-binding model.
With this model, we show that; (1) periodic comb structures possess gaps in their electronic
band structure resulting from the periodicity of the system and from the resonance states
of the grafted wires; (2) band gaps may be opened near the Fermi energy by properly
tailoring the geometry of the comb; and (3) the electronic transmission spectrum of finite
comb structures possesses characteristics similar to the band structure of a periodic system
and in particular exhibits stop bands.

In section 2, we present the model and methods used in the calculation of band structures,
density of states and transmission spectra of comb networks. Results for periodic and finite
combs networks are reported and discussed in section 3.

2. Model

The s- and p-level bands of alkali elements overlap a great deal at the equilibrium inter-
atomic spacing. Chains of atoms at the equilibrium spacings are, therefore, best described
within the framework of a nearly free electron model. However, the separation distance
between atoms in chains formed on insulating substrates or in tubules is likely to be
constrained to exceed the equilibrium inter-atomic distance leading to narrower and non-
overlapping s- and p-bands [13]. Furthermore, the substrate and tubule can be expected
to make the alkali atom chain stable against a Peierls distortion and therefore produce
a conducting chain. Under these conditions, we describe the electronic structure of the
constrained chains of alkali elements with a one-dimensional s-band tight-binding model.
The model is limited to interactions between first nearest neighbours. The bulk energy
band is given by:E (k) = —28 coska, wherek is the one-dimensional propagation vector,

B the hopping integral and the lattice parameter. Since the width of the s-band varies
with the separation distance between the atoms, the hopping integral will depend on that
distance. For instance, at a constrained separation Af the width of the sodium s-

band amounts to approximately 1.4 eV [13] yielding a value for the hopping integral of
nearly 0.35 eV. However, for a fixed distance imposed by the substrate or tybwul#,

be considered as a model parameter. Here, we have chosen the atomic level as the origin
of energy and we have neglected the shift integral. The bulk band extends—fagnto

+28. Using this tight-binding model and the formalism of the Green function, we construct
the band structure of a comb network. The Green function of a system composed of finite
chains attached along an infinite one-dimensional backbone can be constructed with the
help of interface response theory (IRT) [14]. The IRT enables us to construct the Green
function of the network structure in terms of its constitutive elements. These elements are
the backbone and the grafted finite chains. The mathematical procedure we follow begins
with the construction of the Green function of an infinite linear chain (backbone) [15]. This
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lattice is divided into periodic unit cells of lengthia and the Green function is expressed
<>

in one-dimensional Fourier space, namedy, with k € [0, 7/Na]. The Green function of

a finite one-dimensional chaig,s, composed of. atoms has been reported in [16]. We call

Ek the Fourier transform of the Green function of a reference system. This reference system
consists of the uncoupled finite chains and infinite chain and is defined in the discrete space

D of the atomic sites of the finite chains and backboﬁe:. is therefore a block diagonal
matrix with blocksgz and ES. We build the network structure by linking the finite chains

to the backbone with the help of a coupling operal%r(see figure 1). For a single finite
chain linked to one atomic site on the backbone, the coupling operator is 2 Ratrix

?:(;1 %) @)

In this matrix, 8, is the hopping integral between an atom at the tip of a finite chain and an
atomic site on the backbone. In all cases presented in this paper, we have ghesgh

The coupling operator is defined in the subspade,of D which contains all the atomic
sites to be bonded. In this interface spakg,the Fourier transform of the Green function

of the network structureZ « is obtained from

8k Ak = Gk 2
where
Ac=1+V-Gr 3)

In the preceding equatior?, is the unit matrix.
The band structure of a periodic network of finite chains grafted onto an infinite one-
dimensional backbone is then calculated by solving for zeros of

deta; = 0. 4

For this calculation, we have to consider the alignment of the Fermi levels of the finite
and infinite chains. Our model is limited to alkali elements for which the bulk band is
half-filled. For these elements, the Fermi energy, lies in the middle of the bulk band.
With our choice for the origin of energies, the Fermi level is therefore also located at zero.
To calculate the band structure of the comb network, we use the Green function of a
finite chain. The finite chain is obtained by cutting a finite segment out of an infinite linear
chain. These cuts introduce variations in the electronic charge in the vicinity of the tip
of the finite chain. Thus, the effect of the cuts would need to be treated self-consistently.

