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ABSTRACT

Multiscale schemes for transferring information from fine to coarse scales are typically based
on homogenization techniques. Such schemes smooth the fine scale features of the underly-
ing fields, often resulting in the inability to accurately retain the fine scale correlations. In
addition, higher-order statistical moments (beyond mean) of the relevant field variables are
not necessarily preserved. As a superior alternative to averaging homogenization methods, a
wavelet-based scheme for the exchange of information between a reactive and diffusive field in
the context of multiscale reaction-diffusion problems is proposed and analyzed. The scheme is
shown to be efficient in passing information along scales, from fine to coarse, i.e., upscaling as
well as from coarse to fine, i.e., downscaling. It incorporates fine scale statistics (higher-order
moments beyond mean), mainly due to the capability of wavelets to represent fields hierarchi-
cally. Critical to the success of the scheme is the identification of dominant scales containing
the majority of the useful information. The dominant scales in effect specify the coarsest res-
olution possible. The scheme is applied in detail to the analysis of a diffusive system with
a chemically reacting boundary. Reactions are simulated using kinetic Monte Carlo (kMC)
and diffusion is solved by finite differences (FDs). Spatial scale differences are present at the
interface of the kMC sites and the diffusion grid. The computational efficiency of the scheme is
compared to results obtained by averaging homogenization, and to results from a benchmark
scheme that ensures spatial scale parity between kMC and FD.
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1. INTRODUCTION

Multiscale methods have become important com-
putational tools in engineering and scientific appli-
cations [1-14]. They fall under two general cat-
egories, namely, sequential and concurrent. In
sequential multiscale techniques, a set of calcula-
tions performed at lower scales is used to esti-
mate parameters needed in a model at higher scales
[15,16]. In contrast, concurrent multiscale method-
ologies simultaneously couple different simulation
submethods, each at differing levels of scales and
accuracy. The more accurate “finer” submethods
are usually adaptively invoked [17-19] to selec-
tively model temporal and spatial regions that re-
quire a higher-resolution, higher-precision analysis.
The exchange of information between the coarser
and finer methods occurs via coarse-graining pro-
cedures [20-22], where the finer spatial degrees of
freedom are lumped together, resulting in fewer
coarser spatial degrees of freedom, and thereby en-
abling the simulations to address larger spatial di-
mensions and sometimes longer time scales. Typi-
cally, in these coarse-graining procedures, upscaling
(i.e., from fine to coarse) is performed via a simple
or weighted homogenization of the fine-scale data.
Consequently, the flow of information in the oppo-
site direction (downscaling) lacks details specific to
finer scales.

In this work, a new scheme is proposed that pre-
serves the statistics at all scales to reasonable accu-
racy and ensures a seamless coupling of coarse and
corresponding fine spatial degrees of freedom. Its
efficacy as a spatial (up- and down-) scaling tool
is demonstrated on a model reaction-diffusion sys-
tem, given the importance of reaction-diffusion pro-
cesses in controlling the structure and properties of
a wide variety of naturally occurring and man-made
materials [23]. The proposed technique is based
on wavelets—a multiresolution tool that can hierar-
chically separate information at different scales and
also enable identification of dominant scales of any
given signal. The proposed method has some simi-
larities with the heterogeneous multiscale methods
(HMMs) [24] in the sense that both provide up- and
downscaling capabilities and are flexible enough
to include concurrent as well as sequential meth-
ods. The use of wavelets in the present method is
different from that in [25], where homogenization
is achieved by static condensation in scale (as op-
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posed to the usual one, i.e., in space), thus “con-
densing” the fine scale information. The coupling of
the present method with temporal scaling schemes,
as discussed throughout the paper, is also a point
of differentiation when compared to Ref. 25. How-
ever, both methods aim at including the fine scale
information during scaling of information.

Solving the problem of diffusion of chemically re-
active species efficiently requires a multiscale com-
putational approach capable of combining numer-
ical methods that account for the reaction and dif-
fusion processes. A common way to model diffu-
sion is via application of continuum-level finite dif-
ferences (or its variations such as finite volumes or
finite elements) on the diffusion equation, while an
atomistic simulation method is required for an ac-
curate representation of chemical reactions. This
implies that mesoscopic or macroscopic dimensions
are sufficient for the finite difference diffusion grid,
whereas the reaction events have to be handled on
a microscopic/submicroscopic scale as illustrated in
Fig. 1, which depicts the spatial dimensions of the
simulated system required to model species diffu-
sion to and from a reactive surface. The efficient
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FIGURE 1. Schematic of multiscale interfacing between
reactive sites and diffusion grids. R represents the nodes
on the reaction grid, D the nodes on diffusion grids
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coupling of the methods describing the two pro-
cesses is thus a challenging proposition since any al-
gorithm adopted must allow for a lossless two-way
information exchange pathway between the fine re-
action and the coarse diffusion grids; the develop-
ment of such a method forms the basis of this paper.
Furthermore, this work also serves as an important
addition to temporal scaling schemes developed by
the authors [12-14,26] and offers a spatial scaling
procedure that could be used in conjunction with
temporal scaling.

2. REACTION-DIFFUSION SYSTEM

A comprehensive as well as an accurate representa-
tion of the coupled reaction-diffusion phenomenon
requires a microscopic description of both pro-
cesses. While one could adequately approximate
diffusion of chemical species via mesoscale and
macroscale continuum representations (finite differ-
ences, finite elements), a microscopic representation
is still required to accurately account for the reac-
tive processes. Note that the stochastic and micro-
scopic version of the diffusion is also available [27].
Presently, we adopt a deterministic model for diffu-
sion on a macroscopic grid of interest. Thus, a com-
putationally prudent approach would be to couple
the microscopic reaction events to the macroscopic
continuum representation of diffusion. This would
involve a two-way passage of information involving
the variation in species concentration that arises due
to diffusion and reactions. If one were to restrict the
chemically reactive sites to be present only on the
surface, as shown in Fig. 1, the coupling of informa-
tion would only occur between surface reactive sites
and diffusion grids.