The Green function?s we use, does not include these self-consistent effects. However,
it has been shown that in the case of a tight-binding model of half-filed metallic bands,
the perturbing potential needed to account for self-consistency is very small [17]. Self-
consistency is, therefore, likely not to be critical for our alkali elements.

To gain additional understanding into the band structure of periodic comb networks
we investigate combs containing a finite number of grafted chains. In particular, we can
calculate the electronic density of states of such finite combs. For this we again use the
IRT. We first introduce a reference system composed of a finite humber of non-grafted
finite chains and of an infinite one-dimensional backbone. Using the coupling operator of
equation (1), we link the finite chains to the backbone. Since this system is not periodic,
the Green functions are not expressed in Fourier space anymore. The Green function of the
finite combs takes on forms similar to those given in equations (2) and (3) but with real
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Figure 1. (a) Elementary constituents of the periodic comb. The lattice paramgtand the
hopping integral,8 are assumed identical in the backbone and in the side wires. (b) Periodic
comb structure 8; stands for the coupling hopping integrdl.and N represent the number of
atoms in a side wire and the number of atoms in a unit cell along the backbone, respectively.

space representations of the functions. In this caseZthmtrix is a 2 x 2n matrix where

n is the number of grafted finite chains. The spd¢eencompasses the atomic sites at

the tip of the finite chains and equally spaced atomic sites on the backbone. One can
finally determine the variation in electronic density of states between the finite network and
the reference system from

1d -
An(E) = —;E[Im (In(deta))]. (5)

The symbol Im stands for the imaginary part of the logarithm of the determinant of the

matrix Z The coefficient of transmission of a comb is calculated as the ratio of the
transmitted electronic wave to the incident wave. Following the IRT, the transmitted wave,
u is expressed in terms of the incident oiiepy the relation

u(D) = U(D) — U(M) A-X(MM) V(MM) G°(M D) (6)

where the symbol® and M indicate that the quantities are expressed along the backbone

chain and at the connecting points between the backbone and side chains, respe?é?ively.
is the Green function of the backbone in real space.
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3. Results

3.1. Periodic comb structures

We have calculated the electronic band structure of periodic combs as a function of the
number, L, of atoms in the side wire and the numbat, of atoms in a period along the
backbone. As expected the band structure possedsed.) bands. Combs with side wires
containing an even number of atoms show a band extending across the Fermi level. On the
other hand for odd values df, the side wires open a band gap abéut In this case we

note two different behaviours depending on the paritiofA true band gap exists near the
Fermi energy for an odd value of. An evenN leads to a gap with a flat band at the Fermi
energy. We illustrate this behaviour in the following two particular cases. First, we report
in figure 2 the band structure of a periodic comb network witk= 4 andL = 5 which is
illustrative of an evenV and oddL. Nine bands are identifiable. The upper and the lower
bands originate outside the bulk band of the backbone. These bands are associated with
electronic states at the interface between the finite chain and the backbone, that is, electronic
states located in the space of the bonded atavhsMore importantly, the grafted chains

have opened a series of absolute gaps in the band structure of the network. The widest of
these gaps is a direct band gap centred on the Fermi level; the width of which amounts to
0.78. A flat band remains, however, at the Fermi energy. These latter states correspond to
localized modes inside each grafted side wire.
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Figure 2. Electronic band structure of an infinite periodic comb structure. The side chains
containL = 5 atoms and are spaced eveyy= 4 lattice spacingsg of the backbone.

The band structure of figure 3 is characteristic of a comb structure with arvodd
this caseN = L = 5 and the band structure contains ten bands. Similar to the previous
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Figure 3. Electronic band structure of a periodic comb with=5 andL = 5.

case, one has two bands originating outside the bulk band of the backbone corresponding
to the bonded atoms. The most important feature is the existence of an indirect band gap
centred on the zero of energy (Fermi energy). This band gap extends over an interval of
energy of approximately.Q583.