In this paper, a reaction-diffusion system as
shown in Fig. 1 is simulated by using a time-
splitting method where the problem is separated
into reaction and diffusion subsystems that are cou-
pled through source terms in a segregated fashion.
Once the two phenomena are simulated at their
characteristic scales, the bridging and exchange of
information between the diffusion and reaction sys-
tems representing the coarse and fine scales, respec-
tively, is accomplished through a multiscale inter-
face. This section presents the details of the mod-
els used for reaction and diffusion processes for the
problems herein, while details on the multiscale in-
terface are provided in Sections 3 and 4.
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2.1 Simulation of Reactions

The chemical processes are treated under the frame-
work of reaction kinetics. First-order reactions are
considered in this work, i.e., the reaction rate is pro-
portional to the concentration of the reactant to its
first power. For reversible reactions, such as

Atz p O
B4 A

the first-order rate constants kg, kpa, each of in-

verse time units, define the reaction kinetics gov-

erned by

% = —kap[A] + kpa [B]
2)
% = —kpa [B] + kap [A]

The stochastic formulation of Eq. (2) yields a kMC
process that is based on the probability distribution
function for reaction events [28] expressed in terms
of the exponential as follows:

P(R=r;) =1— e klsIAt ©)

where P is the probability of the event r; . Here, k
denotes the reaction rate constant, [S] denotes con-
centration, and At is the event’s reaction time de-
mand. Using the time demand, the following equa-
tions for forward (A — B) and backward reaction
(B — A) are obtained:

1

tap = ————In(1—
AB Foan A1 n(l — Ry)
(4a)
1
tpa=————=1In(1 — R
BA Y] ( 2)
if
A=A-1
o> toa 557 (4b)
while if
A=A+1
tpa >tap {B:Btl (4c)

where R; and R, are independent random num-
bers uniformly distributed between zero and unity.
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At any particular instant in the simulation, the re-
action that occurs is the one that requires the least
time [based on Eq. (4a)]. Thus, at every kMC iter-
ation step, two random numbers are generated, i.e.,
Ri, Ry and tsp, tpa are evaluated based on Eq. (4).
The minimum of ¢ 45, tp4 is the time increment as-
sociated with the selected reaction event.

2.2 Simulation of Diffusion

The governing equations for the diffusion of species
ona 2D, z — y spatial domain is

our.yt) _, (ulzy
ot o 0x?

d%u (x,y,1)
+ 5 )(5)

where D denote the diffusion coefficients, consid-
ered constant over the domain, and u denotes con-
centration of the species. A finite difference explicit
Euler scheme, first-order in time and second-order
in space, with fixed time steps and fixed spatial dis-
cretization is used to solve Eq. (5). The stability cri-
teria for the numerical integration process is guar-
anteed when the Courant condition is satisfied, i.e.,

(As)”

At < | —2—
2D

(6)

where At, As denote the time step and minimum
spatial grid size, respectively. In this work, we only
consider the deterministic diffusion of species in the
2D domain. The stochastic version of the diffusion
process yields a Brownian motion process [27], not
examined herein.

As shown in Fig. 1, the spatially 2D model con-
sists of the semi-infinite positive half-space (diffu-
sion domain) with chemical reactions taking place

Reactions events
kMC time steps <Ar>
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at the boundary of the half-space (reaction domain).
At the reactive boundary sites, both A and B are
specified by the values evaluated from the reaction
kinetics during the operation splitting process. The
reflecting boundary condition for the half-space is
implemented in the finite difference scheme by set-
ting the outgoing flux to zero. The other end of the
discretized diffusion problem in the x direction is
sufficiently large so that species do not reach the end
within the time frame considered, thus not necessi-
tating an absorbing boundary condition. Finally, pe-
riodic boundary conditions are employed for the y
direction.

2.3 Scale Disparity in the Reaction-Diffusion
System

In the reaction-diffusion model under considera-
tion, the reactive surface is discretized into fine re-
action and much coarser diffusion grids. Before ev-
ery diffusion step, the species concentration at ev-
ery diffusion site (on the surface) is extracted (via
a multiscale interface) from the underlying reaction
sites, with the variation in concentration on the re-
action sites being dictated by Eq. (4). Between suc-
cessive diffusion steps, many “inner” reaction steps
are carried out since typically the size of a reaction
step (4) is much smaller than the diffusion time step
size as allowed by the Courant’s condition (6). At
the end of a diffusion step, the resultant concen-
tration on the surface diffusion sites are then redis-
tributed to the surface reaction sites, once again via
the multiscale interface; an illustrative description
of the above algorithm is given in the block diagram
of Fig. 2.

The optimal number of inner reaction steps (n,)
between successive diffusion steps can be estimated
based on the ratio of the characteristic diffusion time
Tp and reaction time Tz. There are several ways to

Diffusion

»

no. of steps =R

Up—scalingV time step Ad=R<Ar>|

Down-scaling

FIGURE 2. Block diagram of the multiscale scheme
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estimate Tp, and one of them results in Tp = 1/A4,
where A; denotes the smallest eigenvalue of the dif-
fusion tensor [29]. Another way to estimate T is
based on Eq. (5) and given as

-1
we(olheg) o

where the spatial discretization scales are denoted
by L, and L,.

Tr can be estimated based on the fact that in
kMC simulations, reaction events are uncorrelated
and mutually exclusive. Therefore, the probability
of occurrence of reaction r; out of n possible reac-
tion events is given by

P(’I’l U?"Q....U’I’n):P(T1)+P(7"2)+~~~~P(Tn) (8)

where the probability of occurrence of an individual
reaction is expressed as

P(ry) =1—e " )

Here, k represents the reaction rate constant, and
0t is the reaction time associated with reaction r;.
Combining Egs. (8) and (9), the characteristic reac-
tion time Tp can be obtained from

t T
TR:—%IH 1—22])1"]'

i=1 j=1

(10)

where p; ; is the probability of occurrence of a reac-
tion event at site j and at time instant 4 of the in-
ner kMC steps. In addition to these conditions, the
Courant stability condition imposes another bound
on the maximum permissible diffusion time step.
Presently, we allowed the number of inner reaction
steps to be the same as the number of reactive sites.
This can be justified from the fact that the occur-
rence of reaction events are equally likely over any
site, and with these many steps it is likely that all
the sites will react with a uniform change in concen-
tration profile. Uniformity of this profile is crucial
for identification of the dominant scale as discussed
in the relevant section.
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3. MULTISCALE INTERFACING

The role of the multiscale interface is vital to the
reaction-diffusion model under study because it has
to ensure that the upscaling of fine scale reaction
site concentrations onto coarser scale diffusion sites
and the corresponding downscaling (i.e., coupling
diffusion grid concentrations to reaction grid con-
centrations) are performed effectively. In this sec-
tion we discuss two methods that serve as “multi-
scale interface,” namely, (i) the averaging homoge-
nization scheme and (ii) the wavelet-based spatial
scaling scheme. The relative efficacy of the respec-
tive methods are discussed in detail in the Results
section.

3.1 Homogenization Scheme

For the homogenization scheme, at every diffusion
step the concentration at each diffusion node along
the reactive boundary is taken to equal the aver-
age of the reactive site concentrations in its vicinity.
Conversely, at the end of the diffusion step, the re-
sultant concentration at each diffusion node is taken
to be representative of all the reactive sites in its
vicinity.

3.1.1 Upscaling from Reaction to Diffusion Grid

The upscaling process maps the reaction sites to the
surface diffusion grid; since the reaction and diffu-
sion characteristic times are very different, the reac-
tions are allowed to occur for n, time steps, before
upscaling occurs. Mathematically, upscaling can be
represented as follows:

{D}, = [H],, {R}, (11)

where {D} and { R} represent the diffusion and re-
action grids, respectively, with superscript ¢ denot-
ing evaluation at time ¢, and subscripts d and r de-
noting the number of surface diffusion grids and re-
action sites, respectively, and [H] is a circulant ma-
trix of dimensions [r,d], expressed as
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c; Ciy1 Ciy2 O 0
Ci—1 € Cit1 Ciy2 O
[H=]0 0 0
Ci42 0 0 0 0
Ci+1  Ci+2 0 0 0

The entries in H represent appropriate weights for
evaluating the mean field. The present case uses
an eight-point stencil for the homogenization opera-
tion, while in general the coefficient and indices can
be written in a different form [30].

In a way, H acts as a multiscale transfer matrix,
and this will become more evident when we intro-
duce the wavelet-based spatial mapping. The devi-
ators from the local mean field at the reaction sites
are expressed as

0, = R}, —[M], D}y ={R},—[M], 4[H],, R}, (13)
where matrix M maps the d diffusion grid nodes

along the reactive boundary to the r reactive sites,
and has the following form:

and the submatrices [m;] comprising the [M] matrix
are expressed as

100 .0
100 .0
ml,jga=|1 0 0 . 0 (14)
100 .0

r/d,d

Thus, the species concentration at any location can
be decomposed into a mean field, which is trans-
ferred to the coarse scales, i.e., to the diffusion grid,
and the residual part, which contains the correlation
structure among the individual sites. However, for
a deterministic reactive boundary, there is no site-to-
site variation in reactions leading to a null residual
vector. The mean field in this case is the only con-
tributing part to the reactions and the deterministic
system should thus behave as if there is no spatial
scaling. This fact is used later for validating the im-
plementations.

MISHRA ET AL.
0 0 0 Ci—2 Cj—1
0 0 0 0 Ci—92
.0 0 0 0 (12)
0 c¢i—2 ci—1 ¢ Cit1
0 0 Ci—2 Ci—1 G dr

3.1.2 Downscaling from Diffusion Grids to Reactive
Sites

At the end of a diffusion time step, the species con-
centrations as they appear on the diffusion grid
need to be mapped back onto the reactive sites.
This step, crucial to the success of the simulation, is
called downscaling (not to be confused to “upsam-
pling,” which is a terminology used mostly in sig-
nal processing) or backward feedback from the dif-
fusion grid to the reaction sites. Within the homog-
enization framework, this is done by first assigning
the updated mean field of concentrations from the
diffusion grid to its contributing reactive sites. This
operation is expressed as

{R1 = [M]. (D}, (15)

where superscript ¢ + 1 indicates the next diffusion
time step after time ¢. Through downscaling oper-
ations on Eq. (15), we essentially assign the indi-
vidual concentrations of the diffusion grid at time
t 4+ 1 back to its contributing reactive sites. The
downscaled reactive concentration profile will have
a comparatively smoother profile due to the lack
{6},. which results from reactive noise. These fluc-
tuations are damped out in homogenization opera-
tions. This is shown in the scaled concentration pro-
files in the Results section.

3.2 Multiscale Interface Using Wavelets
3.2.1 Wavelets and the Wavelet Transform

The wavelet transform is nowadays well established
as an important multiresolution mathematical tool
[31]. The wavelets are derived from basic templates
by scaling and shifting base (“mother”) wavelets. A
variety of different wavelet transforms exists, and
choosing an appropriate wavelet family for a spe-
cific problem is, in many respects, similar to choos-
ing an appropriate element for a finite element nu-
merical solution process. The major advantage of
wavelet analysis of a function is that it enables
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one to extract and examine its features on different
scales and locations.