3.2. Finite comb structures

Additional information concerning the origin of the bands in the electronic band structure of
the periodic combs may be gained by investigating combs constituted of a finite number of
grafted chains. For this, we study the electronic density of states as a function of the number
of grafted side wires. More specifically we have calculated according to equation (5) the
difference in density of stateAn(E) defined as

An(E) = na(E) — ni(E) Q)

wheren,(E) is the density of states of the grafted comb andF), the density of states of
the reference system constituted on an infinite backbone chain and the individual unattached
side wires. With this definition;1(E) is the sum of the density of states of the backbone

1 1

2np \J1— (E/2B)?

and delta peaks corresponding to the discrete electronic states of the unattached side wires.
These delta peaks are not presented in figure 4. Figures 4(a), (b) and (c) illustrate the
variation in density of states for a single grafted chain<(1), n = 2 andn = 10 grafted

chains, respectively. The finite chains are composefl ef 5 atoms spaced every = 4

lattice spacings along the backbone. Since the five discrete levels of an uncoupled finite

no(E) =
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Figure 4. Difference in the density of states of a finite comb structure composed ef£a},

(b) n = 2, and (c)n = 10 grafted chains constituted &f = 5 atoms and the density of states

of a reference system composed of an infinite backbone with individual unattached side wires
(for the sake of simplicity, the delta peaks associated with the discrete states of the unattached
side wires are not represented). Negative values arise when the density of states of the reference
system exceeds the density of states of the comb which is in particular the case within the band
gaps. The spacing between grafted chainsis 4

chain fall within the bulk band of the backbone, the variation in density of states exhibits
five resonances in the form of five well defined peaks. Two electronic states localized at the
bonded atoms lie above and below the backbone band. Another localized state exists at the
Fermi energy. Interaction between subsequently grafted chains mediated by the backbone,
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Figure 5. Transmission spectrum of th€ = 10 finite comb structure discussed in figure 2.

leads to a splitting of the resonant peaks as well as of the localized peaks outside the bulk
band. As one increases the backbone coverage further resonant peaks split in multiple
narrower peaks. Anti-resonant states appear as depreszians: (0) in the density of
states. In the limit of a periodic system, these anti-resonances can be associated with the
band gaps of figure 2. The negative valueim(E) that arise at some energies result from
the fact that at these energies the density of states in the grafted comb is smaller than that in
the reference system, especially in the energy ranges corresponding to the band gaps of the
periodic system It is known that resonating grafted chains introduce zeros of transmission
in the electron transmission spectrum of an infinite backbone [18]. For instance, a single
finite chain of five atoms would forbid transmission within the infinite linear chain at the
energies—/3, —1, 0, 1, +/3 in units of 8.

The transmission spectrum fof = 4, L = 5 andn = 10 is presented in figure 5. We
note that increasing the number of grafted chains to anty 10, already opens up gaps in
the transmission spectrum. Some of these gaps result from a broadening of the depressions
around the zeros of transmission of the infinite chain containing a single grafted finite chain.
Another, near Bg, is associated with the superlattice effect of attaching regularly finite
chains along the backbone. These gaps are the precursors of those observed in the band
structure. It is important to notice that although the band structure (and the variation in
density of states) contains a flat band at the Fermi energyfoe 4 and L = 5, the
transmission spectrum shows no indication of transmission at this energy. This energy
is associated with localized modes inside each side wire which do not penetrate into the
backbone. Owing to the localized character of the states corresponding to the flat band there
is no contribution to the transmission at this energy.
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4. Conclusion

In conclusion, we have found theoretically that network structures of linear chains of alkali
elements, such as periodic comb structures, may exhibit electronic band gaps centred about
the Fermi energy. Such gaps occur for an odd number of atoms in the grafted side wires
independent of the parity of the number of atoms in the period along the backbone. However,
in the case of an even number of atoms in the period, there exists a flat band at the Fermi
energy. Further light is shed into the behaviour of periodic combs by studying the electronic
properties of combs composed of a finite number of side wires. In the case of these finite
combs, we show that the flat band does not contribute to the electronic transmission along
the backbone. Therefore, our theoretical calculations indicate that the combs do not have
to be infinitely periodic but that a reasonably small number of side chains is sufficient to
produce practical devices with a behaviour characteristic of periodic ones.

Finally, we hope to motivate experimental examination of nanowires and nanowire
networks of metallic elements with angstrom-scale diameters for the possibility of electronic
band gaps.
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