In one dimension, a continuous wavelet {(x)
transforms a fluctuating function f(z) [31] as

oo

mmwz/fm%ﬂmm (16)

The two-parameter family of functions, ¥, , (z) =
(1/y/a)y[(z — b)/al, is obtained from a single func-
tion, 1, called the mother wavelet, through dilata-
tions by the scaling factor ¢ and translations by the
factor b. The factor 1/+/a is included for normaliza-
tion. The parameter a can take any positive real
value, and the fluctuations of f(x) at position b are
measured at the scale a. Given the wavelet coeffi-
cients W¢(a, b) associated with a function f(x), it is
possible to reconstruct f at a range of scales for =
between s; and s; (s1 < s2) through the inversion
formula

1 F 7 d
ﬂmw=%//mwwmw@3

a7

51 —o0

where ¢, is a constant evaluated from the proper-
ties of the wavelet basis. In the limiting case, s; —
0and sz — oo, the original function f is obtained
through Eq. (17). When discretized, wavelet anal-
ysis can be performed with fast O(N) algorithms
as compared to O[N log, (V)] for fast Fourier trans-
forms (FFIs). In this work, a biorthogonal spline
was used as the mother wavelet, of order (10,4),
which preserves symmetry and orthogonality of the
dual basis (biorthogonality).

3.2.2 Multiscale Wavelet Interface

The ability of wavelets to hierarchically separate
scale-specific details allows the wavelet-based inter-
face to be an effective multiscale tool. Specifically,
the wavelet interface allows the separation of coarse
and fine-scale spatial fluctuations corresponding to
reaction site concentrations, and thereby enables the
coarse graining of relevant information during up-
scaling as well as fine graining during downscaling.
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3.2.3 Upscaling from Reaction to Diffusion Grid and
Diffusion in the Wavelet Domain

In a fashion analogous to the homogenization
scheme, the concentration at the reactive sites repre-
sented through vector {R}, can be upscaled to the
diffusion grid nodes, thus yielding vector{D} ,. Let
Wr (s,y) denote the wavelet transform of{ R}, ex-
pressed in terms of scale s and spatial coordinate y.
Wk (s,y) is decomposed as

Wrs,9) = fr(s0, AY® frls1, Ay & fr (52, 2" Ay) as)
E...8 fr (sn, 2”*1Ay)

where @ implies scalewise association in the
wavelet analysis formality, fr(s;,27'Ay),i =
1,..,n denote the wavelet transform at scale s;, and
sampling interval 2°"'Ay and fg (so, Ay) denotes
the transform at the coarsest scale using the scaling
function. It should be noted that for vector { R}, of
length r, there are n = log, r — 2 number of scales
(or scale decompositions) available.

Although n = log, r — 2 scale decompositions of
{R}, are possible, the number of relevant and use-
ful decompositions are restricted by the coarser spa-
tial resolution of the diffusion grid {D},. For ex-
ample, if there are d number of points in the diffu-
sion grid, then out of n = log,r — 22 available re-
action site scales, only m = log, d — 2 scales can be
used in upscaling. Thus, the wavelet transform of
{D},,Wg(s,y) can be restricted to m scales as

WD(S7y):fR(SO7 Ay>@fR(Sla Ay)EBfR(SQa 21Ay) (19)
®... ® fr (sm, 2" 1 Ay)

It should be noted that for an accurate representa-
tion, m should be greater than or equal to a certain
number of critical or dominant scales in order to en-
sure that the energy norm as well as the basic corre-
lation structure of { R}, is essentially preserved dur-
ing upscaling. The identification of these dominant
scales can be accomplished based on the L2-norm of
the wavelet coefficients at each scale, with the dom-
inant scales being the ones that contribute signifi-
cantly toward the total energy (sum over all scale
energies). Furthermore, the choice of the inner time
steps n, becomes crucial to the upscaling procedure;
ideally, the inner kMC loop should proceed until a
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statistically reasonable spatial concentration profile
is allowed to develop. Specific details for the iden-
tification of dominant scales and the choice of n, as
relevant to the system under study are discussed in
the Results section.

With the species concentration upscaled from the
reaction sites to the diffusion grid, it is convenient
and efficient to solve the diffusion equations in
the wavelet domain until the next, i.e., downscal-
ing, step, given that the wavelet transform is lin-
ear. Since the scales are only bridged along the y
coordinate, the diffusion Eq. (5) is solved in the
wavelet domain along this coordinate and subse-
quently back-transformed at the end of the diffusion
step, while the diffusion equation along the x coor-
dinate is always solved in real space, i.e.,

oWy [u(z,y,t)] _D 82Wy[u (z,y,1)]
ot 0z?
i 20)
Oy?

where W, denotes the wavelet transform of species
concentration v in the y direction only. Equation (20)
can be written as

Ou(x, Wy, t) _D 0*u(x, W, t) n O*u(x, W, t)

ot Ox? 0y? } @D

thus expressing u as a function of z, t, and
the wavelet transform coordinate y. The inverse
wavelet transforms yields « in the z, y, ¢ domain,
ie.,

u(z,y,t) = wt [u(x, Wy, t)]

; (22)

3.2.4 Downscaling from Diffusion to Reaction Grid

After the diffusion step, { D}, is downscaled to { R},
thus providing feedback to the reaction sites from
the diffusion grid. The wavelet transform of {D},
expressed in Eq. (19) contains m = log, d — 2 scales,
while n = log,  — 2 scales are required to define the
wavelet transform of{ R},. Since n > m, the infor-
mation in the “missing” scales, i.e., the finer ones, is
obtained from the previous time step. This process
invokes quasi-stationary approximation where we
assume that the fine-scale fluctuations of the con-
centrations are invariant over the small time steps
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of integration. As pointed out before, if m is greater
than or equal to number of the dominant scales,
this is a reasonable assumption that does not intro-
duce measurable error. Then, after downscaling, the
wavelet transform of { R}, is expressed as

Whr(s,9) = fr(s0, Ay & fr(s1, Ay & fr(s2, 2" Ay)

B... ® fr (sm, 2™ 1 Ay) @ (23)

Fr" (smi1, 27 AY) & @ [ (50,2771 Ay)

where superscript —At denotes evaluation at the
previous time step. The inverse wavelet transforms
yields { R}, in the physical domain that become the
initial conditions for the next set of inner kMC steps.
For the problems addressed here, as shown in
Fig. 3, the three coarsest scales contain all the domi-
nant information on a coarse grid. In these plots, the
wavelet transform coefficients are arranged sequen-
tially, from coarse to fine scales, along the horizon-
tal axes. The concentrations were obtained using
the benchmark scheme having the same resolution
on diffusion grids and reaction sites. Plots such as
Fig. 3 help in selecting an optimal grid for the diffu-
sion and this can be used to develop adaptive meth-
ods for solving the diffusion problem efficiently. An
estimate of dominant scales can be postulated as

NgE

E;

1
I (24)

where 1 is the fractional energy index, E; is the en-
ergy contained in the ith scale, and m is the number
of scales considered. The so-called energy in this
case is based on the L2-norm. Figure 4 shows the
plot of n versus m. It is obvious from the plot that
out of all the scales, only the three initial coarsest
scales contain more than 99% of the energy. This
particular property of wavelet transform is the key
to upscaling and helps to retain most significant in-
formation of the relevant field in its upscaled ver-
sion.

7

T]:

4. RESULTS
4.1 Homogenization, Wavelet, and Benchmark

Let {R}, denote the spatial “signal” or vector of
concentrations along r number of discrete equidis-
tantly spaced reactive points, z1,zs,...,z,. Simi-

International Journal for Multiscale Computational Engineering



SCALING OF COUPLED REACTION-DIFFUSION FIELDS

» dominant
L)
scales
2904
-time steps 1000
740 ===~lime steps 256
2 time steps 250
5 190 o]
— |
= 140 l
k] |
z i
= %0- ]
::.. | (a)
401 ]
R——
10 L T R ity e et
o 50 100 150 200 230

wavelet number

289

bime steps 1000
====timesteps 256
——— time steps 250

&)

|
1| .
it | '.

100 150
wavelet mumber

wavelet amplitnde

0 a0

200 250

FIGURE 3. Wavelet decomposition of spatial concentration profile and dominant scales for (a) species A (b) species

B
1.0000 -+ o
é D./7—'
'§ 0.9875 7
£ g
2 5 0.9750 A -
g b —e—species A
é 0.9625 - —=— gpecies B
=3
o
0.9500 \ \ \
1 2 3 4

wavelet scales
FIGURE 4. Fractions of cumulative energy contained
along wavelet scales

larly, let { D}, denote the spatial “signal” of concen-
trations along d discrete equidistantly spaced diffu-
sion nodes, x1, x2, ..., £4, along the reactive bound-
ary. For a benchmark solution of the reaction-
diffusion problem r = d; in this benchmark solu-
tion, no spatial scaling is required, yet the process
is computationally cumbersome. For an efficient so-
lution, however, d < r; thus, the number of diffu-
sion grid nodes along the reactive boundary are less
than the number of reaction sites. This is examined
within the context of homogenized and wavelet-
based mapping in the following sections.

The homogenized, wavelet based, and bench-
mark schemes parameters are listed in Table 1 as
illustrated in Fig. 1. Of the three, the benchmark
scheme is the most accurate, albeit the most compu-
tationally expensive, because the diffusion domain
discretization is at the scale of the reaction sites. The
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wavelet-based scheme maps 256 reaction sites to 32
nodes in the diffusion grid, thus there are eight reac-
tive sites contributing to each node in the diffusion
domain. The homogenization scheme maps 256 re-
action sites to 32 nodes in the diffusion grid.

Isotropic diffusion is considered with a diffusion
coefficient D = 0.05 space units/s?. The reaction rate
for both forward (A — B) and backward (B — A)
reactions is considered the same, 2.5/s. Thus, the re-
action kinetics are solely governed by the reactive
species concentration and will initially be in the di-
rection of lower species concentration. The initial
concentration of species A is 100 units and of B is
10 units at the reactive boundary, while away from
the boundary (diffusion domain) the initial concen-
trations are zero.

In the following, the three multiscaling schemes
will be compared on the example defined in Table 1.
Before proceeding to present any results, it is impor-
tant to check for species conservation. Conservation
is one necessary condition that must be satisfied for
any multiscale scheme. We check the mass conser-
vation through counting the total number of species
present in the system in kinetic evolution time steps.
The upscaled and downscaled concentration pro-
file on the diffusion grid and reaction sites is also
shown in Fig. 5. The difference between the ho-
mogenization and wavelet-based schemes is obvi-
ous form the plot. The proximity of the wavelet-
based downscaled reactive profile to the benchmark
one is obvious. But this is not the case for the ho-
mogenization scheme. The stochasticity is absent



290

TABLE 1. Discretization Used in the Three Schemes
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Diffusion domain Reaction sites
Models Number | Number | Discretization| Discretization| Number Discretization
of nodes | of nodes | along x along y of reaction | along x
along z | alongy, d sites, r
Benchmark 64 256 0.125 units 0.1250 units | 256 0.125 units
Wavelet 64 32 0.125 units 1.0282 units 256 0.125 units
scheme
Homogenization| 64 32 0.125 units 1.0282 units | 256 0.125 units
scheme
100 (©)
99
— 98

— 97
96
95

diffusion grid

down scaling in homogenization

(d)

dlffu510n 96 T T T T T T T T T T
1 25 49 73 97 121 145 169 193 217
101 (b) reactive sites
100 .
—_ wavelet based down-scaling
<, 99
(e)
98 100
97 diffusion grid 99
< 98
up-scaling — 97
(a) 96
101 95 T T T T T T T T T
299 1 32 63 94 125 156 187 218 249
= reactive sites
97
95 T T T T T T T T T
1 25 49 73 97 121 145 169 193 217

reactive sites

FIGURE 5. Illustration of upscaling and downscaling operations after 256 time steps; (a) spatial concentration profile
over reactive grid, (b) upscaled concentration profile on diffusion grid, (c) diffused concentration profile over diffusion
grid, (d) downscaled spatial concentration profile over reactive sites using the classical homogenization scheme, and
(e) downscaled spatial concentration profile from the wavelet-based scheme

in the homogenized downscaled profile whereas it
is present in the wavelet-based downscaled profile.
This is due to the multiresolution capabilities of the
wavelet transform and perseverance of correlation

in the transformed data.

The parameters listed in Table 1 are used for three
different schemes, i.e., the benchmark, the wavelet,
and the homogenization. The schemes are allowed
to evolve over time. The kinetic evolutions of the

species are shown in Fig. 6 for species B.
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FIGURE 6. The kinetic evolution of species B for (a) benchmark, (b) wavelet multiscale, and (c) homogenization

scheme

The benchmark evolution contains significant
stochasticity, as dictated by the reactions. The fluc-
tuations are distributed within a concentration band
(B between 20 to 30 units) after time 0.1 s. In addi-
tion, there are other smaller fluctuations localized in
the benchmark evolution. For the homogenization
scheme, we see the fluctuations are drastically di-
minished and all three evolutions in time after 0.1 s
tend toward B in the vicinity of 25 units. This is be-
cause the homogenization operations smeared evo-
lutions of all sites into a mean field evolution. The
wavelet-based scheme however retains these higher
fluctuations and the signals stays between B = 20
and B = 30, yet very small fluctuations seen in the
benchmark evolution are not captured due to trun-
cation of higher wavelet scales. However, the ability
of the wavelet scheme in retaining a larger portion
of the stochasticity is obvious.

Volume 6, Number 4, 2008

From Table 2, it is seen that all three schemes
show obvious fluctuations in the kinetic evolution
of species, which is due to the kMC reaction pro-
cess. However, the fluctuations in both the wavelet
and homogenization schemes are reduced, as com-
pared to the benchmark scheme. One reason for
this is the inner time steps. Another reason for the
wavelet scheme fluctuations is that by only con-
sidering the dominant scales in the wavelet trans-
form, small scale fluctuations are smeared out. Such
smearing is more pronounced in the homogeniza-
tion scheme since, even though it is incapable of rec-
ognizing dominant information, each homogeniza-
tion yields a spatially flat reaction field.

A clearer view of the kinetic evolution from in-
dividual schemes can be derived from the statisti-
cal moments associated with the concentrations pro-
files sampled at various scaled versions. The mo-
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TABLE 2. The comparison of statistics (at 256 time steps) from all the schemes, namely, benchmark, wavelet, and
homogenization. There are 256 reactive sites and on its upscaled version, the number of sites over which the profile
is sampled is 32. On downscaling, the number gets back to 256. Statistics up to fourth order are considered. Same
statistics from the various schemes and at different versions of scaling are shown in each single column

Domain Mean Standard deviation
Benchmark | Wavelet | Homogenized | Benchmark | Wavelet | Homogenized

Reaction grid | 99.1877 99.1875 | 99.1875 0.9395 0.9393 0.9393
Upscaled 99.1877 99.1874 | 99.2125 0.9395 0.9072 0.8206
Diffusion grid | 98.1243 98.1237 | 98.2465 0.9238 0.9035 0.8632
Downscaled 98.1243 98.1237 | 98.2465 0.9238 0.9381 0.8630
Domain Skewness Kurtosis
Reaction grid —0.7815 —0.7832 | —0.7832 0.4095 0.4165 0.4165
Upscaled —0.7815 —0.6985 | —0.5223 0.4095 0.3495 0.2867
Diffusion grid | —0.5815 —0.5635 | —0.5227 0.4094 0.3496 0.2448
Downscaled —0.5815 —0.6035 | —0.5222 0.4094 0.4164 0.0507

ments up to fourth order were calculated and com-
pared for various versions of the scaled concentra-
tion profiles. The comparisons are shown in Table 2.
Note that the statistics pertain to species concentra-
tions along adjacent reactive-diffusive sites. These
results show the efficacy of the wavelet scheme in
retaining higher-order moments in comparison to
the classical homogenization scheme. The efficiency
of the multiscale schemes depends on their capa-
bility to accurately retain temporal as well as spa-
tial information on the concentrations. Thus, along
with the temporal evolution, the spatial distribution
of concentrations should be studied; typical spatial
maps, at a particular time, are shown in Fig. 7.

As expected, both the homogenized and wavelet
spatial scaling schemes compromise to some ex-
tent in representing the fine scale fluctuations for
the gain in computational efficiency. However, it
is shown in the sequence that the wavelet scheme
provides superior information as compared to the
homogenized scheme. The statistics of the kinetic
evolution signals are well preserved in the wavelet
scheme. as has already been seen in Fig. 6. as com-
pared to the homogenization scheme. The deviation
in fluctuations along the spatial axis ¥ between the
benchmark and wavelet schemes is due to the ex-
clusion of ultrafine scales in wavelet decomposition.
By increasing the number of wavelet scales in up-
and downscaling brings increasingly more fluctua-

tions, as shown in Fig. 8. This assures monotonous
convergence of the wavelet scheme.

Another very important measure is the capturing
of correlation structures by the multiscale schemes.
Even though the kMC reactions are uncorrelated,
diffusion of species in the y direction introduces cor-
relations. In order to examine whether the multi-
scale schemes are capable of capturing such correla-
tions, an enhanced correlation on the concentrations
along the reactive sites is imposed. Even though
these do not contribute to the physics of the prob-
lem, they do help understand the effect of multiscal-
ing in detail. Enhanced correlations are achieved by
using the ARMA (autoregressive moving average)
model. ARMA has proved to be efficient in relevant
modeling schemes [33,34].

The ARMA (3, 2) with parameters such that the
underlying statistics remain intact is used. Figure 9
shows the spatial autocorrelation of concentrations
along the reactive sites (y direction, at = 0) as
it results from the three schemes. The benchmark
scheme has the correlation structure since it results
from the diffusion processes and the ARMA en-
hancement. The wavelet scheme is capable of cap-
turing the spatial correlations by including only the
first two coarsest scales (i.e., the scales containing
the scaling coefficients and the next finer scale con-
taining the coarsest wavelet coefficients). With three
(or more) scales, the autocorrelation structure from
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FIGURE 7. The concentration map of (a) species A from benchmark scheme, (b) species B from benchmark scheme,
(c) species A from wavelet scheme, (d) species B from wavelet scheme, (e) species A from homogenized scheme, and
(f) species B from homogenized scheme. The maps are taken at 12,500 time steps (0.25 s) dictated by kMC

the wavelet scheme is practically identical to the one 4.2 CPU Time in the Schemes

from the benchmark. To the contrary, the homoge-

nization scheme is incapable of capturing the corre- For the values listed in Table 1, Fig. 10 shows the
lations. CPU time needed for each of the three schemes de-
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FIGURE 8. The change in downscaled concentration profiles with increasing number of wavelet scales; (a) with only

one, (b) with three, and (c) with all five scales

1.0 (a)
. 0.8
I
% 0.6 -
g 0.4
g
2 0.2+
0.0 T T T T T
0 6 9 12 15 18
spatial lag
. 1.0
1.0 b —— 1/9 th scaling
. 0.8 (b) —— 1/8 th scaling - 0.8
. S
g 206
(0]
=
5 S 04 -
3 8
:5:; 8 0 | —— one wavelet scales
—— three wavelet scales
0.0 T T T T T 1
0 3 6 9 12 15 18

spatial lag

spatial lag

FIGURE 9. The autocorrelation function resulting from (a) benchmark, (b) homogenization, and (c) wavelet scheme.
The scaling in the homogenized and wavelet schemes is defined as S = (log, r/log, d) where r is the number of

reaction sites and d is the number of diffusion sites

scribed. The large time demand for the benchmark
scheme is obvious, as compared to the homogeniza-
tion scheme, which demands the least CPU time,
and the wavelet one, which demands slightly more

time than the homogenization one. This little differ-
ence in processing time is offset by the reasonable
degree of accuracy offered by the wavelet-based
scheme.
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FIGURE 10. The CPU time demand for (a) benchmark, (b) wavelet, and (c) homogenization scheme. These times
are for a computer with Intel Pentium IV CPU with 2 GHz clock speed

5. CONCLUSIONS

In this paper, we have proposed a new wavelet-
based multiscaling method capable of passing in-
formation between spatial scales while preserv-
ing the inherent higher-order statistics and correla-
tions structures. The numerous advantages of this
method as well as its superiority to homogenization
schemes are clearly shown in this work. The spatial
scaling wavelet scheme presented herein is offered
as a complement to wavelet-based temporal multi-
scaling presented elsewhere. Even though the spa-
tial multiscaling offers reduced CPU time demand
while providing reasonable accuracy, a combined
temporal and spatial scaling is required to simu-
late problems as the present reaction-diffusion sys-
tem efficiently, i.e., representing the behavior accu-
rately at all spatiotemporal scales. A homogeniza-
tion scheme may offer a simple alternative to the
wavelet one, yet its efficacy is inferior, especially
with respect to capturing any spatial correlations,
retaining important stochasticity in kinetic evolu-
tion, and in preserving the higher-order moments
of system parameters that are present in the bench-
mark system.

ACKNOWLEDGMENTS

This research is sponsored by the Mathematical, In-
formation, and Computational Sciences Division,
Office of Advanced Scientific Computing Research,
U.S. Department of Energy, with Dr. Sandy Lands-
berg as the program manager. The work was partly

Volume 6, Number 4, 2008

performed at the Oak Ridge National Laboratory,
which is managed by UT-Battelle, LLC, under Con-
tract No. De-AC05-000R22725. Discussions with
M. Syamlal, T. J. O’Brien, and D. Alfonso of the Na-
tional Energy Technology Laboratory (NETL), Stu-
art Daw of Oak Ridge National Laboratory, and
Rodney Fox and Z. Gao of Iowa State University
have been very useful.

REFERENCES

1. Vvedensky, D., Multiscale modeling of nanos-
tructures. |. Phys. Cond. Matter. 16:R1537-
R1576, 2004.

2. Marin, G. B., ed. Multiscale analysis, in Ad-
vances in Chemical Engineering, Elsevier, Ams-
terdam, Netherlands, series 30, 1-309, 2005.

3. Dollet, A., Multiscale modeling of CVD film
growth—A review of recent works. Surf. Coat-
ings Technol. 177-178:245-251, 2004.

4. Hsiaotao, T., and Jinghai, L. I., Multiscale Anal-
ysis and Modeling of Multiphase Chemical Re-
actors. Adv. Powder Technol. 15:607-627, 2004.

5. Murthy, J. Y., Narumanchi, S. V. J., Pascual-
Gutierrez, J. A, Wang, T, Ni, C, and
Mathur, S. R., Review of multiscale simula-
tion in submicron heat transfer. Int. |. Multiscale
Comput. Eng. 3:5-31, 2005.

6. Sinha, S., and Goodson, K. E., Review: Multi-
scale thermal modeling in nanoelectronics. Int.
J. Multiscale Comput. Eng. 3:107-133, 2005.



296

10.

11.

12.

13.

14.

15.

16.

17.

Vasenkov, A. V., Fedoseyev, A. I, Kolobov, V. L,
Choi, H. S., Hong, K. H., Kim, K., Kim, ]J.,
Lee, H. S., and Shin, J. K., Computational
framework for modeling of multi-scale pro-
cesses. Comput. Theor. Nanosci. 3:453-458, 2006.

Kevrekidis, I. G., Equation-free coarse-grained
multiscale computation: enabling microscopic
simulators to perform system-level tasks.
Comm. Math. Sci. 14:715-729, 2003.

Frantziskonis, G., and Deymier, P. A., Wavelet
methods for analyzing and bridging simu-
lations at complementary scales—The com-
pound wavelet matrix and application to mi-
crostructure evolution. Model. Simul. Mater. Sci.
Eng. 8:649-664, 2000.

Frantziskonis, G., and Hansen, A., Wavelet-
based multiscaling in self-affine random me-
dia. Fractals. 8:403-411, 2000.

Frantziskonis, G, Wavelet-based
multiscaling—Application to material porosity
and identification of dominant scales. Prob.
Eng. Mech. 17:349-357, 2002.

Frantziskonis, G., and Deymier, P. A., Wavelet-
based spatial and temporal multiscaling: bridg-
ing the atomistic and continuum space and
time scales. Phys. Rev. B. 68:024105, 2003.

Muralidharan, K., Deymier, P. A., and Sim-
mons, J. H. A., Concurrent multiscale FDTD-
MD method for bridging an elastic continuum
to an atomic system. Modell. Simul. Mater. Sci.
Eng. 11:487-501, 2003.

Muralidharan, K., Mishra, S. K., Frantzisko-
nis, G. E, Deymier, P. A, Nukala, P,
Simunovic, S., and Pannala, S.,, The dy-
namic compound wavelet method for multi-
scale/multiphysics simulations. Phys. Rev. E.
77:026714, 2008.

Mullins, M., and Dokanish, M. A., Simulation
of the (001) plane crack in «-iron employing
a new boundary scheme. Phil. Mag. A. 46:771—
780, 1982.

Tadmor, E. B., Phillips, R., and Ortiz, M., Mixed
atomistic and continuum models of deforma-
tion in solids. Langmuir. 12:4529-4544, 1996.

Deymier, P. A., Oh, K. D., Muralidharan, K.,
Frantziskonis, G., and Runge, K., Selection of
domains for coarse and fine levels of descrip-

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

MISHRA ET AL.

tion in mixed-potential systems. |. Comp-Aided
Mater. Des. 13:17-44, 2006.

Praprotnik, M., DelleSite, L., and Kremer, K.,
Adaptive resolution molecular-dynamics sim-
ulation: changing the degrees of freedom on
the fly. J. Chem. Phys. 123:224106, 2005.

Abrams, C. J., Concurrent dual-resolution
monte-carlo simulation of liquid methane. |.
Chem. Phys. 123:234101, 2005.

Ensing, B., Nielsen, S. O., Moore, P. B.,
Klein, M. L., Parrinello, M., Energy conserva-
tion in adaptive hybrid atomistic/coarse-grain
molecular dynamics. J. Chem. Theory Comput.
2:1100-1105, 2007.

Rickman, J. M., and Lesar, R., Issues in the
coarse-graining of dislocation energetics and
dynamics. Scripta Mater. 54:735-739, 2006.

Rudd, R. E., and Broughton, J. Q., Coarse-
grained molecular dynamics and the atomic
limit of finite elements. Phys. Rev. B. 58:5893—
5896, 1998.

Grzybowski, B. A., Bishop, K. J. M., Camp-
bell, C. J., Fialkowski, M., and Smoukov, S. K.,
Micro- and nanotechnology via reaction-
diffusion. Soft Matter. 1:114-128, 2005.

E, W.,, and Engquist, B., The heterogeneous
multi-scale methods. Comm. Math. Sci. 1:87—
132, 2002.

Mehraeen, S., and Chen, J. S., Multiscale
wavelet-based homogenization of heteroge-
neous media. Finite Elements in Analysis and De-
sign. 40:1665-1679, 2004.

Mishra, S. K., Muralidharan, K., Pannalla, S.,
Simunovic, S., Daw, S. C., Nukala, P, Fox, R.,
Deymier, P. A., and Frantziskonis, G., Spa-
tiotemporal compound wavelet matrix frame-
work for multiscale/multiphysics reactor sim-
ulation: Case study of a heterogeneous reac-
tion/diffusion system. Int. ]. Chem. Reactor Eng.
6:A18, 2008.

Gardiner, C. W., Handbook of Stochastic Methods:
For Physics, Chemistry and the Natural Sciences,
2nd ed. Springer, New York, 1996.

Gillespie, D. T., Exact stochastic simulation
of coupled chemical reactions. J. Phys. Chem.
81:2340-2361, 1977.

Manning, M. R., Characteristic modes of iso-

International Journal for Multiscale Computational Engineering



SCALING OF COUPLED REACTION-DIFFUSION FIELDS

30.

31.

32.

topic variations in atmospheric chemistry. Geo-
phys. Res. Lett. 26:1263-1266, 1999.

Pavliotis, G. A., and Stuart, A. M., Multi-
scale Methods: Averaging and Homogenization,
Springer, New York, 2007.

Daubechies, 1., Mallat, S., and Willsky, A. S.,
Special Issue on wavelet transforms and
multiresolution signal analysis—Introduction.
IEEE Trans. Info. Theory. 38:529-531, 1992.
Cohen, A., Daubechies, 1., Jawerth, B., and
Vial, P., Multiresolution analysis, wavelets and

Volume 6, Number 4, 2008

33.

34.

297

fast algorithms on an interval. Compt. Rend.
Acad. Sci. Math. 316:417-421, 1993.

Na, S. S., and Rhee, H. K., Polynomial ARMA
model identification for a continuous styrene
polymerization reactor using on-line measure-
ments of polymer properties. J. Appl. Polym. Sci.
76:1889-1901, 2000.

Shaojian, S., and Parthasarathy, R., Protein se-
quence and structure relationship ARMA spec-
tral analysis: Application to membrane pro-
teins. Biophys. . 66:2092-2106, 1994.






